Université de M'sila

Faculté des Mathématiques de l'Informatique

Département des mathématiques

Licence 3ième année/ Optimisation

Année universitaire: 2020/2021

Série d'exercice N: 5

Exercice 1: (Méthode du gradient).

On considère la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = 2x^2 + y^2 - 3x - y + 4$$

- 1. Montrer qu'il existe un unique $x^* \in \mathbb{R}^2$. Calculer x^* .
- 2. En partant de $(x^{(0)}, y^{(0)}) = (0, 0)$, calculer :
- Deux itérations par l'algorithme du gradient à pas fixe pour un pas $\rho = \frac{1}{2}$.
- Une itération par l'algorithme du gradient à pas optimal.

Exercice 2: (Méthode du gradient conjugué)

En reprenant la fonction

$$f(x,y) = 2x^2 + y^2 - 3x - y + 4$$

Calculer 2 itérations par la méthode de gradient conjuguée.

Exercice 3: (Méthode du gradient conjugué)_

On considere la fonction

$$f(x,y) = \frac{1}{2} \left(x^2 + \alpha y^2 \right)$$

- 1) Ecrire f sous forme matricielle.
- 2) Pour quelles valeurs de α , la fonction f est strictement convexe.
- 3) Montrer que f admet une solution globale puis calculer cette solution.
- 4) En utilisant la méthode du gradient conjugué avec pas optimale, calculer 2 itérrations en partant du point initial $(x^{(0)}, y^{(0)}) = (1, 1)$.

Exercice 4: (Méthode de Newton)

On considere la fonction

$$f(x,y) = 2x^2 + 2y^2 + xy$$

- 1) Ecrire f sous forme matricielle.
- 2) Calculer $\nabla f(x,y)$ et $\nabla^2 f(x,y)$ pour tout $(x,y) \in \mathbb{R}^2$
- 3) Montrer que f admet un minimum global sur \mathbb{R} .
- 4) Soit la suite de la méthode de Newton définie

$$z^{(k+1)} = z^{(k)} - \left[\nabla^2 f\left(z^{(k)}\right)\right]^{-1} \nabla f\left(z^{(k)}\right) \text{ pour } k \in \mathbb{N}$$

1

(a) Calculer $z^{(1)} = (x^{(1)}, y^{(1)})$.

(b) Montrer que $z^{(1)}$ est l'unique point de minimum global de f sur \mathbb{R}^2 .

Exercice 5: (Méthode de Newton)_____

En reprenant la fonction

$$f(x,y) = 2x^2 + y^2 - 3x - y + 4$$

Calculer une itération par la méthode de Newton.