FACULTE DE TECHNOLOGIE

DEPARTEMENT D'ELECTRONIQUE

OPTION: ELECTRONIQUE

ANNEE UNIVERSITAIRE: 2020/2021

MODULE: Asservissement

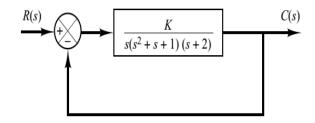
TD N°03

Exercice N°01

On considère le système de premier ordre suivant :

$$F(p) = \frac{3}{2p+4}$$

- 1- Déterminez le gain statique *K* du système.
- 2- Déterminez la constante de temps τ du système.
- 3- Déterminez le temps de réponse *tr* du système.
- 4- Déterminez la pulsation de coupure, ω_c , puis la fréquence de coupure f_c du système.
- 5- Déterminez l'unique pôle, noté p_1 , du système.
- 6- Tracer le diagramme de BODE


Exercice N°02

Soit le système suivant

Étudier la stabilité en fonction de k par critère de ROUTH

$$D(p) = 1 + T(p) = a_n p^n + a_{n-1} p^{n-1} + a_{n-2} p^{n-2} \dots a_{n-1} p$$

p^n	a_n	a_{n-2}	a_{n-4}	
p^{n-1}	a_{n-1}	a_{n-3}	a_{n-5}	
p^{n-2}	$\boldsymbol{b_1} = \frac{a_{n-2}a_{n-1} - a_n a_{n-3}}{a_{n-1}}$	$\boldsymbol{b_2} = \frac{a_{n-4}a_{n-1} - a_n a_{n-5}}{a_{n-1}}$	$\boldsymbol{b}_3 = \frac{a_{n-6}a_{n-1} - a_na_{n-7}}{a_{n-1}}$	
p^{n-3}	$c_1 = \frac{a_{n-3}b_1 - a_{n-1}b_2}{b_1}$	$c_2 = \frac{a_{n-5}b_1 - a_{n-1}b_3}{b_1}$	$c_2 = \frac{a_{n-7}b_1 - a_{n-1}b_4}{b_1}$	
	•••••			
p^1	•••••	•••••	•••••	
p^0	•••••	•••••	•••••	

Une condition nécessaire et suffisante pour que le système soit stable est que tous les coefficients de la première colonne soient de même signe.