Reid Perkins-Buzo DIG 4905 VG&S

Unity 2D Tutorial

It used to be quite hard making a 2D game in Unity 3D. The basic idea was to apply textures
to 2D four-sided polygons called "quads,” adjusting their offsets with a script to create
animations. The older Unity physics engine works in 3D, so you had to make sure the sprite
objects had sufficient depth to interact with each other while ensuring they didn’t
accidentally rotate around their x- or y-axes.

The only alternative was to use one of the various add-ons available on Unity’s Asset Store,
(e.g., 2D Toolkit or Orthello 2D Framework), any of which include great features but restricts
a game to work within its own set of constraints. And most of these were not cheap if you
wanted the full feature set.

While all of these options are still available, Unity 4.3 now has native tools that add a new
dimension to your workflow options: the 2nd dimension!

Note: This tutorial assumes you have at least some experience with Unity. You should know
the basics of working with Unity’s interface, GameObjects and Components, and you should
understand an instruction like, “Add a new droid to your scene by dragging droid from the
Project browser into the Hierarchy.”

If you think that sounds like C-3PO on a bad day, or if you’d like a moment to get yourself into
the right mindset for dragging droids, you may want to go through a tutorial that gives a
more basic introduction to Unity, such as this one.

Finally, note that the screen captures in this tutorial show the Unity OS X interface. However,
if you’re running on Windows don’t worry - since Unity works the same on Windows most of
these instructions will still work just fine. There will be a few minor differences (such as using
Windows Explorer instead of Finder) but you’ll get through it.

1) Downloading and Installing Unity 4.3.x
You can download Unity 4.3.x from here. Follow the online Unity instructions to install it.
If this is your first time installing Unity, you get a free 30-day trial of Unity Pro! See the
Unity webpage for more info.

2) Game Resources
You’ll also need some art to make a 2D game. Fortunately, | made some Android images
for “droid vs apples”. They are in the same zip file as this tutorial in a folder called
“tutorial_resources®.

3) Starting the project 800 Project Wizard (4.3.3f1)
Open Unity and create a new project by [open Project TS
ChOOS] ng Project Directory:
[/Users/reidop/Desktop/unity 2D tutorial/droid_dance J [Set.. |

File > New Project...

Import the following packages:

Click Set... in the Create new Project
tab of the Project Wizard dialog that
appears.

Name the project droid_dance, choose
a folder in which to create it, and click
Save.

Finally, choose 2D in the combo box
labeled Set up defaults for:, as shown
below, and click Create Project:

Set up defaults fo‘{

Character Controller.unityPackage
Glass Refraction (Pro Only).unityPackage
Image Effects (Pro Only).unityPackage
Light Cookies.unityPackage

Light Flares.unityPackage
Particles.unityPackage

Physic Materials.unityPackage
Projectors.unityPackage
Scripts.unityPackage
Skyboxes.unityPackage

Standard Assets (Mobile).unityPackage

3D

Create Project

Page 1 of 23

http://starwars.com/explore/encyclopedia/characters/c3po/
http://starwars.com/explore/encyclopedia/characters/c3po/
http://unity3d.com/learn/tutorials/projects/roll-a-ball
http://unity3d.com/learn/tutorials/projects/roll-a-ball
http://unity3d.com/unity/download
http://unity3d.com/unity/download

Reid Perkins-Buzo

DIG 4905 VG&S

The above-mentioned combo box is the first 2D-related feature you’ll come across in
Unity. It’s supposed to change the default import settings for your project’s art assets, but
so far | haven’t seen it work properly. Fortunately, this isn’t a problem because you can

change this setting in your project at any time, and doing so works fine.

Version Control

Mode

WWW Security Emulation

Host URL http

Asset Serialization

Mode

Default Behavior Mode

Mode

Sprite Packer

To ensure it’s set properly, and so you know how
to change it if you ever want to, choose

Edit > Project Settings > Editor

to open the Editor Settings in the Inspector. In the
Default Behavior Mode section, choose 2D for
the Mode value, as shown below:

The Default Behavior Mode defines the default
import settings for your project’s art assets. When
set to 3D, Unity assumes you want to create a
Texture asset from an imported image file (e.g.

a .PNG file); when set to 2D, Unity assumes you
want an asset of type Sprite. You’ll read more
details about Sprite assets and import settings
throughout this tutorial.

Mode

The next 2D feature you’re faced with is the 2D

toggle button in the Scene view’s control bar.

Click the 2D toggle button to enable 2D mode, as shown below:

=31 Center

This button toggles the Scene view’s camera between perspective and orthographic

projections. What’s the difference?

When viewed with a perspective projection,
objects appear smaller as they move further away
from the camera, just like objects in the real
world look when you see them with your eyes.
However, when viewed with an orthographic
projection, an object’s distance from the camera
doesn’t affect its size. Therefore, in 2D mode, an
object that is further away from the camera will
appear behind any closer objects, but its size will
remain unchanged regardless of its position.

The following image shows two Scene views, each
looking at the same two cubes from the same
location. The top view is in 2D mode while the
bottom one is not.

Page 2 of 23

Reid Perkins-Buzo DIG 4905 VG&S

The previous screenshot also shows how 2D mode hides the Scene Gizmo that lets you change
the orientation of the Scene view’s camera. With 2D mode enabled, the orientation is fixed so
the positive y-axis points up and the positive x-axis points to the right.

Important: Toggling this setting has no effect on how your game finally appears when played -
that’s determined by the camera(s) you set up in your scene - but it can be helpful when
arranging objects. You’ll probably move back and forth between these two modes while
creating your own 2D games, and even sometimes while creating 3D games, but this tutorial’s
screenshots all show the Scene view in 2D mode.

4) Sprites Made Easily!

How easy is it to add a sprite to your scene using Unity’s new features? Try the following
experiment to find out.

Step 1: Drag rat.png from your Game Resources folder into the Scene view.
Step 2: Use some of the time you save making your game to send a thank you note to the
Unity devs.

That was pretty easy! If you got lost, just re-read those instructions and try again.

This demonstration was simplified by relying on Unity’s default import settings, which
oftentimes won’t be correct for your images. However, this serves to illustrate a point -
Unity’s new features make working in 2D amazingly easy! The rest of this tutorial covers
everything you’ll need to know to really get started working with
2D graphics in Unity.

5) Sprite Assets

Select rat in the Hierarchy and look in the Inspector. Your
Inspector most likely won’t show the same position that you see
in the following screenshot, but don’t worry about that right
now. What’s important to note here is that, in order to display
the rat in the scene, Unity attached a Sprite Renderer
component to a GameObject.

It’s not obvious, but Unity created geometry for the object, too.
For each Sprite, Unity creates a mesh that basically fits the non-
clear pixels in your image. Notice the blue mesh in the following
image of the

By creating a mesh like this rather than applying your sprites as
textures on a quad, Unity can improve your scene’s fill rate at
render-time. It also makes creating polygon colliders easy, but
that will have to wait for another tutorial.

R

rat
73x78 (NPOT) ARGB 32 bit 22.2 KB

Page 3 of 23

Reid Perkins-Buzo DIG 4905 VG&S

We’ll learn about the Sprite Renderer’s properties throughout this
tutorial, but for now, look at the field labeled Sprite. This shows
the name of the Sprite asset assigned to this renderer.

You can only assign one Sprite at a time, but later you’ll learn how
to update this field at runtime to create animations.

As you can see in the following image, the rat GameObject has a
Sprite named rat assigned to its renderer.

Be sure the Project browser is visible. Then click inside the Sprite
field in the Inspector to locate and highlight the Sprite asset in
the Project browser, as shown here:

Note: The highlighted border fades away after a few seconds, so if
you don’t notice it, click the Sprite field again. Of course, with
only one asset in your project, it’s unlikely you’ll miss it.

As you can see in the previous screenshot, Unity highlighted an item named rat inside the
Project browser, which is a child of another object, also named cat. Two cats in the Project
browser? Yeah, that could be confusing. Here’s what’s going on:

« The parent rat is the Texture asset. It’s a reference to the original art file you
imported, cat.png, and controls the import settings used to create the Sprites from
your artwork. As you can see, it shows a nice thumbnail of the file’s contents.

« The child rat is a Sprite asset that Unity created when it imported rat.png. In this
case, there is only one child because Unity only created a single Sprite from the file,
but later in the section on slicing sprite sheets you’ll see how to create multiple
Sprites from a single image.

Note: Unity’s Sprite class actually only contains the information needed to access a
Texture2D object, which is what stores the real image data. You can create your own
Texture2D objects dynamically if you want to generate Sprites at runtime, but that requires
much more coding than we can concern ourselves with now.

As you saw with rat.png, you can add Sprites to your scene by dragging art assets from the
Finder directly into the Scene view (or the Hierarchy, if you’d like). But more commonly,
you’ll add assets to your project prior to adding objects to your scene.

Add to your project the remaining image files you downloaded: background_CB.png,
enemy_Apple.png, and kitkat_andy.png.

Page 4 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Unity gives you the following five options to get assets into your project:

1. Drag files from your Finder window into the Project browser.
2. Go to Assets > Import New Asset..., select your files and click Import.

3. Right-click within the Project browser, choose Assets > Import New Asset..., select your
files and click Import.

4. Within your OS, add the files directly to your project’s Assets directory, or one of its
subdirectories. Unity refreshes your project automatically to keep assets up to date.
Warning: Although it’s ok to add assets this way, you should never delete assets
directly from your file system. Instead, always delete assets from within Unity,
because Unity maintains metadata about your project’s assets and modifying the file
system directly could corrupt it.

5. Of course, you can also drag files directly into the Hierarchy or the Scene view, but
doing so has the additional effect of creating a GameObject in the current scene.

Add an enemy to your scene by dragging enemy_Apple from the Project browser to the
Hierarchy.

Just like with rat, there are two items named
enemy_Apple in the Project browser, but it .
doesn’t matter which one you choose. That’s Tag Untagg
because dragging a Sprite asset (the child) always). Transform
uses that specific Sprite, whereas dragging a el
Texture asset (the parent) uses the first child
Sprite, which is the same thing in a case like this

where there is only one child. [/ Sprita Randares

Sprite

Select enemy_Apple in the Hierarchy and set its ,]:_],,.,1,,‘
Transform component’s Position to

(Zy 07 0), as ShOWn here. Sorting Layer

Order in Layer

Before your scene starts getting sloppy, select rat © Inspector
in the Hierarchy and set its Position to (0, 2, 0), \ a
like SO. Tag ! Untagged

J

Transform
Your scene should now be arranged like the B L Y 0
following image:

Y

Y 1

(5] ¥ sprite Renderer

Sprite "enemy_Apple
Color I

Material ® Sprites-Default

Sorting Layer

Order in Layer

Page 5 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Finally, drag background_CB from the
Project browser to the Hierarchy, and © Inspector
set its Position to (0,0,0), as shown @ ¥ background_CE

[

here: Tag

) Transform

Position

Rotation

Scale

(2] ¥ Sprite Renderer

Sprite background_C

Color

You’ll improve the background_CB image ,
quality a bit later, so don’t worry if it
doesn’t look quite right. (Hint: Importing Sorting Layer
background_CB.png is one of those Order in Layer
times where Unity’s default settings

aren’t correct.) Your Scene view will now

look something like this:

Material

& main.unity - droid_dance - PC, Mac & Linux Standalone.

Don’t be alarmed by the
fact that you can no
longer see the rat or the
-~ 5 | enemy_Apple in your
Scene view.

& They’re simply behind
the background.

Next we need to prepare

the sprites for
kitkat_andy.

5) Slicing Sprite Sheet Assets

We already imported kitkat_andy.png into the project, but the file is different from the
other ones. Instead of a single image, it contains several, as shown below:

¢ e

Page 6 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Such a file is usually referred to as a sprite sheet, and you’ll want Unity to create a separate
Sprite asset for each of the sheet’s individual images.

Expand kitkat_andy in the Project browser. As we can see, Unity created a single child - a
Sprite containing the entire image.

Unity offers a simple way to treat this image as a sprite sheet. Select the top-level
kitkat_andy in the Project browser to open its Import Settings in the Inspector.

Set Sprite Mode to Multiple (see the image) and
click Apply.

Choosing this option caused a new button labeled
Sprite Editor to appear. It also removed the Pivot
g property, because each individual sprite will define
its pivot point elsewhere.

Notice in the Project browser that kitkat_andy
texture asset no longer has children, as indicated
by the lack of a small arrow on its right side.

In this state, the kitkat_andy texture is unusable. If you tried to drag it into the Hierarchy,
you would get a message indicating it has no Sprites. That’s because you need to tell Unity
how you want to slice the sprite sheet.

With kitkat_andy selected in the Project browser, click Sprite Editor in the Inspector to
open the following window:

The Sprite Editor lets you
define which portions of an
image contain its individual
sprites.

Sprite Editor
Click the Slice button in the upper
left of the window to start
defining sprites.

Page 7 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Unity can find your sprites
automatically, but you can adjust
its results.

Start with the default settings
shown and click Slice.

Unity uses the transparency in the
texture to identify possible sprites
and displays a bounding box
around each one.

In this case, it found the following
four sprites:

Unity’s automatic slicing works best when images are laid out with unambiguous empty space
between each item. Notice how Unity only finds the smiley face in the left image, but finds
three sprites in the image on the right.

The above images point out that you should arrange the images in your sprite sheets carefully.

Page 8 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Click on any of the sprites that Unity identified to edit the details of that sprite, including its
name, position, bounds, and pivot point.

Sprite Editor

Sprite

kitkat_andy_3

You can make changes in the window’s fields, and you can adjust the bounds and pivot point
directly within the image.

Normally, after you’ve made changes, you would hit Apply or Revert in the upper right of the
Sprite Editor to save or discard them, respectively.

However, while the option to tweak Unity’s findings is great, we won’t need to do that here
because we aren’t going to use the sprites it found. The images in kitkat_andy.png are
arranged in four equally sized rectangles, and Unity has a separate option to handle cases like
this one.

Click Slice in the upper left of the
Sprite Editor to open the slice Sprite Editor
settings again, but this time, set : :
Type to Grid.

The splice settings change to those
shown here.

The Pixel size fields allow you to
specify the size of your grid’s cells.

X defines the width of each cell; Y
defines the height.

Page 9 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Unity will use those values to divide the
image up equally, starting in the upper left
corner of the image.

Set X to 157, and Y to 102, as shown.

Click Slice and Unity finds the following four sprites:

You can still select individual cells in the grid and tweak their settings like you could when
using Unity’s Automatic slicing option, but that’s unnecessary for these sprites.

Click Apply in the upper-right of the Sprite Editor to commit your changes. Notice how Unity
updates the Project browser so that the top-level kitkat_andy texture asset now contains
four child Sprites, named kitkat_andy_0, kitkat_andy_1, and so on, as shown below:

Create a new empty GameObject by choosing GameObject > CreateEmpty. Click on the
GameObject in the Hierarchy browser and rename the object andy, and set its Position to
(-2, 0, 0) in the Inspector.

On ‘i[}gf[:inr

r v andy
Tag ' Unta

J

jed

Transform
Position

|".,:|Tj|l|:||',

Scale

Page 10 of 23

Reid Perkins-Buzo DIG 4905 VG&S

With andy selected in the >
Hierarchy, add a Sprite
Renderer component by
clicking Add Component
in the Inspector. See the
left image.

In the menu that appears,
choose Rendering and
then choose Sprite
Renderer, as shown on
the right.

Rendering [

New Script [sprite Renderer

IGUITexture "

& GuIText

Click the small circle/target icon on the right of the Sprite Renderer's Sprite field to open
the Select Sprite dialog. The icon is shown below:

(s ¥ Sprite Renderer

sprite r‘-J:»x',t‘J\['1[|t|'-

Color I

Material ® Sprites-Default

Sorting Layer Defa

Order in Layer

The dialog that appears contains two tabs, Assets and Scene. These show you all the Sprites
you have in your project and in the current scene, respectively.

8 .00 Select Sprite

Choose the Assets tab and then click on kitkat_andy_0 to assign that Sprite to the renderer.

Page 11 of 23

Reid Perkins-Buzo DIG 4905 VG&S

You should see something like this in the Scene viewer:

SR TAF v;y'

o

A Inm\’m-n‘mh

6) Setting up the “Look,” etc.

We now have all the Sprites in the game, we can configure how the game should look for the
players. First, we are designing this game for an Android system, so we will set our Game
view size to 960 x 540 pixels, which is a standard screen size for many Android devices.

We change the Game view’s aspect ratio or fixed
resolution by using the drop down menu in the view’s
control bar.

Clicking the menu reveals several default options
that differ based on
the editor’s current
player settings. If
you happen to have
an option for an 960
x 540 resolution,
choose it and you’re
done. Otherwise,
click the + button at
the bottom of the
menu, as shown.

Create a new size
option with a Type of Fixed Resolution, and Width and Height
values of 960 and 540, respectively, as shown to the right. LG L

Android (

Click OK and then select the new setting in the menu.

Cancel

Page 12 of 23

Reid Perkins-Buzo DIG 4905 VG&S

The Game view now looks something like this:

MR

NGRS o T e N

It may not look exactly like this, because Unity resizes the Game view to maintain your
chosen aspect ratio within the available space. Regardless of its scale, you should see the
same amount of the scene in your view.

Obviously, that isn’t quite right. You’re seeing the results of three different problems here,
and you’ll correct each one in turn:

» The scene’s camera is not set up properly, so the background doesn’t fill the view
properly.

» The scene is rendering your game objects in the wrong order, so the rat and Apple are
both behind the background.

« The image quality is not very good. This one might be hard to detect with the current
camera settings. But trust me, it can be better!

7) Fixing the camera. © Inspector

Y v Main Camera
A

In 2D games, you’ll usually want the camera to f2a M

use an orthographic projection rather than a
perspective one. You already read about these two
projections earlier regarding the Scene view’s 2D Position X 0
mode, but what you may not have realized is that tati X (
Unity may default your game’s cameras to use a
perspective projection. Not nice!

) Transform

v Camera
Clear Flag:

Background

Select Main Camera in the Hierarchy. Then,
inside its Camera component, make sure the
Projection is set to Orthographic.

Culling Maslk

Projectior
Center the camera vertically on the scene by
setting its Transform’s Position to (0, 0, -10).
Your Inspector looks like:

Slze

Clipping Planes

Page 13 of 23

Reid Perkins-Buzo DIG 4905 VG&S

The Game view now looks like:

v ‘vguvyv - .v-

“

aa hf:m’nﬁﬂn N ; M\M \\k el

Not much different from the perspective projection! In 3 dimensional games, sprites change
size based on their distance from the camera. In 2D games, how do you zoom in so that the
background fills the screen? You could try scaling your GameObjects, but using the camera’s
Size property is the more
robust approach.

The camera’s Size defines
the dimensions of its
viewport. It’s the number of
units from the center of the
view to the top of it. In other)
words, the camera’s Size is -
half the height of the view.
The width of the view is
calculated at run time based

on the view’s aspect ratio.

,;. — rr‘y-mvw- g ‘v m, & >y
@

But there’s one further

complexification: Unity does not measure the Sprites directly in pixels, but in its own units.
The scale factor determining the number of Unity units for a particular Sprite is listed for
that Sprite in the Project browser, under the property Pixel to Units.

If we select the background_CB sprite in the Project
browser, the look in the inspector, we see that its Pixel
to Units is set to 100. See the image to the right.

So our background_CB.png image was 2048 pixels wide
x 640 pixels high, and the background_CB sprite has a
Pixel to Units of 100, therefore the height in Unity
units of the background_CB sprite is

640 = 100 = 6.4 Unity units

Page 14 of 23

Reid Perkins-Buzo DIG 4905 VG&S

The appropriate camera Size is half of that, so we
should set it to

6.4 + 2 = 3.2 Unity units

Now background_CB fills the Game view properly.
See the next image.

U S Y

==

o .

No blue filler area!

8) Improving the appearance of the Sprites.

When we imported our Sprites into Unity we simply accepted the default import settings for
them. Many times this is a good choice, but it never hurts to review them, especially when
you are using Sprite Sheets or larger textures for the background. Sometimes Unity’s

“one size fits all” approach doesn’t work in these
cases. Having inappropriate import settings for your
sprite images is the most common cause of a weaker
appearance for a game.

In particular, let’s look at the background_CB sprite’s
import settings. Select background_CB in the Project
browser. Note that the Max Size property is set to 1048
pixels. But background_CB is 2048 pixels wide, so
Unity is shrinking it by 50%. Not good for the
appearance. Change this setting to 2048. Don’t forget
to click Apply!

Also note that the format is set to Compressed. Clicking on the drop-down menu shows three
settings: Compressed, 16-bit and TrueColor. These correspond to 8-bit, 16-bit and 32-bit
per pixel formats, respectively. The more bits per pixel, the higher the quality, but also the
greater the memory required and the more processing power it takes to render the sprite. So
it’s a trade-off.

Page 15 of 23

Reid Perkins-Buzo DIG 4905 VG&S

For our purposes, the background_CB sprite has little detail, so the Compressed setting is
best. For an image with a plethora of detail or great significance in the game, use a less
compressed setting.

Checking the import settings for the rest of our sprites, we can see that since all of them are
small compared to the default Max Size, we can leave that alone. None of them have much
significant detail, so leave them at Compressed for the format.

9) Controlling the Draw Order

Unity has an order in which it tells the sprites to be drawn in the graphics buffer. This is
called the Draw Order and it ensures that sprites meant to be in front of other sprites, end
up there. We saw that both Starling and Cocos2D have a way of handling this as well. Itis a
common task for any game engine. Generally, in a 2D game, sprites are stacked in the draw
order as they are introduced or given a z-index as they are added to the game play. This z-
index number provides the Draw Order for many game development environments.

Select the rat in the Hierarchy and in the Inspector, set its Position property z-coordinate
to 2. It disappears behind the background_CB sprite. Select enemy_Apple in the Hierarchy
and set its z-coordinate to 3. It also disappears behind the background_CB sprite. So
adjusting the z-coordinate would provide a simple way of controlling the draw order.

Although we can use this approach in Unity, it also has a unique feature called a Sorting
Layer which provides some additional flexibility for managing the draw order.

Select rat in the Hierarchy. Notice its Sprite
Renderer’s Sorting Layer value is set to Default.
Click the Sorting Layer drop down and you’ll see a
list of all the sorting layers defined in your project,
which right now is only Default.

— i You’ll also see an option called Add Sorting
_/ Layer.... Click it.

® Sprites-Default

© Inspector

Default

This brings up the Tags & Layers editor that you '
can get to from various other places in Unity, but Sorting Layers
with the Sorting Layers group open while the Tags
and Layers tabs remain closed. See the image on
the right.

Click + in the

Sorting Layers group to create a new sorting layer and
name it Rats. Do that two more times to create a sorting
layer named Apples and one named Andy. Your editor
should now look like the image on the left.

Page 16 of 23

Reid Perkins-Buzo DIG 4905 VG&S

These layers define the draw order - Layer 0, named Default, is the furthest in the back, with
Layer 1, named Rats, in front of it, and so on.

Right now, each of the GameObjects you’ve added is using the Default Sorting Layer. For
the background sprite, that’s fine because you want it in the back anyway, but you need to
change the Sorting Layer for the other sprites.

Select rat in the Hierarchy and set its Sorting Layer to Rats. You’ll immediately notice that
the rat is now visible in both the Scene and Game views.

Select enemy_Apple in the Hierarchy and set its Sorting Layer to Apples. Finally, select
andy in the Hierarchy and set its Sorting Layer to Andy to ensure your player renders on top
of all the other sprites. Your Game view now looks like this:

ANV VR P T
o

10) Animating the Sprites

Unity has a built-in Animation time-line window that is new in the 2D
subsystem. This makes Unity a bit more like Flash. It allows us to
Miscellaneous automatically animate our Sprites without having to write a bit of
code, like we can in Flash.

Select andy in the Hierarchy. In the Inspector, click Add Component
and in the Miscellaneous section, select Animator. An Animator
component will be added to your
Sprite.

Folder

Javascript

C# Script

Boo Script
Shader
Compute Shader

Next in the Project browser, right-
click to show the context-sensitive
menu.

Prefab
Reveal in Finder X
Open Material
Delete Cubemap

Lens Flare
Import New Asset... Render Texture

Import Package >

Export Package... Animator Cdatroller

Find References In Scene Animation

Animator Override Controller
Avatar Mask

Select Animation Controller. An new

icon appears in the Project browser

z with the name, New Animation
Controller.

ind References In Sc
Select Dependencies
Refresh %R

Reimport Physic Material

Physics2D Material
Reimport All

New Animator Control

GUI Skin
Sync MonoDevelop Project Custom Font

Page 17 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Change its name to
andy_walk_controller. Select "8 ¥ Animator

andy in the Hierarchy browser. Controller andy_walk_controller (AnimatorCon s
In the Inspector, look in the
Animator component for the
Controller section. Drag the
andy_walk_controller to the
Controller section and drop it in
the box that has the text None
(Runtime Animator Controller).

Uncheck the Apply Root Motion (this doesn’t apply to our type of Sprites). If we were using
gravity or other physical forces in our game, we would check the Animate Physics box.

Component [CTEETA Helo — Next, open the Animation window as in the image to the left.

Zoom It will open in a small floating window. Grab it by the tab and
Bring All to Front dock it to the Scene/Game viewer like so:

Layouts

Scene

Game
Inspector
Hierarchy
Project
Animation N
Profiler

© Animation
o s

87

Asset Store %9

Ve (3 Add Curve
Animator

Sprite Editor

Sprite Packer (Developer Preview)

Lightmapping
Occlusion Culling
Navigation

Console

You can see the timeline in the Animation window. It is divided into samples which
correspond to frames in the Sprite animation.

Now select andy in the Hierarchy browser. It is crucial that the appropriate Game Object be
selected in the Hierarchy before we do the next step. Otherwise no animation will be
attached to the Game Object (in this case andy). Click to create a new clip as in the image:

=1 Center TLocal
© Animation

S

[Create New Clip]

— |
—_——

A new window appears titled Create New Animation. Call it andy_walks and click Save. It
will be saved in the Assets folder of our project folder by default. If we were going to have

many animations we should create a new folder inside of the Assets folder and save them all
in it for the sake of being organized.

Page 18 of 23

Reid Perkins-Buzo DIG 4905 VG&S

In the Project browser, find
the kitkat_andy asset and
open it so you can see all the
Sprite images inside it. Select
them all by using shift-click.

YOU Should have them all kitkat_and kitkat_andy_0 kitkat_andy_1 kitkat_andy_2 kitkat_andy_3
selected as in the image to
the right:

Now drag all the selected Sprite images up to the start of the
timeline in the Animation window as in the image to the
left.

The animation default sample rate is the game play rate of
60 samples per second. This is far too fast for most sprites in
a 2D game, so change it to 4 samples per second.

We should end up with an Animation window that looks like this:

=andy : Sprite

Switch to the Game tab in the viewer and click on the red play button. We should now see
andy going through a walk cycle in the Game viewer tab.

We did all this without a line of C# or Javascript!

Page 19 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Add Component

11) Setting up and using colliders

Unity has a new system of 2D colliders for the new 2D sprites.
Select andy in the Hierarchy browser, then in the Inspector,
click Add Component > Physics 2D. You will see all the possible
colliders that Unity has for 2D sprites.

Physics 2D

Choose a Box Collider for andy.

Select the enemy_Apple in the Hierarchy browser. Add a Circle
Collider to it. Do the same for the rat in the Hierarchy browser. oint 2D
Now all our Game Objects have colliders and will work with the AR
Unity 2D physics engine.

One last thing in this section. Select andy in the Hierarchy
browser again. in the Inspector, click Add Component > Physics
2D > Rigidbody 2D.This places a Rigidbody 2D component on the
sprite so that it can interact with the colliders with sophisticated physics settings. Look at the
Rigidbody 2D component for andy in the Inspector. Set the Mass to 2 and Linear Drag to 2.
Leave everything else as is.

4, Rigidbody 2D
Mass

Angular Drag

12) Creating the Prefabs for the game

We need to be able to “spawn” rat and enemy_Apple sprites through code as we need them.
In order to do that we need to turn the Game Object sprites rat and enemy_Apple in the
Hierarchy into what Unity calls Prefabs. A Prefab is a Game Object that is pre-loaded with
all the components it needs to run in the game, but is kept in the Project browser until it is
needed. Then it will be created in the Hierarchy by a game script.

First right click in the Project browser and select Create > Folder. Name the folder Prefabs.

From the Hierarchy browser, drag the the enemy_Apple and the rat into the Prefabs folder.
Check to see if they are in the folder, and if they have been successful placed into the
Prefabs folder, delete the enemy_Apple and the rat from the Hierarchy browser (right-click
on each one in the Hierarchy browser, then choose Delete.

These Prefabs should not be confused with the images of the rat and enemy_Apple in the

images folder. The Prefabs are Game Objects pre-loaded with all the components for the
game, whereas the images are only Unity’s stored image.

Page 20 of 23

Reid Perkins-Buzo DIG 4905 VG&S

12) Coding the C# scripts for the game

We are now in a position to write the scripts for the game. However, writing detailed
instructions on coding C# would take another 20 pages, and is really beyond the scope of this
introductory tutorial. All of the scripts are included in the completed version of the game
(which is part of the zip archive which includes this tutorial). The have extensive comments in
them explaing the sections of the code. If you would like to gain a more complete
understanding of the mechanics of the game’s code, please examine the comments in
those scripts.

13) Adding Scenes to the game

As in the Starling and Cocos2D tutorials, we are using the notion of a finite state machine to
guide the development of this game. With that in mind, we need to add two more states to
the game, a GameStart scene and a GameOver scene. This will give us a complete finite
state machine of three states: Start, Main, and Over.

To create new scene in Unity, simply select File > New Scene. It may then be fashioned into
either the Start or Over state. The finished game has the three scenes for our finite state
machine already built. Take a look at them to see how they were done.

14) Building the App for Android

The last step is to build the app for an Android device. We do this in the
Build Settings Panel.

Go File > Build Settings ... to open this panel in a floating window. First,
select Android from the Platform list in the lower left. Next, since we
are just trying out the game, click the Development Build check box.
Leave everything else as is for now.

We now need to add the scenes we wish to include in the build into the
upper Scenes in Build area of the panel. In the completed version of the
game, we have three scenes we wish to include:
Start, Main, and Over.

0 .00 Build Settings

In the Project browser find the Start scene (that is
our first state). Double-click it to open it up in the
Scene window. In the Build Settings ... panel, click

the Add Current button. This will add the Start
T Carent ’ scene to our planned build.

If the Build Settings ... panel has disappeared when
you opened the Start scene, just go File > Build
Settings ... to reopen it.

Note the small number 0 (zero) in the upper right of
the Scenes in Build area of the panel. That equates
to the load number of the scene. Scenes with lower
load numbers load before scenes with higher load
numbers.

Page 21 of 23

Reid Perkins-Buzo DIG 4905 VG&S

Now open the Main scene and load it using the
Add Current button in the Build Settings ...
panel. Finally, open the Over scene and load it
using the Add Current button in the Build
Settings ... panel. You should see something like
the image to the left.

Next we need to make sure our Unity Player
settings are correct. The Unity Player is the
engine that Unity attaches to your own code and
assets to make your game work. We need to set
it correctly so that it will accurately play the
game on the platform we have chosen.

Click on the Player Settings button at the
bottom of the panel. The PlayerSettings should
appear in the Inspector.

The Icon section should open by default. Click the Select text for each icon size and load the
android-kitkat-full image for each of the icons. Unity will take care of generating all the
required Android icons as long as you set this up correctly.

Next select the Other Settings. Set the Bundle Identifier to a reverse URL identifier like so:
com.mycompany.product_name

Set the Bundle Version to the version number you’ve need. In our case leave it at 1.0. Set
the Minimum API Level to the appropriate level for the app. Generally the lower you can set
it the better, since then it will work on a broader range of Android devices. However the
more complex a game becomes, and the more it relies on advanced graphics features like
particle effects, the less likely it will run on a low end device. Leave everything else at the
default settings.

Now click the Publishing Settings. This where you set up the keystore which Google Play
requires to distribute a game. The keystore locks the app cryptographically which secures it
against others hacking the app. The Android documentation states:

The Android system requires that all installed applications be digitally signed with a
certificate whose private key is held by the application's developer. The Android system
uses the certificate as a means of identifying the author of an application and establishing
trust relationships between applications. The certificate is not used to control which
applications the user can install. The certificate does not need to be signed by a
certificate authority: it is perfectly allowable, and typical, for Android applications to use

self-signed certificates. http://developer.android.com/tools/publishing/app-signing.html

If this is the first time building this app, check the Create New Keystore checkbox.
Otherwise click Browse Keystore to find he keystore you already created. In the Keystore
Password text box, type a password you wish to use, the confirm the same password in the
Confirm Password text box.

Just below the password text boxes is an area to specify the Key alias for our app. Since we
are doing a Development Build, we can leave the Key alias at unsigned.

Page 22 of 23

http://developer.android.com/tools/publishing/app-signing.htm
http://developer.android.com/tools/publishing/app-signing.htm

Reid Perkins-Buzo DIG 4905 VG&S

L B £ MERT We can now Build and Run our finished game.

Developer options

USB debugging = On your Android device.make sure the Settings > Deve!oper
Debug mode when USB is connected Options > USB Debugging option is selected. See the image
Development device ID to the left for an example. Your settings may look different,
but will have the same Developer option for USB Debugging.

Stay awake
Screen will never sleep while charging

Allow mock locations

Allow mock locations 006 Build Android
Desktop backup password
i Save As: droid vs apples |
Desktop full backups aren't currently protected.
User interface PSR imi || == v || [droid_apple_done 3 (Q
Strict mode enabled FAVORITES oday Today
Flash screen when apps do long operations on Desk tutorial work files droid_ap....userprefs
main thread &} reidop | droid_apple_done Library
droid_apple_class ProjectSettings

Pointer location
Screen overlay showing current touch data

Applications T

X emp

revious 7 Days

51 Documents) ’ droid vs apples.apk
(2] U of Florida kitkat_droid droid_ap...csharp.sin
Coea droid_apple_done.sln

atfc = Assembly...-vs.cs
Platform il OhlolU/Documents Assev wla y...~VS.CSproj

ssembly...arp.csproj

© Downloads

|50 Crantivn Claud Cilac

Show touches
Show visual feedback for touches

Show screen updates
Flash areas of screen when they update

New Folder Cancel

Show CPU usage

Connect the Android device to your
computer. Go back to the he Build
Settings ... panel. Click Build and Run.

Build And Run

Enter a name for the saved game APK file.

On my set-up it takes about 45 to 60 seconds to complete the build, push the APK file to the
Android device and start it running.

This completes the Unity 2D tutorial.

Page 23 of 23

