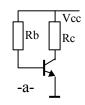
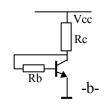
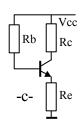

9.1 Gain du transistor

Le courant émetteur d'un transistor est 100 mA et son courant base vaut 0,5 mA. Déterminer les valeurs des coefficients α et β du transistor.

9.2 Transistor saturé


On donne : V_{CC} = 20 V ; V_{BM} = 10 V ; R_{C} = 10 $k\Omega$ et R_{B} = 47 $k\Omega.$


Calculer le courant base et la tension V_{CE} du transistor.


9.3 Transistor saturé

On reprend le montage 9.2 avec : $V_{CC} = 5 \text{ V}$; $V_{BM} = 5 \text{ V}$; $R_C = 470 \Omega$ et $R_B = 4.7 \text{ k}\Omega$. Calculer le courant base, le courant collecteur et la tension V_{CE} du transistor.

9.4 Polarisations d'un transistor

On donne : $V_{CC} = E = 15 \text{ V}$; $V_{BM} = 10 \text{ V}$; $R_C = 1 \text{ k}\Omega$, $R_E = 100 \Omega$ et $R_B = 200 \text{ k}\Omega$.

Calculer le courant collecteur pour chaque circuit pour un gain $\beta = 100$ puis pour un gain $\beta = 300$. Quel montage est le moins sensible aux variations de β ?

9.5 Polarisation par résistance de base

On donne : V_{CC} = 10 V; β = 300 ; V_{BE} = 0,6 V; R_{C} = 1 $k\Omega$ et R_{B} = 470 $k\Omega$. Quel est le point de fonctionnement du montage ?

Même question si $R_B = 200 \text{ k}\Omega$.

9.6 Polarisation par résistance de base

On donne : V_{CC} = 11 $\,V$; β = 170 ; V_{BE} = 0,6 $\,V$; $R_C = 1 \text{ k}\Omega \text{ et } R_B = 180 \text{ k}\Omega.$

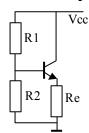
Quel est le point de fonctionnement de ce transistor ?

9.7 Polarisation par pont de base

On réalise le montage suivant :

R1 Rc Rc Re

On donne:

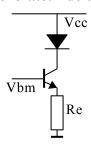

 $V_{CC} = 12 \text{ V}$; $\beta = 60$; $V_{BE} = 0.6 \text{ V}$; $R_C = 4.7 \text{ k}\Omega$.

On veut que $I_P \geq 10.I_B$; $V_{EM} = 0.2 V_{CC}$ et $V_{CE} = 0.4 V_{CC}.$

Calculer R_E , R_1 et R_2 pour obtenir ces valeurs.

Déterminer pour ces conditions quel sera le point de fonctionnement du montage.

9.8 Polarisation par pont de base

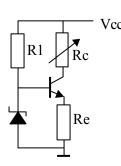

Calculer les valeurs de R_E et de R₂ sachant que :

$$V_{CC} = 9 \text{ V}; \beta = 150; V_{BE} = 0.6 \text{ V};$$

$$R_{l}$$
 = 90 kW ; I_{B} = 20 μA ; V_{CE} = 6 V.

Quel est le point de fonctionnement du montage ?

9.9 Générateur de courant



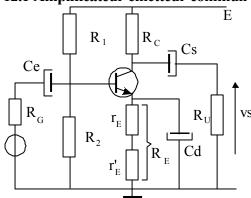
Calculer le courant qui circule dans la diode.

On donne :
$$V_{CC} = E = 5 \text{ V}$$
; $V_{BM} = 2 \text{ V}$; $R_E = 100 \Omega$.

Les caractéristiques du transistor utilisé ont-elles une influence sur le fonctionnement du montage ?

9.10 Générateur de courant constant

On donne : $V_{BE} = 0.6 \text{ V}$; $V_Z = 6.6 \text{ V}$; $R_E = 2 \text{ k}\Omega$;


 $V_{CC} = 15 \text{ V}$.

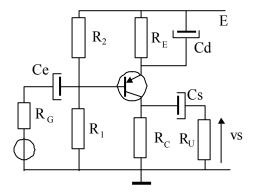
Quel est le rôle de la résistance R₁ et comment doit-on choisir sa va-

Calculer le courant I_C qui circule dans la résistance de collecteur.

Dans quel domaine peut-on faire varier la résistance de charge R_C sans que le courant I_C varie ?

12.1 Amplificateur émetteur commun

On donne : E = 15 V ; $V_{BE} = 0.6 \text{ V}$


 $R_C = 6.2 \text{ k}\Omega \text{ ; } R_E = 1500 \Omega \text{ ; }$

 $R_1 = 56 \text{ k}\Omega$; $R_2 = 10 \text{ k}\Omega$.

Calculer le gain en tension du montage si $R_U = \infty$ (pas de charge).

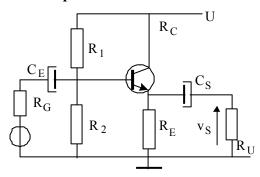
Même question si $R_U = 10 \text{ k}\Omega$.

12.2 Amplificateur émetteur commun

On donne : E=15~V; $V_{BE}=0,6~V$ $R_C=6,2~k\Omega$; $R_E=1500~\Omega$; $R_1=56~k\Omega$; $R_2=10~k\Omega$. Calculer le gain en tension si $R_U=\infty$. Même question si $R_U=10~k\Omega$.

On donne β = 150. Calculer les impédances d'entrée et de sortie de l'étage.

12.3 Amplificateur émetteur commun non découplé


On utilise le schéma et les données de l'exercice 12.1 ; la résistance R_E est cette fois décomposée en deux résistances r_E = 500 Ω et r'_E = 1000 Ω . On considère que β = 150.

Calculer les impédances d'entrée et de sortie de l'étage et le gain de l'étage si :

- il n'y a aucun découplage sur l'émetteur.
- − la résistance r'_E est découplée mais pas r_E.

Quel est l'intérêt de ce découplage partiel de l'émetteur ?

12.4 Amplificateur collecteur commun

Calculer la tension de sortie v_s et l'impédance de sortie

On donne:

U = 15 V;

 $R_1 = 30 \text{ k}\Omega$; $R_2 = 30 \text{ k}\Omega$;

 $R_E = 10 \text{ k}\Omega$; $R_U = 2.7 \text{ k}\Omega$.

Générateur :

 $v_G = 50 \text{ mV et } R_G = 10 \text{ k}\Omega.$