I.1. Introduction

La structure diamant est l'un des arrangements les plus simples et les plus symétriques d'atomes connus dans la cristallographie. Seuls les deux éléments semi-conducteurs importants, le *Silicuim* (Si) et le *Germanium* (Ge), cristallisent habituellement dans cette structure, et leur importance commerciale peut être remontée à ce fait [1].

Comme un produit des éléments du groupe *IV*, les composés *III-V* [**2-4**] et *II-VI* fournissent des nouvelles propriétés disponibles pour l'étude et l'exploitation.

Un large choix d'énergie de gap (*gap energy* « Eg ») et de la structure de bande électronique permet nous de réaliser des dispositifs en fonction de larges, grandes et parfois directes énergies de gaps (comme les diodes électroluminescentes « LEDs » et les lasers à hétérojonctions) et des mobilités élevées (comme l'effet *Hall* et les dispositifs magnétorésistance). Quand nous nous déplaçons vers les composés ternaires, le choix devient encore plus large et la baisse de la symétrie en raison de la formation de super-réseau ouvre la voie à des dispositifs non-linéaires et des propriétés optiques intéressantes [1].

Une extension naturelle dans la recherche de nouveaux semi-conducteurs, était d'examiner les composés ternaires présentant un analogue de la structure diamant ou de la coordination tétraédrique. *Goodman et Douglas* (1954) **[5]** ont discutés la possibilité de la semi-conductivité dans les composés *I-III-VI*₂ qui étaient synthétisés un an plus tôt par *Hahn et al* (1953) **[6]**. De son coté, *Goodman* (1957) **[7]** a montré en outre que la substitution des atomes ordonnés des groupes *II* et *IV* pour les atomes du groupe *III* dans les composés *III-V* peuvent préparer de nouveaux composés semi-conducteurs de type *II-IV-V*₂ **[1]**.

La découverte du laser et l'intérêt particulier vers les matériaux électroluminescentes à la fin des années 1950 et au début des années 1960, ont stimulé et renouvelé les efforts de recherche concernant ces matériaux. Un intérêt particulier de chercheurs Russes. À cette époque, les études visant à comprendre la structure électronique et élucider les propriétés optiques non linéaires de ces matériaux, avec l'espoir de produire un matériau, exige la présence de monocristaux de haute qualité. Beaucoup de ces matériaux sont difficiles à produire sous la forme de grands cristaux de haute qualité, et ils l'ont seulement été au cours des quelques dernières années grâce à l'effort de certains chercheurs [1]. Les chalcopyrites ternaires sont actuellement intéressantes technologiquement car ils sont prometteurs pour les applications des diodes électroluminescentes visibles et infrarouges, des détecteurs à infrarouge, des oscillateurs paramétriques optiques, des convertisseurs élévateurs de fréquence et pour la génération infrarouge lointaine [1].

Il a été découvert que la plupart des composés chalcopyrites ternaires peuvent être obtenus en type p et type n. En outre, il a été constaté que deux d'entre eux, le $CuGaS_2$ et le $CuAlS_2$, peuvent être élaborés de type-p avec un gap d'énergie direct couvrant respectivement le spectre visible et l'ultraviolet. Ils sont uniques dans ce secteur et ils ont générés une activité dans le domaine des hétérojonctions avec les composés II-VI (par exemple le $CdSnP_2$ sur InP pour élaborer des diodes électroluminescences infrarouges par l'épitaxie) [1].

Ces composés sont également d'intérêt d'un point de vue fondamental, car la structure chalcopyrite est la plus simple est ternaire non cubique et similaire à la structure binaire zincblende bien compris. Alors que les bandes de valence de la plupart des cristaux zincblende sont composés par les orbitales s et p, les métaux nobles de niveau d dans les composés $I-III-VI_2$ hybrident avec les orbitaux contraires s et p, d'où tout cela conduit à plusieurs caractéristiques anormales de la structure de bande d'énergie [8-9].

Pour qu'un matériau ou bien un semi-conducteur soit efficace en cellule photovoltaïque, sa bande interdite (Eg) doit être optimale pour utiliser la majorité des rayonnements. Un grand nombre de matériaux a été investigué dans les littératures. Certains éléments ont des bandes interdites élevées (Eg > 2,5 eV) et ne peuvent absorber que les photons ayant de basses longueurs d'ondes, il y aura donc une perte d'une quantité importante du rayonnement solaire [2]. Au début des années 1970, les premiers articles à propos de la compréhension des composés chalcopyrites ont été réalisés par *Wernicke et al* [1]. Mais des études plus récentes s'intéressent beaucoup plus à l'investigation des propriétés des chalcopyrites en couches minces, et ceci pour leur grand potentiel en matière d'utilisation photovoltaïque [10]. Les composés ternaires forment une partie de cette étude, en particulier les composés chalcopyrites qui représentent des candidats prometteurs. De plus, les chalcopyrites représentent des matériaux très importants dans les applications en optique non linéaire (tableau. I.1) [11].

Au début de l'année 1969, la première interaction non linéaire mettant en jeu un cristal à structure chalcopyrite était réalisée par *Goryunova et al* **[12]**. Ces derniers ont observés la génération de second harmonique par réflexion sur plusieurs composés ternaires. Mais les rayonnements du laser à rubis utilisé et de son harmonique étant très fortement absorbés par les semi-conducteurs qu'ils étudièrent. Les résultats de leurs mesures ne donnèrent donc pas de renseignements utiles dans les plages de transparence. Ce ne fut qu'après la démonstration expérimentale des possibilités de réaliser des interactions paramétriques à l'accord de phase que l'intérêt envers cette famille fut réellement éveillé. La possibilité de réaliser un accord de

phase sur ces cristaux fut démontrée presque simultanément au cours de l'année 1970-1971 dans trois laboratoires sur trois cristaux différents : AgGaS₂ [13] à Bagneux (France), ZnGeP₂ [14] à Holmdel (U.S.A.) et CdGeAs₂ [15] à l'Université de Stanford (U.S.A.) [11]. **Tableau.I.1**. historique des débuts de l'utilisation des composés ternaires chalcopyrites en

optique non	linéaire	[11]	

Année	Evolution
1969	Première génération de second harmonique en réflexion.
1970-1971	Première génération de second harmonique à accord de phase.
1971-1972	Mesure des $\chi^{(2)}$ de 10 cristaux, élaboration de la théorie des $\chi^{(1)}$ et $\chi^{(2)}$.
1972-1973	$\chi^{(2)}$ Mélange de fréquence accordable et Haute efficacité de conversion.
	$\chi^{(3)}$ Théorie élaborée.
	$\chi^{(3)}$ Mesure à l'accord de phase de la génération de troisième harmonique

I.2. Définition du mot chalcopyrite

Le mot ''*chalcopyrite*'' ou bien le ''*cuivre jaune*'' est lancé à l'origine sur l'espèce et l'opaque minérale de formule « $CuFeS_2$ - *sulfure de cuivre et de fer* » (figure.I.4) composée de sulfure double (35 %), de cuivre (34,5 %) et de fer (30,5 %) et décrite par *Henckel* en 1725 **[16-18]**. Le nom chalcopyrite est inspiré du grec (*chalkos*) pour le cuivre et de pyrite **[16]**.

Figure.I.4. La structure cristalline du CuFeS₂ [16].

Les chalcopyrites intéressantes pour nous dans cette thèse, sont des composés semiconducteurs ternaires avoir la même structure cristalline tétragonale et appartenant au même groupe d'espace ($I\overline{4}2d$) du $CuFeS_2$.

I.3. La structure chalcopyrite

I.3.1. Les chalcopyrites de type I-III-VI₂ et II-IV-V₂

Tout récemment, une grande attention a été accordée à l'étude des propriétés électroniques et optiques des composés ternaires de la formule chimique : $A^{N-1}B^{N+1}C_2^{\ 8-N}$ (N=3, 2). Théoriquement, l'étude des propriétés électroniques et optiques de ces composés est une extension logique à l'étude de leurs plus proches analogues les semi-conducteurs Zincblende de type $B^N C^{8-N}$ (N=3, 2) (tableau I.2). Les composés $A^{N-1}B^{N+1}C_2^{\ 8-N}$ ont de nombreuses propriétés physiques intéressantes qui promettent d'être utile pour les applications de la technologie des semi-conducteurs [19].

Tableau.I.2. La formule chimique des composés ternaires de type I-III- VI_2 et II-IV- V_2 et leurs analogues binaires.

	Le composé $A^{N-1}B^{N+1}C_2^{8-N}$	L'analogue binaire $B^N C^{8-N}$
N = 2	$A^{I}B^{III}C_{2}^{VI}$ (I-III-VI ₂)	$B^{II}C^{VI}$ (II-VI)
N = 3	$A^{II}B^{IV}C_2^{V}$ (II-IV-V ₂)	$\boldsymbol{B}^{III}\boldsymbol{C}^{V}$ (III-V)

Les composés chalcopyrites ABC_2 de la structure (*I-III-VI*₂ avec des anions de type *chalcogenide*) et (*II-IV-V*₂ avec des anions de type *pnictide*) font toujours l'objet de nombreux travaux. Ils constituent une extension naturelle des composés de structure Zincblende (*II-VI*) et (*III-V*) dont ils découlent cristallographiquement (figure.I.6). Ils ont presque le même arrangement des atomes anions mais diffèrent dans l'ordre de distribution des atomes cations (A et B) qui font que la cellule unité tétragonale a un *axe-c* avoisinant le double de *l'axe-a* de la cellule unité zincblende. On peut définir un analogue binaire à chaque composé ternaire ABC_2 en prenant le cation de la colonne située entre les atomes A et B dans le tableau périodique [**11,20**]. C'est le cas du *ZnS* qui est l'analogue binaire de *CuGaS*₂ ou bien le cas du *GaP* qui est l'analogue binaire de *ZnGeP*₂(figure.I.6).

Ac

Th

Pa

U

 $\mathbb{N}\mathbb{p}$

	1 IA 1 1 0079	1																18 VIIIA
1	TT																	11 a
1	н																	не
	HYDROGENE	2 IIA	1										13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	HELIUM
2	3 0.941	4 9.0122											5 10.011	0 12.011	7 14.007	a 15.999	9 10.990	10 20.180
4	Li	ве											В	C	N	0	F	Ne
	LITHIUM	BÉRYLLIUM											BORE	CARBONE	AZOTE	OXYGÈNE	FLUOR	NÉON
	11 22.990	12 24.305											13 26.982	14 28.086	15 30.974	10 32.065	17 35.453	18 39.948
3	Na	Mg							- VIIIB -				Al	Si	Р	S	Cl	Ar
	SODIUM	MAGNÉSIUM	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICIUM	PHOSPHORE	SOUFRE	CHLORE	ARGON
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.38	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.798
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSIUM	CALCIUM	SCANDIUM	TITANE		CHROME	MANGANÈSE	FER	COBALT	NICKEL	CUIVRE	ZINC	GALLIUM	GERMANIUM	ARSENIC	SÉLÉNIUM	BROME	KRYPTON
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.96	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Ι	Xe
5	Rb RUBIDIUM	Sr STRONTIUM	Y		Nb	MO	TC technétium		Rh	Pd		Cd		Sn ETAIN	Sb ANTIMOINE	Te	I	Xe
5	Rb RUBIDIUM 55 132.91	Sr STRONTIUM 56 137.33	Ү <u>утткіим</u> 57-71	Zr zirconium 72 178.49	ND NIOBIUM 73 180.95	Mo MOLYBDÊNE 74 183.84	ПС <u>тесниётіим</u> 75 186.21	Ru RUTHÉNIUM 76 190.23	Rh RHODIUM 77 192.22	Pd PALLADIUM 78 195.08	Ag ARGENT 79 196.97	Cd CADMIUM 80 200.59	In INDIUM 81 204.38	Sn ETAIN 82 207.2	Sb ANTIMOINE 83 208.98	Te TELLURE 84 (209)	I IODE 85 (210)	Xe xénon 86 (222)
5 6	Rb RUBIDIUM 55 132.91 Cs	Sr strontium 56 137.33 Ba	Ү ^{утткіим} 57-71 La-Lu	Zr zirconium 72 178.49 Hf	Nb NIOBIUM 73 180.95 Ta	Mo MOLYBDÊNE 74 183.84 W	Тс тесниётіция 75 186.21 Re	Ru RUTHÉNIUM 76 190.23 OS	Rh RHODIUM 77 192.22 Ir	Pd PALLADIUM 78 195.08 Pt	Ag Argent 79 196.97 Au	Cd CADMIUM 80 200.59 Hg	In INDIUM 81 204.38 TI	Sn ETAIN 82 207.2 Pb	Sb ANTIMOINE 83 208.98 Bi	Te TELLURE 84 (209) Po	I 10DE 85 (210) At	Xe xénon 86 (222) Rn
5 6	Rb RUBIDIUM 55 132.91 CS CESIUM	Sr strontium 56 137.33 Ba baryum	Y YTTRIUM 57-71 La-Lu Lanthanides	Zr zirconium 72 178.49 Hf hafnium	Nb NIOBIUM 73 180.95 Ta TANTALE	Mo MOLYBDÊNE 74 183.84 W TUNGSTÊNE	TC TECHNÉTIUM 75 186.21 Re RHÉNIUM	Ru RUTHÉNIUM 76 190.23 OS OSMIUM	Rh RHODIUM 77 192.22 Ir IRIDIUM	Pd PALLADIUM 78 195.08 Pt PLATINE	Ag argent 79 196.97 Au or	Cd cadmium 80 200.59 Hg mercure	In INDIUM 81 204,38 TI THALLIUM	Sn ETAIN 82 207.2 Pb PLOMB	Sb ANTIMOINE 83 208.98 Bi BISMUTH	Te TELLURE 84 (209) PO POLONIUM	I IODE 85 (210) At ASTATE	Xe xénon 86 (222) Rn RADON
5	Rb RUBIDIUM 55 132.91 CS CÉSIUM 87<(223)	Sr <u>strontium</u> 56 137.33 Ba <u>baryum</u> 88 (226)	Y YTTRIUM 57-71 La-Lu Lanthanides 89-103	Zr zirconium 72 178.49 Hf hafnium 104 (267)	Nb NIOBIUM 73 180.95 Ta Tantale 105 (268)	MO MOLYBDÉNE 74 183.84 W TUNGSTÉNE 106 (271)	ТС тесниетиим 75 186.21 Re <u>кне́лиим</u> 107 (272)	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277)	Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276)	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281)	Ag argent 79 196.97 Au OR 111 (280)	Cd cadmium 80 200.59 Hg MERCURE 112 (285)	In INDIUM 81 204.38 TI THALLIUM 113 ()	Sn ETAIN 82 207.2 Pb PLOMB 114 (287)	Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 ()	Te TELLURE 84 (209) POLONIUM 116 (291)	I 10DE 85 (210) At ASTATE 117 ()	Xe xénon 86 (222) Rn RADON 118 ()
5 6 7	Rb RUBIDIUM 55 132.91 CS CESIUM 87 (223) Fr	Sr strontium 56 137.33 Ba baryum 88 (226) Ra	Y yttrium 57-71 La-Lu Lanthanides 89-103 Ac-Lr	Zr zirconium 72 178.49 Hf hafnium 104 (267) IR/f	Nb NIOBIUM 73 180.95 Ta TA TANTALE 105 (268)	Mo MOLYBDĖNE 74 183.84 W TUNGSTĖNE 106 (271)	ТС тесниётиим 75 186.21 Re гнёлиим 107 (272) ШПа	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277)	Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIt	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) IDS	Ag ARGENT 79 196.97 AU OR 111 (280) RC	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm	In INDIUM 81 204.38 TI THALLIUM 113 () UTL	Sn ETAIN 82 207.2 Pb PLOMB 114 (287)	Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 ()	Te TELLURE 84 (209) PO POLONIUM 116 (291) LV	I 85 (210) At 117 () UUS	Xe xénon 86 (222) Rn RADON 118 ()
5 6 7	Rb RUBIDIUM 55 132.91 CS CÉSIUM 87 (223) Fr FRANCIUM	Sr strontium 56 137.33 Ba Baryum 88 (226) Ra Radium	Y yttrium 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr zirconium 72 178.49 Hf hafnium 104 (267) IRif rutherfordium	Nb NIOBIUM 73 180.95 Ta TaNTALE 105 (268) Db Db DUBNIUM	Mo MOLYBDÈNE 74 183.84 W TUNGSTÈNE 106 (271) S S S S EABORGIUM	ТС тесниётиии 75 186.21 Re гнёлиим 107 (272) ВВА воняцим	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) HIS HASSIUM	Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIt MEITNERIUM	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DS DARMSTADTIUM	Ag ARGENT 79 196.97 Au OR 111 (280) RG ROENTGENIUM	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) CIN COPERNICIUM	In INDIUM 81 204.38 TI THALLIUM 113 () UTL UNDITRIUM	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) FI	Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UUID UNUNPENTIUM	Te TeLLURE 84 (209) PO POLONIUM 116 (291) LVY LVERMORIUM	I IODE 85 (210) At ASTATE 117 () UUS UNNSEPTIUM	Xe xénon 86 (222) Rn RADON 118 () UUIO UNUNOCTIUM
5 6 7	Rb RUBIDIUM 55 132.91 CESIUM 87 (223) Fr FRANCIUM	Sr <u>strontium</u> 56 137.33 <u>Ba</u> <u>Baryum</u> 88 (226) <u>Ra</u> <u>Radium</u>	Y yttrium 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr zirconium 72 178.49 Hf Hafnium 104 (267) IRIF RUTHERFORDIUM	Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) DDD DUBNIUM	MO MOLYBDÉNE 74 183.84 W TUNGSTÉNE 106 (271) Sg Seaborgium	Тс тесниетиия 75 186.21 Re пнелии 107 (272) ВПа вонгии	Ru RUTHÉNIUM 76 190.23 OSMIUM 108 (277) IHIS HASSIUM	Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIt MEITNERIUM	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DIS DARMSTADTIUM	Ag ARGENT 79 196.97 AU OR 111 (280) Rg ROENTGENIUM	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm COPERNICIUM	In INDIUM 81 204.38 TI THALLIUM 113 () UTLC UNUNTRIUM	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) IFI FLEROVIUM	Sb ANTIMOINE 83 208.98 BisMUTH 115 () UUUPP UNUNPENTIUM	Te TellURE 84 (209) PO PO POLONIUM 116 (291) Livermorium	I 10DE 85 (210) At 117 () UUUS UNUNSEPTIUM	Xe xenon 86 (222) Rn RADON 118 () UUIO UNUNOCTIUM
5 6 7	RUBIDIUM 55 132.91 CS cÉSIUM 87 (223) FR FRANCIUM	Sr <u>strontium</u> 56 137.33 Ba <u>Baryum</u> 88 (226) Ra Radium	Y yttrium 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr ZIRCONIUM 72 178.49 Hf HAFNIUM 104 (267) IRIF RUTHERFORDUM	Nb NIOBIUM 73 180.95 Ta TATALE 105 (268) IDID DUBNIUM	MO MOLYBDÉNE 74 183.84 W TUNGSTÉNE 106 (271) SC SEABORGIUM	ТС тесниётиим 75 186.21 Re кнёпиим 107 (272) ВМ вонкиим	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) IIIS HASSIUM	Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIC MEITNERIUM	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DS DARMSTADTRUM	Ag ARGENT 79 196.97 AU OR 111 (280) RC ROENTGENIUM	Cd cadmium 80 200.59 Hg MERCURE 112 (285) CIII COPERNICIUM	In INDIUM 81 204.38 TI THALLIUM 113 () UNITRIUM	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) FI FLEROVIUM	Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UUIP UNUNPENTIUM	Te TELLURE 84 (209) PO POLONIUM 116 (291) LIVERMORIUM	I 10DE 85 (210) At ASTATE 117 () UUIS UNUNSEPTIUM	Xe xénon 86 (222) Rn RADON 118 () UUDO UNUNOCTIUM
5 6 7	Rb RUBIDIUM 55 132.91 Cs césium 87 (223) Fr FRANCIUM	Sr strontium 56 137.33 Ba baryum 88 (226) Ra radium	Y yttrium 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr 21RCONIUM 72 178.49 Hf HAFNIUM 104 (267) IRJF RUTHERFORDUM 57 138.91	Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) DDD DUBNIUM 58 140.12	Mo MOLYBDÉNE 74 183.84 W TUNGSTÉNE 106 (271) S@ SEABORGIUM	ТС тесниетиим 75 186.21 Re янемиим 107 (272) ВЛ воняним 60 144.24	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) HIS HASSIUM 61 (145)	Rh RHODIUM 77 192.22 Ir IRIDIUM 109 (276) MIC METNERIUM 62 150.36	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DIS DARMSTADTIUM 63 151.96	Ag ARGENT 79 196.97 Au or 111 (280) Rog Roentgenium	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) CI COPERNICIUM 65 158.93	In INDIUM 81 204.38 TI THALLIUM 113 () UTL UNUNTRIUM 66 162.50	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) IFI FLEROVIUM	Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UTUIP UNUNPENTIUM 68 167.26	TELLURE 84 (209) POONIUM 116 (291) LVERMORIUM 69 168.93	I 100E 85 (210) At ASTATE 117 () UTUIS UNUNSEPTIUM 70 173.05	Xe xénon 86 (222) Rn RADON 118 () UIUO UNUNOCTIUM 71 174.97
5 6 7	Rb RUBIDIUM 55 132.91 Cs césium 87 (223) Fr FRANCIUM	Sr strontium 56 137.33 Ba BARYUM 88 (226) Ra RADIUM	Y YTTRIUM 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr 2/RCONIUM 72 178.49 HAFNIUM 104 (267) IRIF RUTHERFORDUM 57 138.91 La	Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) DD) DUBNIUM DES 58 140.12 Ce	Mo MOLYBDÉNE 74 183.84 W TUNGSTÉNE 106 (271) Sg BEABORGIUM 59 140.91 Pr	Тс тесниётиии 75 186.21 Re кнёлиии 107 (272) ВМ воняции 60 144.24 Nd	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) IIIS HASSIUM 61 (145) IPIM	Rh RHODIUM 77 192.22 Ir IRDIUM 109 (276) MIt MEITNERIUM 62 150.36 Sm	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DIS DARMSTADTIUM 63 151.96 Eu	Ag argent 79 196.97 Au or 111 (280) Roettoenium 64 157.25 Gd	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm Coperinicium 65 158.93 Tb	In INDIUM 81 204.38 TI THALLIUM 113 () UTL UNUTRIUM 66 162.50 Dy	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) IT REROVUM 67 164.93 HO	Sb ANTIMOINE 83 208.98 Bi BISMUTH 115 () UTUIP UNUNPENTION 68 167.26 Er	Те тециие 84 (209) РОСОЛИИМ 116 (291) Цуу LIVERMORIUM 69 168.93 Тт	I 100E 85 (210) At ASTATE 117 () UUUIS UNUNSEPTIUM 70 173.05 Yb	Xe xENON 86 (222) RN RADON 118 () UUID UNUNCTIUM 71 174.97 LU
5 6 7	Rb RUBIDIUM 55 132.91 CS CESIUM 87 (223) Fr FRANCIUM	Sr strontium 56 137.33 Ba BARYUM 88 (226) Ra RADIUM	Y yttraum 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr 2/RCONIUM 72 178.49 HAFNIUM 104 (267) IRIF RUTHERFORDUM 57 138.91 La LANTHANE	Nb NIOBIUM 73 180.95 Ta TANTALE 105 (268) DD) 100BNIUM 100BNIUM 58 140.12 Ce CÉRIUM	Mo MOLYBDÉNE 74 183.84 W TUNGSTÉNE 106 (271) Sg BEABORGIUM 59 140.91 Pr PRASEODYME	Тс тесниетиии 75 186.21 Re пнёлиии 107 (272) ВШ воняции 60 144.24 Nd иеоруме	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) HIS HASSIUM 61 (145) PTIM PROMÉTHIUM	Rh RHODIUM 77 192.22 Ir IRDIUM 109 (276) MIt MEITNERIUM 62 150.36 Sm SAMARIUM	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) DS DARMSTADTIUM 63 151.96 EU EUROPIUM	Ag ARGENT 79 196.97 Au or 111 (280) RCENTGENIUM 64 157.25 Gd GADOLINIUM	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm COPERNICIUM 65 158.93 Tb TERBIUM	In INDIUM 81 204.38 TI THALLIUM 113 () UUIT UNUNTRIUM 66 162.50 Dy DySPROSIUM	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) IT REROVUM 67 164.93 Ho HOLMIUM	Sb ANTIMOUNE 83 208.98 Bi BISMUTH 115 () UTUIP UNUPENTION 68 167.26 Er ERBIUM	Те тециие 84 (209) РОСОЛИИМ 116 (291) ЦУУ LIVERMORIUM 69 168.93 Тт тниции	I 100E 85 (210) At ASTATE 117 () UUIS UNUNSEPTIUM 70 173.05 Yb YTTERBIUM	Xe xENON 86 (222) Rn RADON 118 () UUID UNUNOCTUM 71 174.97 LU LUTÉTIUM
5 6 7	Rb RUBIDIUM 55 132.91 CS CESIUM 87 (223) Fr FRANCIUM	Sr STRONTIUM 56 137.33 Ba BARYUM 88 (226) Ra RADIUM	Y yttraum 57-71 La-Lu Lanthanides 89-103 Ac-Lr Actinides	Zr 2/800000000 72 178.49 Hf HAFNIUM 104 (267) RUTHERFORDUM LANTHANI 57 138.91 La LANTHANE ACTINICS	Nb NICBIUM 73 180.95 Ta TANTALE 105 (266) Db UDBNIUM DES 58 140.12 Ce cérium	Mo NOLVEDENE 74 183.84 W TUNGSTENE 106 (271) SEABORGUM 59 140.91 Pr PRASEODYME	Тс тесниетим 75 186.21 Re кненим 107 (272) Вћ воняшм 60 144.24 Nd иеоруме	Ru RUTHÉNIUM 76 190.23 OS OSMIUM 108 (277) HIS HASSIUM 61 (145) PTIM PROMÉTHIUM	Rh RHODIUM 77 192.22 Ir IRDIUM 109 (276) Mft Methererum 62 150.36 Sm BAMARIUM	Pd PALLADIUM 78 195.08 Pt PLATINE 110 (281) D3 DARMSTADTIUM 63 151.96 EU EUROPIUM	Ag ARGENT 79 196.97 Au OR 111 (280) RC RC RC RC CONTGENIUM 64 157.25 Gd GADOLINIUM	Cd CADMIUM 80 200.59 Hg MERCURE 112 (285) Cm COPERNICIUM 65 158.93 Tb TERBIUM	In INDIUM 81 204.38 TI THALLIUM 113 () UUIC UNUNTRIUM 66 162.50 Dy DySPROSIUM	Sn ETAIN 82 207.2 Pb PLOMB 114 (287) FIEROVIUM 67 164.93 HO HOLMIUM	Sb ANTIMONE 83 208.98 BisMUTH 115 () UTUP UNUPENTUM 68 167.26 Er ERBILM	Те тециине 84 (209) Росолици 116 (291) Цуу цуетмогици 69 168.93 Ттт тниции	I IODE 85 (210) At ASTATE 117 () UNUS UNUNSEPTIUM 70 173.05 Yb YTTERBIUM	Xe xENON 86 (222) Rn RADON 118 () UUIO UNUNCOTIUM 71 174.97 LU LUTÉTIUM

Figure.I.5. le tableau périodique des éléments chimiques.

Am

Pu

Cm

Bk

Cf

Es

Fm

Md

No

Lr

Figure.I.6. la structure zincblende (à gauche), et la structure chalcopyrite (à droite) **[21-23]**. Donc, ces matériaux de structure à empilement tétraédrique peuvent être considérés comme des dérivés polycationiques d'un composé monoatomique de la quatrième colonne du tableau périodique de *Mendeleïev* (Figure.I.5). La substitution cationique des composés (*II-VI*) et (*III-V*) donne lieu à des familles de composés qui possèdent à nouveau une même structure tétraédrique : la structure chalcopyrite. Cette relation peut être représentée par un diagramme de substitution cationique (figures.I.7) **[11,24]**.

Figure.I.7. Illustration schématique de la formation de composés *I-III-VI*₂ et *II-IV-V*₂ à partir d'éléments du Groupe *IV* (Diagramme de substitution cationique) **[1, 25]**

Les chalcopyrites ternaires ABC_2 cristallisent dans la structure tétragonale avec un groupe d'espace de type $I\overline{4}2d$ $(D_{2d}^{12})(8$ atomes par maille unitaire primitive) qui constitue une superstructure du réseau Zincblende F43m (2 atomes par maille unitaire) [1]. Il est clair de voir que cette structure dérive de la structure cristalline zincblende par dédoublement de sa cellule cubique le long de l'axe – z (qui devient par la même occasion l'axe – c de la structure chalcopyrite) [20]. Comparée à la structure zincblende, la structure chalcopyrite est différente en ayant deux types d'atomes cations. En effet, dans le cristal chalcopyrite les deux cations ne sont pas aléatoirement distribués, mais ils sont arrangés périodiquement [20].

Les chalcopyrites sont des structures tétragonale (de coordination 4) ou chaque atome est associé à quatre atomes proches voisins formant un tétraèdre plus ou moins régulier. Chaque anion (C) est lié à deux cations (A) et deux cations (B) alors que chaque cation est lié à quatre anions en formant le tétraèdre sus-indiqué **[26,27]**.

La structure chalcopyrite est décrite dans le groupe d'espace $I\overline{4}2d$ avec les positions atomiques suivantes :

Tableau.I.3. Les positions et les coordonnées des 8 atomes de la maille tétragonale de la structure chalcopyrite en fonction de *a*, *c* et *u* rapporté par *Zunger* **[27]**. Les vecteurs unitaires du réseau sont : $a_1 = a (1, 0, 0)$; $a_2 = a (0, 1, 0)$ et $a_3 = a (1/2, 1/2, c/2a)$ avec le volume de la maille est (V=a².c/2) **[27]**.

Atomes	Les coordonnées (x, y, z)
A_1	0, 0, 0
A_2	0, a/2, c/4
B_1	a/2, a/2, 0
B_2	a/2, 0, c/4
C_1	a (1/4+u), a/4, c/8
C_2	a (3/4-u), 3a/4, c/8
C ₃	a/4, a (3/4+u), 3c/8
C_4	3a/4, a (1/4-u), 3c/8

Comme la cellule primitive d'un cristal de chalcopyrite est quatre fois plus grande que la maille élémentaire d'un cristal de zincblende comprimé le long de l'axe z, la zone de Brillouin de zincblende est quatre fois plus grande que celle de l'analogue de la chalcopyrite (figure I.8) [19].

Les cations sont considérés comme répartis de manière aléatoire parmi la position de cations dans l'analogue Zincblende. Ensuite, le composé possède la structure de zincblende, l'un des deux sites de la maille primitive est occupé par l'anion et l'autre par la moyenne des deux

cations $\left(\frac{A^2 + B^2}{2}\right)$. Il est seulement de l'ordre des deux cations et leurs différents potentiels

que réduit la zone de Brillouin [19].

Figure.I.8. la représentation graphique de la première zone de Brillouin pour les deux structures (a) : zincblende et (b) : chalcopyrite [28].

Généralement, un ternaire chalcopyrite, est composé de mélange entre deux structures Zincblende et introduit un changement du groupe de symétrie du (F-43m) au $(I\overline{4}2d)$ caractérisant ainsi une structure quadratique chalcopyrite pour ces types de cristaux, le paramètre de maille *c* devrait être le double du paramètre *a* [1], or les chalcopyrites présentent, de par l'alternance des cations, des modifications structurales qui sont : un déplacement anionique *u* (aussi appelé le paramètre interne) et une compression quadratique c/a [11]. Le paramètre interne *u* n'influe que sur les distances entre le premier voisin (d_{AX} et d_{BX}). De plus, en raison des différences de rayon entre les deux cations, le réseau est distordu avec une hauteur de cellule unie et légèrement inférieure au double de la base. Le cristal entier se trouve compressé le long de l'axe cristallographique *c*. Cette compression quadratique est caractérisée par τ , tel que [11]:

$$u = \frac{1}{4} + \frac{d_{AX}^2 - d_{BX}^2}{a^2}$$
(I.1)

$$\tau = 2 - \frac{c}{a} \le 0 \tag{I.2}$$

$$\eta = \frac{c}{2a} \tag{I.3}$$

Pour une chalcopyrite idéale, u = 1/4, c/a = 2, $\tau = 0$ et $\eta = 1$ [1]. Les deux atomes *A* et *B* sont coordonnées par un tétraèdre d'atomes *X*. Les deux distances les plus importantes d_{AX} et d_{BX} sont liées à la longueur de cellule et l'atome *X* par sa position interne libre par la relation [11]:

$$d_{AX} = \sqrt{a^2 u^2 + \frac{4a^2 + c^2}{64}}$$
(I.4)

$$d_{BX} = \sqrt{a^2 (u^2 - 1/2)^2 + \frac{4a^2 + c^2}{64}}$$
(I.5)

Figure.I.9. Site anionique et le déplacement latéral u dans la structure chalcopyrite ABC_2 [24, 26].

Figure.I.10. les valeurs expérimentales du déplacement latéral *u* (le paramètre interne) versus les valeurs calculées selon [22] pour quelques chalcopyrites [28].

	II-IV-V ₂		I-III-	·VI ₂
MgSiP ₂	ZnSiP ₂	CdSiP ₂	CuAlS ₂	AgAlS ₂
	$ZnSiAs_2$	CdSiAs ₂	CuAlSe ₂	AgAlSe ₂
	$ZnGeP_2$	CdGeP ₂	CuAlTe ₂	AgAlTe ₂
	ZnGeAs ₂	CdGeAs ₂	$CuGaS_2$	$AgGaS_2$
	$ZnSnP_2$	$CdSnP_2$	CuGaSe ₂	AgGaSe ₂
	ZnSnAs ₂	CdSnAs ₂	CuGaTe ₂	AgGaTe ₂
	$ZnSnSb_2$		CuInS ₂	AgInS ₂
			CuInSe ₂	AgInSe ₂
			CuInTe ₂	AgInTe ₂
			CuTIS ₂	
			CuTISe ₂	

Tableau.I.4. les composés chalcopyrites les plus étudiés dans les littératures [29].

Tableau.I.5. Paramètre de croissance *CVD*, dimensions des ampoules et caractéristiques descristaux obtenus pour quelques composés chalcopyrites de type *I-III-VI*₂ [26].

Composé	Diamètre	Longueur	Température	Temps de	Cristaux obtenus
	(mm)	(mm)	en °C	croissance	
CuAlS ₂	15	15	800-700	Quelques jours	Cristaux en forme d'aiguilles verts foncé ou noirs
CuGaS ₂	18	20	800-700 850-750	3 jours	Rendement élevé, cristaux jaunes grisâtres stable à l'air
CuAlTe ₂	18	20	780-650	5 jours	Rendement faible, cristaux transparents jaunes
$AgGaS_2$	18	20	840-740	2 semaines	Rendement moyen, cristaux transparents jaunes
AgAlS ₂	15	14	800-600	3 semaines	Cristaux colorés très instables
AgAlSe ₂	18	20	750-630	3 mois	Rendement faible, cristaux jaunes blanchâtres
AgAlTe ₂	18	20	830-630	2 semaines	Ce n'est pas un cristal

Tableau.I.6.	Les paramètres cristallines a, c, u et le point de fusion et le gap d'énergie Eg
pour quelq	ues ternaires chalcopyrites de type <i>I-III-VI</i> ₂ qui existent dans les littératures.

Chalcopyrites type I-III-VI ₂								
Le	a (A°)	c (A°)	c/a	μ	point de	Eg	Ref	
composé					fusion	(eV)		
_					(K)			
LiBO ₂	4.196	6.511	1.55	-	-	-	[30]	
CuBSe ₂	5.539	10.734	-	-	-	-	[30]	
CuAlS ₂	5.322	10.44	1.96	-	-	3.35	[30]	
	5.31	10.42	1.961	0.27	-	3.49	[6, 22]	
CuAlSe ₂	5.617	10.92	1.94	-	1270	2.50	[30]	
	5.606	10.90	1.945	0.26	-	2.67	[6, 22]	
CuAlTe ₂	5.976	11.80	1.97	-	1160	2.06	[30]	
	5.964	11.78	1.975	0.25	-	2.06	[6, 22]	
CuGaS ₂	5.359	10.49	1.96	-	1513	2.43	[30]	
	5.368	10.601	1.975	0.251	-	1.41	[31]	
	5.349	10.47	1.958	0.25	-	2.43	[6, 22]	
CuGaSe ₂	5.596	11.004	1.96	-	1310	1.71	[30]	
	5.665	11.232	1.983	0.247	-	0.82	[31]	
	5.607	10.99	1.96	0.25	-	1.68	[6, 22]	
CuGaTe ₂	6.006	11.93	1.99	-	-	1.24	[30]	
	5.994	11.91	1.987	0.25	-	1.23	[6, 22]	
CuInS ₂	5.528	11.08	2	-	1300	1.54	[30]	
	5.576	11.251	2.018	0.223	-	0.54	[31]	
~ ~ ~	5.517	11.06	2.005	0.20	-	1.53	[6, 22]	
CuInSe ₂	5.782	11.62	2.01	-	1259	0.95	[30]	
	5.862	11.792	2.012	0.22	-	0.31	[31]	
.	5.773	11.55	2.001	0.22	-	1.04	[6, 22]	
CulnTe ₂	6.161	12.360	2	-	970	0.96	[30]	
	6.167	12.34	2	0.225	-	1.06	[6, 22]	
$CuTIS_2$	5.591	11.19	2	-	-	-	[30]	
	5.580	11.1/	2.001	0.19	-	-	[6, 22]	
Cullse ₂	5.844	11.05	1.99	-	680	1.07	[30]	
CuTITA	5.832	11.63	1.995	0.23	-	-	[6, 22]	
$Curre_2$	6.299 5.25	-	2.068	0.233	050	0.9	[22,30]	
$CuFeS_2$	5.25	10.52	1.91	0.27	850	0.55	[30] [30]	
$CuFeSe_2$	-	-	-	-	1010	0.10	[30]	
$Cul aS_2$	5 25	- 10.86	1 93	-	1010	-	[30] [30]	
$A \sigma A 1 S_2$	5 706	10.00	1.95	_	1323	3 13	[30] [30]	
11611102	5.700	10.20	1.00	0.30	-	3 13	[6 22]	
AgAlSe ₂	5.075	10.20	1.80	-	1220	1 66	[0, 22] [30]	
	5 956	10.75	1 805	0.27	-	2.55	[6, 22]	
AgAlTe ₂	6 309	11.85	1.88	-	1000	0.56	[30]	
	6.296	11.83	1.878	0.26	-000	2.27	[6, 22]	
AgGaS ₂	5.755	10.28	1.78	-	_	2.55	[30]	
-0 - 3002	5.743	10.26	1.786	0.28	_	2.73	[6, 22]	
AgGaSe ₂	5.985	10.90	1.82	-	1120	1.8	[30]	
0 2	5.973	10.88	1.823	0.27	-	1.83	[6, 22]	
AgGaTe ₂	6.301	11.96	1.90	_	990	1.1	[30]	
Ç -	6.283	11.94	1.897	0.26	-	1.32	[6, 22]	

AgInS ₂	5.828 5.816	11.19 11.17	1.92 1.92	- 0.25	-	1.9 1.87	[30] [6, 22]
AgInSe ₂	6.102	11.69	1.91	-	1053	1.2	[30]
-	6.090	11.67	1.916	0.25	-	1.24	[6, 22]
AgInTe ₂	6.406	12.560	1.96	-	965	0.96	[30]
	6.406	12.560	1.962	0.25	-	1.04	[6, 22]
AgTIS ₂	6.299	-	1.972	0.257	-	1.1	[22]
AgTISe ₂	6.113	-	1.972	0.257	-	0.72	[22,30]
AgTITe ₂	6.529	-	1.974	0.257	-	0.6	[22]
AgFeS ₂	5.67	10.32	1.82	-	-	-	[30]
AgFeSe ₂	-	-	-	-	1010	-	[30]
AgFeTe ₂	-	-	-	-	953	-	[30]

Tableau.I.7. les paramètres cristallines a, c, u, le point de fusion et le gap d'énergie Eg pourquelques ternaires chalcopyrites de type II-IV- V_2 qui existent dans les littératures.

		Chal	copyrites	s type II-	IV-V ₂		
Le	a (A°)	c (A°)	c/a	μ	point de	Eg	Ref
composé					fusion	(eV)	
					(K)		
$ZnSiP_2$	5.407	10.451	1.93	-	-	2.3	[30]
	5.399	10.435	1.932	0.269	-	2.96	[22, 23, 32]
	5.425	10.552	1.945	0.269		1.98	[31]
ZnSiAs ₂	5.606	10.890	1.940	-	1357	2.12	[23,30]
	5.666	11.051	1.951	0.264	-	-	[31]
	5.611	10.885	1.940	0.269	-	-	[22]
ZnGeP ₂	5.466	10.722	1.961	-	1295	2.34	[23,30]
	5.502	10.850	1.972	0.254	-	1.82	[31]
	5.460	10.71	1.960	0.258	-	-	[22]
ZnGeAs ₂	5.672	11.153	1.970	-	1150	0.85	[30]
	5.742	11.398	1.985	0.251	-	0.84	[31]
	5.672	11.151	1.966	0.250	-	-	[22,32]
$ZnSnP_2$	5.651	11.303	2.000	0.239	-	1.66	[22, 23,30]
	5.695	11.476	2.015	0.229	-	1.48	[31]
ZnSnAs ₂	5.852	11.703	2.000	-	910	0.65	[30]
	5.920	12.043	2.034	0.227	-	0.58	[31]
	5.851	11.702	2.000	0.231	-	-	[22]
$ZnSnSb_2$	6.28	12.56	2.000	-	-	-	[30]
	6.273	12.546	2.000	0.228	-	-	[22]
$ZnSiSb_2$	6.077	-	1.922	0.270	-	0.9	[22]
ZnGeSb ₂	6.111	-	1.95	0.263	-	0.5	[22]
CdSiP ₂	5.671	10.423	1.838	-	1470	2.20	[30]
	5.731	10.554	1.842	0.297	-	2.05	[31]
	5.678	10.430	1.837	0.302	-	-	[22]
CdSiAs ₂	5.884	10.882	1.85	-	-	1.55	[30]
	5.977	11.077	1.853	0.290	-	1.31	[31]
	5.885	10.881	1.849	0.298	-	-	[22]
CdGeP ₂	5.741	10.775	1.880	-	1060	1.80	[30]
	5.811	10.976	1.889	0.283	-	1.49	[31]
	5.740	10.775	1.877	0.283	-	-	[22]
CdGeAs ₂	5.943	11.216	1.890	-	942	0.53	[30]

	6.055	11.483	1.897	0.278	-	0.33	[31]	
	5.945	11.212	1.886	0.280	-	-	[22]	
$CdSnP_2$	5.900	11.518	1.960	-	-	1.17	[30]	
	5.986	11.714	1.957	0.257	-	1.05	[31]	
	5.901	11.513	1.951	0.265	-	-	[22]	
CdSnAs ₂	6.093	11.936	1.960	-	880	0.26	[30]	
	6.212	12.182	1.961	0.254	-	0.17	[31]	
	6.094	11.920	1.965	0.262	-	-	[22]	
CdSiSb ₂	6.344	-	1.842	0.291	-	0.8	[22]	
CdGeSb ₂	6.383	-	1.866	0.285	-	0.2	[22]	
MgSiP ₂	-	-	-	-	-	2.40	[23]	
	5.720	10.120	1.769	0.292	-	2.08	[31]	
MgSiAs ₂	5.804	-	1.870	0.284	-	2	[22]	
	5.954	10.800	1.814	0.286	-	1.95	[31]	
MgGeP ₂	5.656	-	1.894	0.277	-	2.10	[22]	
	5.787	10.740	1.856	0.278	-	2.15	[31]	
$MgSnP_2$	5.774	-	2.000	0.250	-	1.8	[22]	
	5.923	11.586	1.956	0.251	-	2.00	[31]	
MgGeAs ₂	5.841	-	1.898	0.276	-	1.60	[22]	
	6.009	11.270	1.876	0.273	-	1.39	[31]	
MgSnAs ₂	5.958	-	2.000	0.250	-	1.20	[22]	
	6.138	12.057	1.964	0.249	-	1.18	[31]	
MgSiSb ₂	6.221	-	1.878	0.281	-	1.4	[22]	
$MgSnSb_2$	6.374	-	2.000	0.250	-	0.6	[22]	
HgSiP ₂	5.740	-	1.826	0.296	-	1.6	[22]	
HgGeP ₂	5.780	-	1.854	0.288	-	1.2	[22]	
HgSnP ₂	5.909	-	1.954	0.262	-	0.8	[22]	
HgSiAs ₂	5.926	-	1.832	0.294	-	0.7	[22]	
HgGeAs ₂	5.966	-	1.858	0.287	-	0.2	[22]	

Figure.I.11. l'énergie de gap fondamental versus le paramètre de maille pour quelques chalcopyrites de type *II-IV-V*₂ **[31]**.

I.3.2. Les chalcopyrites de type III-III-V₂ et III₂-V-V

En plus de ces deux familles (*I-III-VI*₂) et (*II-IV-V*₂) [10], il existe d'autres familles récemment étudiées par plusieurs chercheurs, comme les alliages ternaires ordonnés *II-IV* dits chalcopyrites de type (*III-III-V*₂) (figure I.12), théoriquement et expérimentalement analysés par *Zunger* et ses co-auteurs [22, 33]. Ainsi que les alliages ternaires ordonnés *III-V* appelés chalcopyrites de type (*III*₂-*V-V*) et (*VI*₂-*II-II*) étudiés aussi par Zunger [22] et Teng et al [34], [11].

Le tableau I.8 présente une partie des chalcopyrites ternaires ordonnées de type III-III- V_2 et III_2 -V-V citées et étudiées dans les littératures avec ces méthodes de croissance.

Figure.I.12. Représentation schématique des structures (de gauche à droite) du GaInAs₂,GaInP₂, GaInN₂.

Le composé	structure	Méthode de croissance	substrat	Température °C	Ref
AlGaAs ₂	CA	MOCVD et	GaAs(100) et	600-800	[35, 36]
		MBE	GaAs(110)		
AlInP ₂	СР	MOCVD	GaAs(001)	650-700	[35, 37]
AlInAs ₂	СР	MOCVD	InP(001)	600	[35, 38]
	СР	MOCVD	GaAs(001)	650	[35, 39]
	СР	MOCVD	GaAs(001)	640	[35, 40]
GaInP ₂	СР	MOCVD	GaAs(001)	650-700	[35, 37]
	СР	MOCVD	GaAs(001)	600-630	[35, 41]

Tableau.I.8. Quelques Ternaires de type $III-III-V_2$ ou III_2-V-V avec ces méthodes decroissance qui existe dans les littératures.

	СР	MOCVD	GaAs(001)	600-700	[35, 42]
	-	LPE	InP(110)	630	[35, 43]
	-	MBE	InP(001)	400	[35, 44]
GaInAs ₂	CA	MBE	InP(110)	500	[35, 45]
	СР	VLE	InP(001)	650-660	[35, 46]
Ga ₂ AsSb	CA	MOCVD	InP(100)	550-680	[35, 47]
	СН	MOCVD	InP(100)	600	[35, 47]
	СР	MBE	-	540	[35, 48]

Tableau.I.9. Le paramètre de maille a pour quelques ternaires chalcopyrites de type $III-III-V_2$ ou III_2 -V-V [11, 35].

ABC ₂	a (Å)	ABC ₂	a (Å)
AlGaAs ₂	5.656	AlGaP ₂	5.459
InGaSb ₂	6.298	InAlAs ₂	5.870
InGaAs ₂	5.866	InGaP ₂	5.672
InAlP ₂	5.674	AsPGa ₂	5.552
SbAsGa ₂	5.884	SbPGa ₂	5.787

Ce type de chalcopyrite occupe les positions de Wyckoff données dans le tableau (I.10) **[11].** Dans notre étude on s'est basé sur des chalcopyrites de type $A^{III}-B^{III}-X^V_2$ qui sont: le GaInP₂, GaInAs2 et GaInN₂ pour examiner leurs propriétés optoélectroniques et voir si elles sont capables de les utiliser dans des cellules solaires photovoltaïques.

Tableau.I.10. les positions de Wyckoff des structures chalcopyrites [11].

	х	у	Z
	0	0	0
$(I\overline{4}2d)$	0	0	1/4c
	и	1/4a	1/8c

I.3.3. Les chalcopyrites effectives (Defect chalcopyrites)

Phase N°	La phase ternaire	Les composés binaires
1	$A_2^{I}B^{II}C_4^{VII}$ (Ag ₂ HgI ₄)	$2A^{I}C^{VII} + B^{II}C_{2}^{VII} (2AgI + HgI_{2})$
2	$A^{II}B_2^{III}C_4^{VI}$ (ZnGa ₂ S ₄)	$A^{II}C^{VI} + B_2^{III}C_3^{VI}$ (ZnS + Ga ₂ S ₃)
3	$A_2^{II}B^{IV}C_4^{VI}$ (Zn ₂ GeS ₄)	$2A^{II}C^{VI} + B^{IV}C_2^{VI} (2\text{ZnS} + \text{GeS}_2)$
4	$A^{II}B^{IV}C_3^{VI}$ (ZnGeS ₃)	$A^{II}C^{VI} + B^{IV}C_2^{VI}$ (ZnS + GeS ₂)
5	$A_3^{III}B^VC_3^{VI}$ (Ga ₃ PSe ₃)	$A^{III}B^V + A_2^{III}C_3^{VI}$ (GaP + Ga ₂ Se ₃)
6	$A^{III}B^VC_4^{VI}$	$A_2^{III}C_3^{VI} + B_2^{V}C_5^{VI}$

 Tableau.I.11. Ouelques Chalcopyrites ternaires effectives connues [49].

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}\\
\begin{array}{c}
\end{array}\\
\begin{array}{c}
\end{array}\\
\end{array}$ \left(\begin{array}{c}
\end{array}\\
\end{array}\\
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\left(\begin{array}{c}
\end{array}\\
\end{array}\\
\left(\begin{array}{c}
\end{array}\\
\bigg)}
\bigg)
\left(\begin{array}{c}
\end{array}\\
\bigg)}
\left(\begin{array}{c}
\end{array})}
\left(\end{array})
\left)
\left(\end{array})
\left(\end{array})
\left(\end{array})
\left)
\left(\end{array})
\left(\end{array})
\left)
\left(\end{array})
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\end{array})
\left(\end{array})
\left)
\left(\\)
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\\)
\left(\end{array})
\left)
\left(\end{array})
\left)
\left(\\)
\left(\\)
\left(\end{array})
\left)
\left(\\)
\left(\end{array})
\left)
\left(\\)
\left(\\)
\left(\end{array})
\left)
\left(\\)
\left(\end{array})
\left)
\left(\\)
\left(\\)
\left(\\)
\left(\\)
\left(\end{array})
\left)
\left(\\)
\left

Figure.I.13. Les groupes d'espace qui correspondent aux composés $A^{II}B_2^{III}C_4^{VI}$ [49].

Les chalcopyrites effectives (*defect chalcopyrites*) de type $II-III_2-VI_4$ ont été synthétisées pour la première fois par *Hahn et Klinlgler* (1950) **[50]**. On peut classer ces composés comme des dérivés de composés binaires $A^{II} B^{VI}$ avec des atomes de substitution dont les valences sont deux et trois **[51]**. La structure peut en effet être déduite par substitution successive dans la structure Zincblende. En doublant la structure sphalérite et en remplaçant deux atomes A^{II} par A^{I} et A^{III} , on obtient la structure chalcopyrite. A partir de cette cellule et si on remplace quatre atomes A^{I} par deux A^{II} , on obtient la maille $A^{II}B^{III}_2C^{VI}_4$. De cette façon, elle diffère de celle de la chalcopyrite par la présence de deux sites métalliques vacants **[49]**. Selon *Hahn*, la structure *thologallate* avec des atomes métalliques en coordinence tétraédrique apparaît seulement lorsqu'il existe un anion ayant un important effet de polarisation sur ces atomes. L'ordre des cations et des lacunes induit un rapport c/a supérieur à 1, jusqu'à c/a = 2 pour le $CdAl_2Se_4$. Les lacunes des tétraèdres, qui sont relativement petites, sont déformées pour les séléniures. L'existence de $I\bar{4}$ (D_{2d}^{11}) (par rapport à $(I\bar{4}2m)$) avec ordre, s'explique par une distribution plus régulière des électrons entre différents plans du réseau, donnant ainsi un caractère plus proche de celui du Zincblende. Cette structure se caractérise par ces trois positions libres internes x, y et z (figure. I.14) **[11]**.

Tableau.I.12. Les positions des structures chalcopyrites selon Wyckoff [11].

	Х	У	Z
	0	0	0
$(I\overline{4}(S_4^{2}))$	0	0	1/2a
	0	1/2a	1/4a
	1/2a	1/2a	0
	xa	ya	za

Figure.I.14. Représentation graphique de la structure chalcopyrite effective ainsi que la distorsion c/a et les positions internes x, y et z selon la direction des axes x, y, z [11].

I.4. Conclusion

Les chalcopyrites sont des matériaux prometteurs dans plusieurs domaines et applications et surtout en cellule photovoltaïque, soit dans les cellules solaires a base des couches minces (*Thin film Solar cells*) comme le cas de Cu-III-VI₂, ou bien comme des matériaux absorbeurs dans des cellules solaires multijonction (*MJ solar cells*) concernant la famille de *III-III-V*₂. Dans cette étude on va essayer de calculer les propriétés optoélectroniques des ternaires chalcopyrites de la forme GaInX₂ ou (X=As, P, N) avec la méthode FP-LAPW qui est basée sur la DFT, puis on va essayer d'exploiter ces propriétés dans des cellules solaires à

multijonction.