
TD N₀3

LES CAPTEURS

EXERCICE 1

On désire réaliser le circuit électronique ci-dessous qui mesure la différence de pression atmosphérique par rapport à 1013 mb (pression moyenne) avec une sensibilité de 1mV/mb (tableau ci-contre) :

Pression (mb)	Tension v (mV)
900	-113
1013	0
1100	87

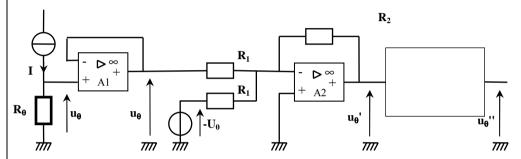
E est une source de tension fixe; v est la tension à en sortie du pont (image de la pression);

R₀ sont des résistances ajustables réglées à l'identique;

R est le capteur résistif linéaire de caractéristiques définies ci-dessous:

Pression (mb)	Résistance R (Ω)
0	1000
4000	3000

- 1- Donner l'expression de la tension v en fonction de E; R_0 et R.
- 2- Montrer qu'à l'équilibre du pont (lorsque $v=0\ V$), on a : $R=R_0.$
- 3- En utilisant le tableau caractérisant le capteur résistif, exprimer ${\bf R}$ en fonction de ${\bf P}$. Déterminer alors la valeur des résistances réglables ${\bf R}_0$.
- 4 Exprimer v en fonction de E et P. La relation "v fonction de E et P" est-elle linéaire?
- $\bf 5$ En prenant $\bf E=12V,$ calculer les valeurs respectives de v pour $\bf P=900mb$ et $\bf P=1100mb.$


Calculer les erreurs relatives pour les deux valeurs de v calculées plus haut.

EXERCICE 2

Un capteur de température (ruban de platine) possède une résistance R_0 qui varie avec la température θ suivant la loi : $R_\theta = R_0$ ($1 + a\theta$) avec :

- \blacksquare **R**₀ (résistance à 0°C) \rightarrow **R**₀ = 100 Ω.
- **a** (coefficient de température) \rightarrow **a** = 3,85 · 10⁻³ °C⁻¹.

Ce capteur est inséré dans le circuit conditionneur de la figure ci-dessous :

On donne I = 10.0 mA.

- 1- Montrer que la tension u_{θ} aux bornes de R_{θ} s'écrit sous la forme : u_{θ} = U_0 ($1 + a\theta$) . Exprimer U_0 en fonction de I et R_0 . Calculer U_0 .
- 2- Quel est l'intérêt du montage de l'amplificateur opérationnel A1?
- 3- Dans le montage construit autour de A2, la tension U_0 est la même que celle définie à la question 1- .

Montrer que la tension $\mathbf{u_{\theta}}'$ s'écrit sous la forme : $\mathbf{u_{\theta}}' = -\mathbf{b\theta}$. Exprimer \mathbf{b} en fonction de \mathbf{a} , $\mathbf{U_0}$, $\mathbf{R_2}$, et $\mathbf{R_1}$.

4- On souhaite inverser la tension \mathbf{u}_{θ}' pour obtenir la tension \mathbf{u}_{θ}'' qui s'écrit : $\mathbf{u}_{\theta}'' = b\theta$. Représenter un montage à amplificateur opérationnel assurant cette fonction et qui complète le conditionneur.