Série d'exercices – Vision artificielle (STR) -Master2 Électronique des Systèmes EMbarqués (ESEM) Université de M'sila youcef.brik@univ-msila.dz

Questions de cours (6 points) :

1. Quelles sont les limitations d'un système visuel humain p	ar rapport au système visuel artificiel ?				
2. Donner les deux approches de la segmentation d'images	?				
3. Lorsqu'on décale horizontalement un histogramme, le co	ntraste ou la luminance qui sera modifiée ?				
4. Citer deux techniques pour améliorer le contraste d'une i	mage ?				
5. Citer un avantage et un inconvénient du filtre médian ?					
6. Que représente les hautes et les basses fréquences de la	TFD d'une image ?				
7. Le filtre gaussien est un filtre non linéaire, oui non [?				
8. L'opérateur de Prewitt = filtre gaussien + la première dér	ivée de l'image, oui non ?				
9. Donner l'expression de la transformée de Fourier 2D d	iscrète d'une image monochrome de M×N				
points.					
10. Définir les notions de traitement d'images suivantes : fill	trage d'images, restauration d'images. Quels				
sont les principaux intérêts de ces opérations.					
11. Donner des exemples de filtres d'extraction de contours	: spatial, fréquentiel.				
12. Citer un avantage et un inconvénient d'un filtre fréquent	ciel passe-haut ?				
13. Quelle est la différence entre l'échantillonnage et la qua	ntification des images numériques ?				
14. Le filtre médian est un filtre non linéaire, oui non [?				
15. L'opérateur <i>LoG</i> = filtre gaussien + la première dérivée d	e l'image, oui non?				
16. L'extraction d'un contour nécessite toujours l'estimation	de gradient, oui non ?				
17. Quel est l'effet d'un filtrage par la matrice de convolution	n suivante ?				
Un flou	0 0 0 0 0 0 1 0				
Un éclaircissement	0 0 0				
Aucun effet (image inchangée)					
18.Quel est l'effet d'un filtrage par la matrice de convolution	suivante ?				
Un flou	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
Un éclaircissement	0 0 0				
Aucun effet (image inchangée)					
19. Quelle est l'allure de l'histogramme d'une image forteme	nt contrastée ?				
L'histogramme est "tassé" vers la droite.					
L'histogramme a 2 bosses, l'une à droite, l'autre à gauche.					
L'histogramme est "en peigne", avec de nom	breuses valeurs à 0.				
20. L'histogramme de l'image négative et celle de l'image or	iginale sont identiques ?				

Série d'exercices – Vision artificielle (STR) -Master2 Électronique des Systèmes EMbarqués (ESEM) Université de M'sila youcef.brik@univ-msila.dz

Exercice N°1:

Soit l'image I suivante :

1- Tracer son histogramme

2- Calculer le contraste C de cette image (rappel : $=\frac{Max(I)-\min(I)}{Max(I)+\min(I)}$)

On applique à cette image les filtres suivants :

20	20	20	20	20	20
20	20	20	20	20	20
10	10	50	50	50	50
10	10	50	50	50	50
10	10	50	50	50	50
0	5	5	5	5	0

H1 = 1/16	1	2	1
	2	4	2
	1	2	1

$$H2 = \begin{array}{|c|c|c|c|c|} \hline 1 & 0 & -1 \\ \hline 1 & 0 & -1 \\ \hline 1 & 0 & -1 \\ \hline \end{array}$$

- 3- Quels seront les valeurs des pixels (1,2) et (5,5) après l'application du filtre H1?
- 4- Quels seront les valeurs des pixels (1,2) et (5,5) après l'application du filtre H2?
- 5- Que font exactement H1 et H2?

Exercice N°2:

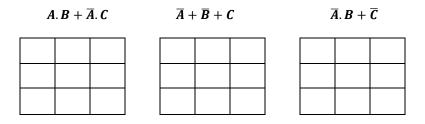
Soit !'Image 2D suivante codée sur 8 bits :

210	210	210	210	210	210	210
210	210	210	210	210	210	210
210	210	210	210	210	210	210
30	30	30	100	100	100	100
30	30	30	100	100	100	100
30	30	30	100	100	100	100
30	30	30	100	100	100	100
30	30	30	100	100	100	100

On considère le filtre h suivant : $h = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

Quelle sera la nouvelle valeur des pixels de coordonnées (2,3), (2,4) et (6,7) après convolution de !' image avec ce filtre ?

A quoi sert ce filtre?


Quelle est la taille mémoire (en octets) occupée par cette image I?

Exercice N°3:

Considérons les images suivantes :

A B C

Donnez les résultats des opérations logiques suivantes :

Exercice N°4:

Soit les trois masques de filtres suivants :

$$h1 = X. \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}, \qquad h2 = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}, \qquad h3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- 1- Nommer ces trois filtres ? Pour h1, quelle est la valeur appropriée de X ?
- 2- Lesquels parmi ces trois filtres utilisés pour la détection de contours ? Mentionner un avantage et un inconvénient de chaque ?
- 3- Tracer le schéma de principe de la détection de contours en utilisant le gradient ?

Exercice N°5:

On considère l'image suivante représentée sous le format d'une matrice :

- En utilisant l'algorithme de segmentation par division, combien de classes peuvent être extraites si le seuil de similarité est de P = 3 ? Expliquez les étapes ?
- 2. Citez les inconvénients des approches de segmentation qui se basent sur les contours ?

5	5	3	5	4	7	9	8
7	5	5	2	5	7	3	5
6	5	2	4	5	5	6	8
6	8	3	2	4	8	5	7
2	5	7	5	9	9	9	9
9	5	7	8	9	9	9	9
1	1	2	3	9	9	9	9
1	1	3	2	9	9	9	9