Université de M.Boudiaf M'sila Faculté des Mathématiques et d'Informatique Première année Mester Algèbre et Mathématiques Discrètes

2020/2021

Module: Semigroupes et Automates Finis

Exercice 1

• Soit X une partie de A^* , on note

$$X^* = \{ w = x_1. \ x_2 \ ... x_n \ , n \in \mathbb{N} \ et \ \forall 1 \le i \le n, \ x_i \in X \} \cup \{ \epsilon \}.$$

Monter que X^* est le sous monoïde de A^* engendré par X.

• Soit le monoïde $M = \{1_M, \alpha, \beta\}$, avec $\alpha^2 = \alpha\beta = \alpha$ et $\beta^2 = \beta\alpha = \beta$.

Construire la table de (M, \cdot) .

On considère l'application $f: \{a,b\}^* \longrightarrow M$, où $f(\varepsilon) = 1_M, f(w) = \alpha$, si $w \in a\{a,b\}^*, f(w) = \beta$, si $w \in b\{a,b\}^*$.

Montrer que f un morphisme de monoïdes.

- Soit A un alphabet fini et $L = \{a\}, a \in A$. Calculer L^+ et L^* .
- Soient les deux langages $L = \{u \in A^* : |u| \text{ est paire}\}\ \text{et } K = \{u \in A^* : |u| \text{ est impaire}\}.$

Calculer L + K, L.K, K.L, L.L, K.K.

• Soit L un ensemble stable non vide de A^* , i, e, $L^2 \subset L$ tel que $X = \{u \in A^* : Lu \cap uL \cap L \neq \emptyset\}$.

Montrer que : $u \in X \iff (uL \cap L \neq \emptyset \text{ et } Lu \cap L \neq \emptyset)$.

Exercice 2

• Soit $\Sigma = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ un alphabet, $n \in \mathbb{N} \setminus \{0, 1\}$. Et soit $\lambda : \Sigma \longrightarrow \mathbb{N}$, $\alpha_i \longmapsto \lambda(\alpha_i)$. On définit $\lambda : \Sigma^* \longrightarrow \mathbb{N}$ comme suit :

$$\widetilde{\lambda}(w) = \sum_{i=1}^{i=n} \lambda(\alpha_i) |w|_{\alpha_i}.$$

Montrer que $\stackrel{\sim}{\lambda}$ est un homomorphisme de monoïdes.

• Soit $h: \Sigma^* \longrightarrow \Gamma^*$ un morphisme, on définit la relation associée à h, notée \equiv_h comme suit :

pour tous
$$u, v \in \Sigma^*, u \equiv_h v \iff h(u) = h(v).$$

Montrer que \equiv_h est une congruence sur Σ^* .

• Soit \mathcal{R} une relation sur Σ^* et $h: \Sigma^* \longrightarrow \Gamma^*$ un morphisme de monoïdes qui vérifie h(r) = h(s) pour tout $(r, s) \in \mathcal{R}$.

Montrer qu'il existe un unique morphisme $\psi: \Sigma^*/\stackrel{*}{\underset{\mathcal{R}}{\longleftrightarrow}} \Gamma^*$ tel que $\psi \circ p = h$ où $\stackrel{*}{\underset{\mathcal{R}}{\longleftrightarrow}}$ est la congruence engendré par \mathcal{R} et p est la surjection canonique.