Exercice 1

Problème du voyageur de commerce

Un ordinateur a une variété de composants à connecter par des fils. La distance en millimètres entre chaque paire de composants est donnée dans le tableau ci-dessous. Déterminez les paires de composants à connecter afin que l'ensemble des composants soit connecté et que la longueur totale du fil entre les composants soit minimisée.

	1	2	3	4	5	6
1	0	6,7	5.2	2,8	5,6	3,6
2	6,7	0	5,7	7,3	5.1	3.2
3	5.2	5,7	0	3.4	8.4	4.0
4	2,8	7,3	3.4	0	8,0	4.4
5	5,6	5.1	8.4	8,0	0	4.6
6	3,6	3.2	4.0	4.4	4.6	0

Exercice 2

Planification de la production à produits semi-finis

L'entreprise fabrique les produits P_1 , P_2 et P_3 .

Pour produire 1 unité de produit P_1 , l'entreprise utilise 3 kg de matière.

Pour produire 1 unité de produit P_2 , l'entreprise utilise 2 kg de matière et 1 unité de produit P_1 .

Pour produire 1 unité de produit P_3 , l'entreprise utilise 2 kg de matière, 2 unités de produit P_1 et 1 unité de produit P_2 . Il y a 1000 kg de matériel disponible.

Les produits P_1 et P_2 utilisés comme produits semi-finis peuvent également être vendus eux-mêmes. Les prix des biens P_1 , P_2 et P_3 sont de 5, 10 et 30 e. L'objectif est de maximiser les revenus totaux des produits vendus. Formulez un modèle mathématique du problème.

Exercice 3

Problème de coupe de stock

L'entreprise produit des clôtures en lattes de jardin. Il n'y a que des lattes standard de 200 cm de long à disposition dans l'entrepôt. Pour produire une clôture, l'entreprise a besoin d'exactement 1200 lattes de 80 cm de long, 3100 lattes de 50 cm de long et 2100 lattes de 30 cm de long.

Vous devez concevoir un plan de coupe pour minimiser la quantité totale de lattes de 200 cm de long.

Formulez un modèle mathématique du problème.

Exercice 4

Problème du sac à dos

Il y a 5 projets caractérisés par le coût d'investissement et le rendement. Le budget de 50 000 est disponible pour sélectionner les projets qui assurent le rendement total le plus élevé.

	P1	P2	Р3	P4	P5
Coût	12 000	10 000	15 000	18 000	16 000
Revenu	20 000	18 000	22 000	26 000	21 000

Exercice 5

Problème de correspondance parfaite

10 étudiants partent en voyage scolaire. Pour les attribuer à des chambres doubles, on leur a demandé d'exprimer leurs préférences (voir le tableau, 0 min, 10 max). Pour i < j, la valeur c_{ij} est la valeur de préférence exprimant l'étudiant i veut être dans la pièce avec l'étudiant j, pour i > j, la valeur c_{ij} est la valeur de préférence exprimant l'étudiant j veut être dans la pièce avec l'étudiant i. Affecterez-vous des étudiants dans des salles pour maximiser le bonheur total du groupe ?

Exercice 6

Problème d'affectation linéaire

Une course de relais pour des équipes de 5 membres est organisée. Un membre de chaque équipe concourra dans une discipline. Vous allez constituer une équipe la plus solide. Dans le tableau, les meilleures performances saisonnières (en minutes) des candidats sont données.

SB	Courir	Nager	Bicyclette	En ligne	Ski
1	75	25	202	130	165
2	87	24	198	127	173
3	68	19	195	121	164
4	91	20	207	122	182
5	80	28	215	125	172
6	78	22	197	125	180
7	75	25	205	127	178
8	81	23	211	131	165

Exercice 7

Problème d'affectation de goulot de bouteille

Le projet se compose de 5 parties indépendantes. Dans l'entreprise, 5 départements peuvent gérer les pièces individuellement. Les données historiques montrent le temps moyen (en jours) que les départements ont terminé des tâches similaires (voir le tableau). NA représente le fait qu'un ministère n'a pas travaillé sur une telle tâche dans le passé. L'entreprise souhaite terminer l'ensemble du projet le plus rapidement possible.

Temps	Partie 1	Partie 2	Partie3	Partie 4	Partie5
Dépt1	25	15	N/A	17	25
Dépt2	22	N/A	22	20	22
Dépt3	20	18	25	16	23
Dépt4	N/A	20	30	21	28
Dépt5	27	19	27	18	N/A

Exercice 8

Problème d'emplacement d'installations

L'entreprise utilise 7 entrepôts potentiels pour ses 5 filiales. Dans le tableau ci-dessous, les besoins mensuels des filiales et les capacités mensuelles des entrepôts sont indiqués (en milliers de tonnes). Si un entrepôt est utilisé, l'entreprise doit payer un loyer mensuel (en milliers). De plus, le coût unitaire de transport (par tonne) est calculé pour chaque paire d'entrepôt et filiale. Quel entrepôt utiliser et quelles quantités de matériel transporter entre les entrepôts et les filiales. L'objectif est de minimiser le coût mensuel total.

FLP	SD1	SD2	SD3	SD4	SD5	Cap	Rent
WH1	10	15	20	12	8	20	10
WH2	7	10	15	22	13	25	12
WH3	20	13	10	11	9	15	8
WH4	15	12	21	18	16	18	9
WH5	11	22	12	10	15	22	11
WH6	9	13	11	18	22	30	13
WH7	18	10	15	7	9	23	11
Req	25	22	17	22	15		

Exercice 9

Problème d'affectation quadratique

L'entreprise a l'intention de créer 5 entrepôts dans 5 villes. Dans le premier tableau, les distances (en km) entre les villes sont données. Le deuxième tableau montre un certain nombre de déplacements nécessaires entre les entrepôts dans un délai d'un mois. L'objectif est d'allouer les entrepôts en minimisant le coût total de déplacement.

Distance	Ville1	Ville2	Ville3	Ville4	Ville5
Ville1	0	50	60	130	100
Ville2	50	0	70	150	120
Ville3	60	70	0	80	40
Ville4	130	150	80	0	50
Ville5	100	120	40	50	0

Voyages	WH1	WH2	WH3	WH4	WH5
WH1	0	10	15	12	8
WH2	9	0	18	16	10
WH3	20	8	0	10	12
WH4	10	15	11	0	22
WH5	17	12	9	11	0

EXERCICE 10

Problème de rangement

Les produits doivent être transportés chez le client dans des conteneurs identiques. Dans le tableau, un poids unitaire de chaque type de produit (en kg) et un nombre d'entre eux à transporter sont indiqués. La capacité de poids du conteneur est de 500 kg. L'objectif est de minimiser le nombre de conteneurs usagés.

Bin Packing	Poids	Nombre
Produit1	20	13
Produit2	22	15
Produit3	18	25
Produit4	15	30
Produit5	21	18
Produit6	16	35

EXERCICE 11

Problème de débit maximum

Trouver le débit maximum du nœud 1 au nœud 6 pour le graphe donné par le tableau suivant

Arc	Capacité	Arc	Capacité
(1,2)	10	(3,5)	7
(1,3)	10	(3,6)	5
(1,4)	12	(4,3)	3
(2,5)	11	(4,6)	9
(3,4)	3	(5,6)	18

EXERCICE 12

Trouver le flux (de 1 à 6) de valeur 25 avec le coût total minimal. Dans le tableau, la capacité et le coût unitaire de chaque arc sont indiqués.

Arc	Capacité	Coût	Arc	Capacité	Coût
(1,2)	10	5	(3,5)	7	6
(1,3)	10	10	(3,6)	5	9
(1,4)	12	20	(4,3)	3	12
(2,5)	11	11	(4,6)	9	17
(3,4)	3	12	(5,6)	18	8

EXERCICE 13

Problème de débit maximal limité au coût

Soit 700 le budget du flux. Trouverez-vous le débit maximum de 1 à 6 en respectant cette restriction ?

Arc	Capacité	Coût	Arc	Capacité	Coût
(1,2)	10	5	(3,5)	7	6
(1,3)	10	10	(3,6)	5	9
(1,4)	12	20	(4,3)	3	12
(2,5)	11	11	(4,6)	9	17
(3,4)	3	12	(5,6)	18	8

EXERCICE 14

Problème de transbordement

Il est nécessaire de transporter des conteneurs vides des sources aux destinations. Dans le graphique, les nœuds 1 et 3 sont des sources avec des conteneurs d'approvisionnement 15 et 10, les nœuds 4 et 6 sont des destinations avec des conteneurs de demande 5 et 20. L'objectif est de minimiser le coût total.

Arc	Capacité	Coût	Arc	Capacité	Coût
(1,2)	10	5	(3,5)	7	6
(1,3)	10	10	(3,6)	5	9
(1,4)	12	20	(4,3)	3	12
(2,5)	11	11	(4,6)	9	17
(3,4)	3	12	(5,6)	18	8

EXERCICE 15

Arbre couvrant minimal

L'entreprise doit installer 6 panneaux d'information dans le parc de la ville. Ils doivent être reliés par un câble passant sous les trottoirs. Les distances (en 10 mètres) entre les planches sont indiquées dans le tableau. S'il n'y a pas de chaussée entre une paire de planches, une valeur prohibitive 100 est définie. L'objectif est de minimiser le coût total des travaux d'excavation et du câble lui-même.

Planches	1	2	3	4	5	6
1	0	6	5	100	100	100
2	6	0	7	2	4	100
3	5	7	0	6	100	8
4	100	2	6	0	3	4
5	100	4	100	3	0	5
6	100	100	8	4	5	0

EXERCICE 16

Arbre de Steiner minimal

Trois utilisateurs (nœuds 2, 3 et 4) doivent être connectés à l'émetteur (nœud 1) soit directement, soit via deux stations de transfert (nœuds 5 et 6). Dans le tableau, les valeurs de coût (en milliers d'e par mois) pour les connexions possibles sont données. L'utilisation des stations de transfert est facturée 30 et 20 milliers par mois. Trouver la valeur optimale de connexion.

Arc	Coût	Arc	Coût
(2,1)	15	(4,5)	9
(2,5)	3	(4,6)	6
(3,1)	18	(5,1)	7
(3,5)	4	(6,1)	12
(3,6)	7		

EXERCICE 17

Problème du voyageur de commerce

Un représentant commercial d'une brasserie doit visiter 7 pubs dans 7 villes. Dans le tableau suivant, les distances (en km) correspondent aux liaisons directes (routes) entre les villes. Un tiret indique qu'il n'y a pas de route directe entre les villes. L'objectif est de visiter tous les pubs en minimisant la durée totale de la visite.

	1	2	3	4	5	6	7	8
1	0	8	-	13	10	ı	12	9
2	8	0	6	16	-	ı	-	4
3	-	6	0	-	-	ı	-	1
4	13	16	-	0	7	ı	-	1
5	10	-	-	7	0	7	13	1
6	-	-	-	-	7	0	15	-
7	12	-	_	_	13	15	0	13
8	9	4	_	_	-	-	13	0

Le tableau suivant contient les distances entre toutes les paires de villes.

Distance	1	2	3	4	5	6	7	8
1	0	8	14	13	10	17	12	9
2	8	0	6	16	18	25	17	4
3	14	6	0	22	24	31	23	10
4	13	16	22	0	7	14	20	20
5	10	18	24	7	0	7	13	19
6	17	25	31	14	7	0	15	26
7	12	17	23	20	13	15	0	13
8	9	4	10	20	19	26	13	0

EXERCICE 18

Problème de routage de véhicules

Le représentant commercial de la brasserie (voir l'exemple 16) a conclu des contrats avantageux. Les pubs prendront des barils de bière dans les quantités indiquées dans le tableau suivant. Pour la livraison, un véhicule d'une capacité de 50 barils sera utilisé. L'objectif est de satisfaire toutes les exigences en minimisant la durée totale des circuits en véhicule.

	Exigence
1	0
2	18
3	10
4	15
5	12
6	10
7	8
8	11

Exercice 19

1. Le problème SUBSET SUM est donné comme suit

INPUT: $n \in IN$, n nombres naturels $a_1, ..., a_n$, nombre $B \in IN$.

QUESTION: Existe-t-il un sous-ensemble $I \subseteq \{1, ..., n\}$ tel que $_{i \in I}a_i = B$ soit vrai?

Le problème de partition PARTITION est donné comme suit

INPUT: $n \in IN$, n nombres naturels $a_1, ..., a_n$.

QUESTION: Existe-t-il un sous-ensemble $I \subseteq \{1, ..., n\}$ tel que $P_{i \in I} a_i = P_{i/\in I} a_i$ est vrai?

(a) Montrer que SUBSET SUM est NP-complet. Vous pouvez supposer pour votre preuve qu'il est connu que PARTITION est NP-complete.

- (b) Démontrez que PARTITION est NP-complète. Vous pouvez supposer pour votre preuve que SUBSET SUM est NP-complete.
- 2. Prouvez que le problème suivant est NP-difficile:

INPUT: $n \in IN$, $n \times n$ matrice $D = (d_{ij})$.

QUESTION: Une tournée TSP d'une durée au plus (1+) fois la durée d'une tournée TSP la plus courte. (est une constante fixe > 0.)

Vous pouvez supposer que l'on sait que le problème du cycle hamiltonien (HC) est NP-complet.

3. Prouvez que le problème de clique maximum (CLIQUE) est NP-complet.

INPUT: Un graphe non orienté G = (V, E), un nombre $k \in IN$.

QUESTION: Existe-t-il une clique (sous-graphe complet de G) avec cardinalité (= nombre de sommets) $\geq k$?

Vous pouvez supposer que l'on sait que (VERTEX COVER) est NP-complet:

INPUT: Un graphe non orienté G = (V, E) et un nombre $k \in IN$.

QUESTION: Est-ce que G contient une couverture de sommet $C \subseteq V$ avec $\leq k$ sommets? (Un sous-ensemble V^0 de V est appelé couverture de vertex de G si chaque arête de E est incidente avec au moins un sommet de V^{0} .)

EXERCICE 20

Problème du facteur chinois non guidé

À l'Halloween, des enfants veulent visiter toutes les maisons du quartier (voir la figure). Les longueurs des rues (en mètres) qu'elles doivent traverser sont données dans le tableau. Allez-vous planifier une visite pour les enfants afin de minimiser la distance totale.

Arc	Longueur	Arc	Longueur
(1,2)	210	(6,7)	80
(1,9)	160	(6,11)	150
(2,3)	140	(7,8)	80
(2,5)	80	(7,9)	110
(3,4)	40	(9,10)	160
(3,5)	210	(10,11)	130
(4,6)	310	(10,12)	190
(5,6)	70	(11,12)	150

EXERCICE 21

Problème de facteur chinois guidé

Un véhicule qui ramasse les ordures des poubelles doit emprunter des rues à sens unique dans un quartier de Prague (voir la figure). Les longueurs des rues (en mètres) sont données dans le tableau. L'objectif est de minimiser la distance totale parcourue par le véhicule.

Arc	Longueur	Arc	Longueur
(1,2)	82	(7,12)	93
(2,3)	53	(8,4)	162
(2,6)	78	(8,7)	111
(3,7)	93	(9,5)	93
(4,3)	56	(9,11)	200
(5,1)	78	(10,9)	96
(6,5)	80	(11,10)	73
(6,10)	76	(11,12)	76
(7,6)	78	(12,8)	111

