Classification, Machine learning et Deep learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data **Traditional Programming**

Machine Learning

Machine Learning Problems

Supervised Learning	Unsupervised Learning
classification or categorization	clustering

Machine Learning Problems

Clustering Strategies

- K-means
 - Iteratively re-assign points to the nearest cluster center.

Machine Learning Problems

Sample Applications

- Face recognition
- Character recognition
- Speech recognition
- Medical diagnosis
- Industrial applications
- Web search
- Space exploration
- Robotics
- Information extraction
- Social networks

Face Recognition

Training examples of a person

Test images

The machine learning framework

• Apply a prediction function to a feature representation of the image to get the desired output:

- Training: given a *training set* of labeled examples {(x₁,y₁), ..., (x_N,y_N)}, estimate the prediction function f by minimizing the prediction error on the training set
- Testing: apply f to a never before seen test example x and output the predicted value y = f(x)

Steps

Features

• Raw pixels

• Histograms

• Other descriptors

Many classifiers to choose from

- K-nearest neighbor
- Neural networks
- SVM
- Deep Neural networks
- Etc.

Classifiers: Nearest neighbor

$f(\mathbf{x})$ = label of the training example nearest to \mathbf{x}

- All we need is a distance function for our inputs
- No training required!

(Artificial) Neural Networks

- Motivation: human brain
 - massively parallel (10¹¹ neurons, ~20 types)
 - small computational units with simple low-bandwidth communication (10¹⁴ synapses, 1-10ms cycle time)
- Realization: neural network
 - units (≈ neurons) connected by directed weighted links
 - *activation function* from inputs to output

Neural Networks (continued)

$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4) = g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$$

- *neural network = parameterized family of nonlinear functions*
- types
 - *feed-forward* (acyclic): single-layer perceptrons, multi-layer networks
 - *recurrent* (cyclic): Hopfield networks, Boltzmann machines

Neural Network Learning

Key Idea: Adjusting the weights changes the function represented by the neural network (*learning = optimization in weight space*).

Iteratively *adjust weights* to reduce *error* (difference between network output and target output).

- Weight Update
 - backpropagation

Deep Learning

- Deep learning (**DL**) is a **subtype** of machine learning (ML). DL can process a wider range of data resources, requires less data preprocessing by humans (e.g. feature labelling), and can sometimes produce more accurate results than traditional ML approaches (although it requires a larger amount of data to do so).
- However, it is computationally more expensive in time to execute, hardware costs and data quantities.

Deep Learning

Deep Learning

