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Draw the following direction vectors in cubic unit cells:

Find the angle between [100] and [110]
Find the angle between [112] and [110]

a. [100] and [110]
b. [112]

c. [110]

d. [321]

e,

f.

:5

8 ) (il



m Solution

a. The position coordinates for the [100] direction are (1, 0, 0) (Fig. EP3.4a). The
position coordinates for the [110] direction are (1, 1, 0) (Fig. EP3.4a).

b. The position coordinates for the [112] direction are obtained by dividing the direc-
tion indices by 2 so that they will lie within the unit cube. Thus, they are (3,3, 1)
{(Fig. EP3.4b). _

c. The position coordinates for the [110] direction are (—1, 1, 0) (Fig. EP3.4c). Note
that the origin for the direction vector must be moved to the lower-left front corner of
the cube.

d. The position coordinates for the [321] direction are obtained by first dividing all the
indices by 3, the largest index. This gives —1, 3, —5 for the position coordinates of the
exit point of the direction [321], which are shown in Figure EP3.44.

2]
&)

iz

P

) T

Origin—| o Z .
y ______ ’_‘__ v
b -+
x [ 100] [110] X, 1
=z
(a) (B)
z Note new origin
o/ —F—
; 1
3
¥ = -
_ 3211
[110]
¥
x, 0 x,
Note new origin
() (d)

Figure EP2.4
Direction vectors in cubic unit cells.

e. The angle between directions [100] and [110] can be determined using Eq. 3.4 as
follows:

A l=+12 +02+02=1
NBIl=+12+12+0% = /2
a b, +ab,+a b, (11 + OW1) +ONO) 1

A Bl - 1 (+/2) W2

cos 8 =

@ = 45°

f. The angle between directions [112] and [110] can be determined using Eq. 3.4 as
follows:

A ll=vV1Z+ 17+ 22 =+/6
NBIl=+—-17+17+0% = /2

ayby +a,b,+ab, (1= D+ AN+ 2N 0

nAnnsn (Ve) (VD V2

cos 8 =

8 = 90°
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Determine the direction indices of the cubic direction shown in Figure EP3.5a.

z New z
origin .
&
(0, 0,0} r T.
2
1
1 13 R ===1
2 1 3
2
¥ ¥
X X /
(a) {b)
Figure EP3.5

m Solution

Parallel directions have the same direction indices, and so we move the direction vector in
a parallel manner until its tail reaches the nearest corner of the cube, still keeping the vector
within the cube. Thus, in this case, the upper-left front corner becomes the new origin for
the direction vector (Fig. EP3.5b). We can now determine the position coordinates where
the direction vector leaves the unit cube. These are x= —1,y = +1, and z = —¢. The position
coordinates of the direction where it leaves the unit cube are thus (—1, +1, —%}. The_ direc-
tion indices for this direction are, after clearing the fraction 6x, (—1, +1, —%}, or [661].

17 a8 G el
Determine the direction indices of the cubic direction between the position coordinates
3 1 1 11
(z. 0, ;) and (g. Ta E)'

m Solution

First we locate the origin and termination points of the direction vector in a unit cube, as
shown in Figure EP3.6. The fraction vector components for this direction are

6



(3 1y _ 1
TTT\aT1)T 2

Thus, the vector direction has fractional vector components of —5-+3. The direction indices
will be in the same ratio as their fractional components. By multiplying the fraction vector
components by 4, we obtain [221] for the direction indices of this vector direction.

o

(L 1 L)
T 72
"
G.oH—L 1
¥
e ~
Origin for position
coordinates

Figure EP3.6
:8 a8 Cpoalll
Draw the following crystallographic planes in cubic unit cells:

(101)

(110)

(221)

Draw a (110) plane in a BCC atomic-site unit cell, and list the position coordinates of
the atoms whose centers are intersected by this plane.

o0 Fp

= i
Mote new
(101) 170 .
(130) - - origin
~ /
o o
¥ ¥
x x
(a) (&)

(221) -] (110)
o\ o

() )

I

I

fial

‘1\.

I

]

I

I

m|v——3‘\

g
]

Figure EP32.7
Various important cublc crystal planes.
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m Solution

a. First determine the reciprocals of the Miller indices of the (101) plane. These are
1, co, 1. The (101) plane must pass through a unit cube at intercepts x=1and z =1

and be parallel to the y axis (Fig. EP3.7a). B
b. First determine the reciprocals of the Miller indices of the (110) plane. These

arel, —1, co. The (110) plane must pass through a unit cube at intercepts x = 1 and
v = —1 and be parallel to the z axis. Note that the origin of axes must be moved to the

lower-right back side of the cube (Fig. EP3.75b).

c. First determine the reciprocals of the Miller indices of the (221) plane. These are é 3'! 1.
The (221) plane must pass through a unit cube at intercepts x = 7, y =5, and z = 1

(Fig. EP3.7c).

d. Atom positions whose centers are intersected by the (110) plane are (1,0, 0), (0, 1,0), (1,

0,1).(0,1, 1), and (

Determine the Miller indices of the cubic crystallographic plane shown in Figure EP3.8a.

Figure EP3.8

N

el

e

New
origin

). These positions are indicated by the solid circles (Fig. EP3.74).

:9

Determine the Miller indices of the cubic crystal plane that intersects the position coordi-

nates (1, 3, 0), (1, 1.3), (3. 1, 7). and all coordinate axes.

s g

8 (il



m Solution

First, we locate the three position coordinates as indicated in Figure EP3.9 at A, B, and C.
Next, we join A and B, extend AB to D, and then join A and C. Finally, we join A to C to
complete plane ACD. The origin for this plane in the cube can be chosen at E, which gives

i

1
Origin for A (L 1, 3)
position —_ /-g::,,#(%, 15
coordinates
"
D (7.1.0)
x// C E (origin for plane)
(1.4.0)

Figure EP3.9

axial intercepts for plane ACD atx = —3, y = —3, and z = 1. The reciprocals of these axial

intercepts are —2, —3, and 2. Multiplying these intercepts by 3 clears the fraction, giving
Miller indices for the plane of (646).

110 pd )

Copper has an FCC crystal structure and a unit cell with a lattice constant of 0.361 nm. What
18 its interplanar spacing d,;?

m Solution
d. - a B 0.361 nm
YOVEFEETE T+ 7+ 00

=0.1258 nm «

111 a8 Cppall
Copper has an FCC crystal structure and an atomic radius of 0.1278 nm. Assuming the
atoms to be hard spheres that touch each other along the face diagonals of the FCC unit cell

as shown in Figure 3.7, calculate a theoretical value for the density of copper in mega- grams
per cubic meter. The atomic mass of copper is 63.54 g/mol.




m Solution _
For the FCC unit cell, 1 2a = 4R, where a is the lattice constant of the unit cell, and R is the

atomic radius of the copper atom. Thus,

4R _ (4)(0.1278 nm) — 0.3615 nm

V2 V2 3.6)
mass/ unit cell
volume/unit cell

@ =

Volume density of copper = p, =

In the FCC unit cell, there are four atoms/unit cell. Each copper atom has a mass of (63.54 g/
mol) (6.02 »x 102 atoms/mol). Thus, the mass m of Cu atoms in the FCC unit cell is

_ (4 atoms)(63.54 g/mol) ( 10—° Mg

= = 4220 % 10-2 M
™= 6.022 x 105 atoms/mol g ) x &

The volume V of the Cu unit cell is

10 my’
V=a’= (0361 nm x—nm = 4724 % 10-m?

Thus, the theoretical density of copper is

_m_ 4220x 107® Mg
Po =y T 4724 % 10 m®

8.933 Mg/m*(8.933 g/cm’) «
212 a8 C pall)

Calculate the planar atomic density P, on the (110) plane of the a iron BCC lattice in atoms
per square millimeter. The lattice constant of « iron is 0.287 nm.

m Solution

__equiv. no. of atoms whose centers are intersected by selected area
= selected area

(3.7)

The equivalent number of atoms intersected by the (110) plane in terms of the surface area
inside the BCC unit cell is shown in Figure 3.22 and is

1
I atom at center + 4 x Er:z'ﬂ:{:rms at four corners of plane = 2 atoms

The area intersected by the (110) plane inside the unit cell (selected area) is

(V2a)(@) = V2>
Thus, the planar atomic density is
2 atoms 3 17.2 atoms
/2 (0.287 nm)? nm?
172 atoms 10" nm?
= X
nm? mm?

Pp=

=1.72 x 10" atoms/mm? «

10
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Calculate the linear atomic density p, in the [110] direction in the copper crystal lattice in
atoms per millimeter. Copper is FCC and has a lattice constant of 0.361 nm.

m Solution

The atoms whose centers the [110] direction intersects are shown in Figure EP3.13. We shall
select the length of the line to be the length of the face diagonal of the FCC unit cell, which
is 4/2 a. The number of atomic diameters intersected by this length of line are 1 + 1 + 3 =2
atoms. Thus using Eq. 3.8, the linear atomic density is

2 atoms 2 atoms 3.92 atoms
M= 24 2(0361nm)  nm
_3.92 atoms x 10% nm
- nm mm
=3.92 x 10° atoms/mm <«
I
: |
W ¥y
x/

[110]

Figure EP32.13

Diagram for calculating
the linear atomic density
in the [110] direction in
an FCC unit cell.

112 o8 Cp el
Calculate the theoretical volume change accompanying a polymorphic transformation in a
pure metal from the FCC to BCC crystal structure. Assume the hard-sphere atomic model
and that there is no change in atomic volume before and after the transformation.

11



m Solution
In the FCC crystal structure unit cell, the atoms are in contact along the face diagonal of the

unit cell, as shown in Figure 3.7. Hence,
4R
V2

In the BCC crystal structure unit cell, the atoms are in contact along the body diagonal of the
unit cell as shown in Figure 3.5. Hence,

V2a=4R or a= (33)

V3a=4R or a=— (3.1)

\E

The volume per atom for the FCC crystal lattice, since it has four atoms per unit cell, is
2 (4R \ 1
i
Vice=—=|—=1(-)=5.66R’
<5=() )
The volume per atom for the BCC crystal lattice, since it has two atoms per unit cell, is

3
a [4R) (1
Vice===(—=](5)=6.16R°
w2 (ﬁ)(ﬂ)

The change in volume associated with the transformation from the FCC to BCC crystal
structure, assuming no change in atomic radius, is

AV Vgoe — Viee
1i'FF'C'I: - 1L'rFlZ!C
6.16R - 5.66R°
( 5.66R° ) % e

12



Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 11

Niobium at 20°C is BCC and has an atomic radius of 0.143 nm. Calculate a value for its lattice constant a in
nanometers.

Chapter 3, Solution 11
For a BCC unit cell having an edge length a and containing niobium atoms,

i(O 143 nm) =0.330 nm

NG

x/§a=4R or a=

&I#

Chapter 3, Problem 12

Lithium at 20°C is BCC and has a lattice constant of 0.35092 nm. Calculate a value for the atomic radius of a
lithium atom in nanometers.

Chapter 3, Solution 12
For the lithium BCC structure, which has a lattice constant of a = 0.35092 nm, the atomic radius is,

b\

R—— ——(035092nm) 0.152nm

Chapter 3, Problem 13

Sodium at 20°C is BCC and has a lattice constant of 0.42906 nm. Calculate a value for the atomic radius of a
sodium atom in nanometers.

Chapter 3, Solution 13
For the sodium BCC structure, with a lattice constant of a = 0.42906 nm, the atomic radius is,

B\

R ——a ——(0 42906 nm) =0.186 nm

Chapter 3, Problem 14
How many atoms per unit cell are there in the FCC crystal structure?

Chapter 3, Solution 14
Each unit cell of the FCC crystal structure contains four atoms.

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page 3
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the

prior written permission of the publisher, or used beyond the limited distribution to teachers and

educators permitted by McGraw-Hill for their individual course preparation. If you are a student using

this Manual, you are using it without permission.



Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 15
What is the coordination number for the atoms in the FCC crystal structure?

Chapter 3, Solution 15
The FCC crystal structure has a coordination number of twelve.

Chapter 3, Problem 16

Gold is FCC and has a lattice constant of 0.40788 nm. Calculate a value for the atomic radius of a gold atom in
nanometers.

Chapter 3, Solution 16
For the gold FCC structure, which has a lattice constant of @ = 0.40788 nm, the atomic radius is,

2

R=""a _—(o 40788 nm) =0.144 nm

Chapter 3, Problem 17

Platinum is FCC and has a lattice constant of 0.39239 nm. Calculate a value for the atomic radius of a platinum atom
in nanometers.

Chapter 3, Solution 17
For the platinum FCC structure, with a lattice constant of @ = 0.39239 nm, the atomic radius is,

0

R=""a _—(o 39239 nm) =0.139 nm

Chapter 3, Problem 18
Palladium is FCC and has an atomic radius of 0.137 nm. Calculate a value for its lattice constant a in nanometers.

Chapter 3, Solution 18
Letting a represent the FCC unit cell edge length and R the palladium atomic radius,

J2a=4R or a=—+R=-%(0.137 nm) =0.387 nm

V2 2

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page 4
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the

prior written permission of the publisher, or used beyond the limited distribution to teachers and

educators permitted by McGraw-Hill for their individual course preparation. If you are a student using

this Manual, you are using it without permission.



Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 19
Strontium is FCC and has an atomic radius of 0.215 nm. Calculate a value for its lattice constant a in nanometers.

Chapter 3, Solution 19
For an FCC unit cell having an edge length a an containing strontium atoms,

=% (0215 nm) =0.608 nm

4
R
J2 2

x/Ea=4R or a=

Chapter 3, Problem 20
Calculate the atomic packing factor for the FCC structure.

Chapter 3, Solution 20
By definition, the atomic packing factor is given as:

volume of atoms in FCC unit cell
volume of the FCC unit cell

Atomic packing factor =

These volumes, associated with the four-atom FCC unit cell, are

Vamms=4D47TR3D=ET[R3 and V. a
B H 3

unit cell —

4R
where a represents the lattice constant. Substituting a = T ,
2

” , _64R°

. =—q =
unit cell
242

The atomic packing factor then becomes,

OenrR’001W2 O w2

APF (FCC unit cell) =3 0 = =0.74
0o 3 Dﬁmﬁ 6
PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. Al rights reserved. No part Page 5

of this Manual may be displayed, reproduced or distributed in any form or by any means, without the
prior written permission of the publisher, or used beyond the limited distribution to teachers and
educators permitted by McGraw-Hill for their individual course preparation. If you are a student using
this Manual, you are using it without permission.



Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 21
How many atoms per unit cell are there in the HCP crystal structure?

Chapter 3, Solution 21
The hexagonal prism contains six atoms.

Chapter 3, Problem 22
What is the coordination number for the atoms in the HCP crystal structure?

Chapter 3, Solution 22
The coordination number associated with the HCP crystal structure is twelve.

Chapter 3, Problem 23
What is the ideal ¢/a ratio for HCP metals?

Chapter 3, Solution 23
The ideal c/a ratio for HCP metals is 1.633; however, the actual ratios may deviate significantly from this value.

Chapter 3, Problem 24

Of the following HCP metals, which have higher or lower c¢/a ratios than the ideal ratio: Zr, Ti, Zn, Mg, Co, Cd, and
Be?

Chapter 3, Solution 24

Cadmium and zinc have significantly higher ¢/a ratios while zirconium, titanium, magnesium, cobalt and beryllium
have slightly lower ratios.

Chapter 3, Problem 25

Calculate the volume in cubic nanometers of the titanium crystal structure unit cell. Titanium is HCP at 20°C with a
=0.29504 nm and c = 0.46833 nm.

Chapter 3, Solution 25
For a hexagonal prism, of height ¢ and side length a, the volume is given by:

V' = (Area of Base)(Height) =[(6 XEquilateral Triangle Area)(Height)]
= (3a” sin 60°)(c)
=3(0.29504 nm)?* (sin 60°)(0.46833 nm)
=0.106 nm*

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page 6
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 26

Rhenium at 20°C is HCP. The height c of its unit cell is 0.44583 nm and its c¢/a ratio is 1.633. Calculate a value for
its lattice constant ¢ in nanometers.

Chapter 3, Solution 26
The rhenium lattice constant a is calculated as,

c _ 0.44583 nm

a= =0.273 nm
cla 1.633

Chapter 3, Problem 27

Osmium at 20°C is HCP. Using a value of 0.135 nm for the atom radius of osmium atoms, calculate a value for its
unit-cell volume. Assume a packing factor of 0.74.

Chapter 3, Solution 27
From the definition of the atomic packing factor,

HCP unit cell volume = volume of atoris;; HCP unit cell

Since there are six atoms in the HCP unit cell, the volume of atoms is:

V. o= 6%7TR3§:8 70.135)° =0.0618 nm’

The unit cell volume thus becomes,

. 0.0618 nm®
HCP unit cell volume =————— =0.084 nm°
0.74
PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page 7

of this Manual may be displayed, reproduced or distributed in any form or by any means, without the
prior written permission of the publisher, or used beyond the limited distribution to teachers and
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 28
How are atomic positions located in cubic unit cells?

Chapter 3, Solution 28

Atomic positions are located in cubic unit cells using rectangular x, y, and z axes and unit distances along the
respective axes. The directions of these axes are shown below.

+z

-y Ty

Chapter 3, Problem 29
List the atom positions for the eight corner and six face-centered atoms of the FCC unit cell.

Chapter 3, Solution 29

The atom positions at the corners of an FCC unit cell are:
(0,0,0),(1,0,0), (1, 1,0), (0, 1,0), (0,0, 1), (1, 0, ), (1, 1, 1), (0, 1, 1)

On the faces of the FCC unit cell, atoms are located at:
(2,72, 0), (2, 0, 2), (0, 2, 2), (2, V2, 1), (1, 2, V2), (2, 1, 2)

Chapter 3, Problem 30
How are the indices for a crystallographic direction in a cubic unit cell determined?

Chapter 3, Solution 30

For cubic crystals, the crystallographic direction indices are the components of the direction vector, resolved along
each of the coordinate axes and reduced to the smallest integers. These indices are designated as [uvw].

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page 8
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the

prior written permission of the publisher, or used beyond the limited distribution to teachers and

educators permitted by McGraw-Hill for their individual course preparation. If you are a student using

this Manual, you are using it without permission.



Problems and Solutions to Smith/Hashemi

Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 31

Draw the following directions in a BCC unit cell and list the position coordinates of the atoms whose centers are

intersected by the direction vector:
(a) [100]() [110](c) [111]

Chapter 3, Solution 31

z
Y (0,0,0) (0,0,0)
X
(1,0,0)
(a) Position Coordinates: (b) Position Coordinates:
(0,0,0),(1,0,0) (0,0,0), (1,1, 0)

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the
prior written permission of the publisher, or used beyond the limited distribution to teachers and

educators permitted by McGraw-Hill for their individual course preparation. If you are a student using

this Manual, you are using it without permission.

(1,1,0)

(1,1, 1

0,0,0)

(c) Position Coordinates:
(0,0,0), (1,1, 1)

Page
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 32
Draw direction vectors in unit cells for the following cubic directions:

@ AT  ®»HIE ©H215 @l 13{

Chapter 3, Solution 32

- (a) (b)
y
X x=+1 x=+1
y=- y=-1
z=-1 =0
11] [110]

(c) . y (d)

" e o/
L/

Dividing by 2, [121] Dividing by 3,
x=-% x=—"1
y=1 ==
z=-Y z=1 g
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 33
Draw direction vectors in unit cells for the following cubic directions:

@ B125
() H23§

(©) B3
@ H215

Chapter 3, Solution 33

¥,

|
i

(a) Dividing [112] by 2,

V2.

1 1

x:_,y:__,zz_l

2 2

e R12H

<
S

(d) Dividing [021] by 2,

1
x=0,y=-1,z :E

23

(e) HO1H
(n H21H

(0 [321]
() BO3H

® H225
0 B23F

(e) Dividing [212] by 2,

1

x=l,y=——,z=1

2

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part
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z
}’y
X
2
A |
e 1
1 —»
— 1
i \
@ |
i
Vo — 2/3
(f) Dividing [233] by 3,
x=§,y=—1,z =1
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

\<—>——>

(g) For[101],

(h) Dividing [121] by 2,

x=-1,y=0,z =1

ZEZ

(j) Dividing [103] by 3,

1

x=—,y=0,z=-1
3 y

\ |
\

x=—,y=l,z=-
Y

4—2/3—>l

(i) Dividing [321] by 3,

1 =1 p=2 ;=1
2 YTy
—

—— —

(k) Dividing [122] by 2,

7

|

1
x=—,y=-1,z=-1
5 y
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. %
S e
(I) Dividing [223] by 3,
x= —% = —% z =1
3 >y 3’
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 34
What are the indices of the directions shown in the unit cubes of Fig. P3.34?

b

\

>
s Tl
/ﬁ-

/ﬂ

(e1) (b)

Figure P3.34

Chapter 3, Solution 34

(@ ®» o,
& v, e A%
A c %%
a k% %_f/— /s
v y Ay
A a
%
XK XK
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

a
2
v,
a. Vector components: b.

x=-1, y=1,z=0
Direction indices: [110]

New 0

d. Moving direction vector
left Y4, vector components
are: x=1, y=%, z=1
Direction indices: [212]

New 0

Ve
¥4

A

g. Moving direction vector
up 72, vector components
are:x=1,y=-1,z=-%
Direction indices: [441]

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part

c.

h.

New 0

New 0

¢. Moving direction vector for-
ward Y5, vector components
1
are: x=-/¢, y=1, z=1

Moving direction vector
down Y, vector components
are: x=1, y=-1, z="

Direction indices: [441] Direction indices: [166]

New 0

f. Moving direction vector up
Y4, vector components are:
x=-1, y=1, z=-%
Direction indices: [331]

Vector components are:
x=%,y=-1,z=1
Direction indices: [344]

New 0

S

4

/h

¥

Y4

Moving direction vector
up %4, vector components
are: x=%,y=-1,z=-%
Direction indices: [343]
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 35
N . B 10 ) S o
A direction vector passes through a unit cube from the ,0,—7 to the ,1, 077 positions. What are its direction
He"aH ™ B H
indices?

Chapter 3, Solution 35

The starting point coordinates, subtracted from the end point, give the vector components:

INg

X =

INg

3]
St =1-0=1 z=0-
4 4 7

N | -

The fractions can then be cleared through multiplication by 4, giving x = —1, y =4, z = —1. The direction

indices are therefore [i 4 i]

Chapter 3, Problem 36

A

[l ar 10

A direction vector passes through a unit cube from the ﬁ, 0, to the ,1,—[7 positions. What are its direction
4°™ sl

indices?

Chapter 3, Solution 36

Subtracting coordinates, the vector components are:

I|I
B —
|
AW
11
NII»—‘

1 3
x=—-1=— =1 -0 =1 z
4 y

Clearing fractions through multiplication by 4, gives x = =3,y =4,z = 2.

The direction indices are therefore [3 4 E]

Chapter 3, Problem 37
What are the crystallographic directions of a family or form? What generalized notation is used to indicate them?

Chapter 3, Solution 37

A family or form has equivalent crystallographic directions; the atom spacing along each

direction is identical. These directions are indicated by <uvw> .
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 38
What are the directions of the go?g family or form for a unit cube?

Chapter 3, Solution 38

[100], [010], [001], [100], [010], [001]
Chapter 3, Problem 39
What are the directions of the <l 1 1> family or form for a unit cube?

Chapter 3, Solution 39

[111], [111], [111], [111],
[111], [111], [111],[111]

Chapter 3, Problem 40
What <1 10> -type directions lie on the (111) plane of a cubic unit cell?

Chapter 3, Solution 40

[011], [011], [110], [110], [101], [101]

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 41
What <1 1 1> -type directions lie on the (110) plane of a cubic unit cell?

Chapter 3, Solution 41
[111]

[111], [111], [111],[111] _
[111]

[111]

Chapter 3, Problem 42

How are the Miller indices for a crystallographic plane in a cubic unit cell determined? What generalized notation is
used to indicate them?

Chapter 3, Solution 42

The Miller indices are determined by first identifying the fractional intercepts which the plane makes with the
crystallographic x, y, and z axes of the cubic unit cell. Then all fractions must be cleared such that the smallest set of
whole numbers is attained. The general notation used to indicate these indices is (4kl), where , k, and / correspond
to the x, y and z axes, respectively.
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 43
Draw in unit cubes the crystal planes that have the following Miller indices:

@ (1T1)  © (121) © (321) @ (201) (232 ® (312)
) (102) @ (213) o (302) m (212) o (133) 0 (337)
Chapter 3, Solution 43
z
}' y
X
! (0,0,0) (0,0, 0) - (0,0,0)
+1 +1 *l
-_—— —_— _1/2 —_——
111 (102) 121
-1 -1
a. For (1 1 T) reciprocals b. For (105) reciprocals c. For (1 2 I) reciprocals
are: x=1, y=-1, z=-1 are: x=1, y=o0,z=-% are: x=1, y=-%, z=-1
(0,0,0 " (0,0,0)
+5
+1 —
5 > (213)
2 = -Ya
(302)
(0,0, 0)
d. For (21§)reciprocals e. For (351) reciprocals f. For (305) reciprocals
are: x="%,y=1, z=-% are: x=%, y=-%,z=1 are: x=",y=00,z=-Y%
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Problems and Solutions to Smith/Hashemi

Foundations of Materials Science and Engineering 4le

0,0,0)

+

(201)

g. For (201) reciprocals

are: x=Y%, y=o, z=-1

-7

h. For (515) reciprocals
are: x=-%,y=1, z=-"

+1

(133)

3
N

(312)

N\
R

N N

j. For (133) reciprocals
are: x=1, y=%, z=-%

+72

\

X/
+75

k. For (312) reciprocals
are: x=", y=-1, z=%

+72

(232)

-2

0,0,0)

+s

i. For (532) reciprocals are:

Xx=Ys, y="h z="

-1

— +Y5

(331)

k. For (§31) reciprocals

are: x=-%, y=Y%, z=-1
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 44
What are the Miller indices of the cubic cyrsyallographic planes shown in Fig. P3.44?

Chapter 3, Solution 44

‘ 2
’ %
a Y
<]
1 ¢ —
7 i
| y y
x |
Miller Indices for Figure P3.44(a)
Plane a based on (0, 1, 1) as origin Plane b based on (1, 1, 0) as origin
Planar Intercepts Reciprocals of Intercepts Planar Intercepts Reciprocals of Intercepts
1 1
X =00 —= x=-1 —=-1
b b
1 -5 1 _-12
y= -1 —=-1 y=— =
Y 12 y 5
1 1 1
zZ="= —=—4 Z=00 —=0
4 z z
The Miller indices of plane a are (0 1 Z). The Miller indices of plane b are (g 12 0).
Plane ¢ based on (1, 1, 0) as origin Plane d based on (0, 0, 0) as origin
Planar Intercepts Reciprocals of Intercepts Planar Intercepts Reciprocals of Intercepts
1 1
X =00 —=0 x=1 —=1
b X
1 1
y=-1 —=-1 y=1 —=1
y Y
1 1
Z =— —_—= 3 z =— l = é
3 z 3 z 2
The Miller indices of plane ¢ are (0 1 3). The Miller indices of plane d are (2 2 3).
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Problems and Solutions to Smith/Hashemi

Foundations of Materials Science and Engineering 4le

Miller Indices for Figure P3.44(b)

Plane a based on (1, 0, 1) as origin
Planar Intercepts Reciprocals of Intercepts

Plane b based on (0, 1, 1) as origin
Planar Intercepts Reciprocals of Intercepts

1

x=-1 —=-1
x
1
Y=o =
y
z:—l l:—3
3 z

The Miller indices of plane a are (I 0 3).

x=1 l:1
X
1
y:—l —=-]
Yy
2 13
z=—-—— —_ = —_-
3 z

The Miller indices of plane b are (2 2 3).

Plane ¢ based on (0, 1, 0) as origin
Planar Intercepts Reciprocals of Intercepts

Plane d based on (0, 1, 0) as origin
Planar Intercepts Reciprocals of Intercepts

x=1 l:1
X
_S 1o-2
Y 12 y 5
1
z=0o0 —=0
z

The Miller indices of plane ¢ are (512 0).

x=1 l:1
X
1

y=-1 —=-1
y
2 z

Y

\

(a)

Figure P3.44

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 45

What is the notation used to indicate a family or form of cubic crystallographic planes?

Chapter 3, Solution 45

A family or form of a cubic crystallographic plane is indicated using the notation {/k/}.

Chapter 3, Problem 46
What are the {100} family of planes of the cubic system?
Chapter 3, Solution 46

(100), (010), (001), (100), (010), (001)

Chapter 3, Problem 47

Draw the following crystallographic planes in a BCC unit cell and list the position of the atoms whose centers are

intersected by each of the planes:

() (100)(b) (110)(c) (111)

Chapter 3, Solution 47

-1

/A/

\

\\N

\

P

i

7
i
*""'/

R

-

X
a. (1,0 ) C. (1505 0)5 (0, 0’ 1)a
1,1 ), (Y2, Y4, Y2) 0, 1,0)
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 48

Draw the following crystallographic planes in an FCC unit cell and list the position coordinates of the atoms whose
centers are intersected by each of the planes:

(a) (100)(D) (110)(c) (111)

Chapter 3, Solution 48

4

3

X
a. (1,0,0), (1,0, 1), b. (1,0, 0), (1,0, 1), c. (1,0,0),(0,0,1),
(1,1,0), (1,1, 1) (0,1,0), (0,1, 1), (0, 1, 0), (4,0, %)
(1, %, ) (Y4, Y2, 0), (Y4, V2, 1) (2, 2, 0), (0, %2, /2)

Chapter 3, Problem 49
1

A cubic plane has the following axial intercepts: a = %, b= —%, ¢ =+ . What are the Miller indices of this plane?

Chapter 3, Solution 49

1 1 3 1
Given the axial intercepts of (%4, -2, ¥4), the reciprocal intercepts are: — =3, — 5 , — =2. Multiplying
X y z

by 2 to clear the fraction, the Miller indices are (6 3 4).

Chapter 3, Problem 50

A cubic plane has the following axial intercepts: a = —%, b= —% , C :% . What are the Miller indices of this

plane?

Chapter 3, Solution 50
1

1 1 3
Given the axial intercepts of (-Y4, -¥3, %), the reciprocal intercepts are: — = -2, — =-—2, — :5. Multiplying
X y z

by 2, the Miller indices are (4 4 3).
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 51
2

A cubic plane has the following axial intercepts: @ =1, b = 5, C= —% . What are the Miller indices of this plane?

Chapter 3, Solution 51

Given the axial intercepts of (1, %, -4), the reciprocal intercepts are: — =1, —2. Multiplying by

1.3 1
X y 27 z

2, the Miller indices are (2 3 Z)

Chapter 3, Problem 52
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates:

(1,0,0); (1,4,9); (£,4.0).

Chapter 3, Solution 52

First locate the three position coordinates as shown. Next, connect points a and b, extending the line to point d and
connect a to ¢ and extend to e. Complete the plane by connecting point d to e. Using (1, 1, 0) as the plane origin, x

1 1

=-1, y=-1and z = %. The intercept reciprocals are thus — = —1, — = =1, — =2. The Miller indices are

X y z
(112).

(0,0,0) d
e
o b
\
(Y, Y5, 0) a
(1,0,0) (1, 1, Y4) (1,1,0)
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 53
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates:

(7.0, 3);(0,0,1); (LL1).

Chapter 3, Solution 53
First locate the three position coordinates as shown. Next, connect points a and b and extend the line to point d.
Complete the plane by connecting point d to ¢ and point ¢ to . Using (1, 0, 1) as the plane origin, x =-1, y =1 and

1

1 _
z=-1. The intercept reciprocals are thus — = —1, — =1, — = —1. The Miller indices are (1 1 1).
z

0,0, 1)

(2,0,%)

Chapter 3, Problem 54
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates:

(1, 7, 1 (3,0,9); (1,0,3).

Chapter 3, Solution 54

After locating the three position coordinates, connect points b and ¢ and extend the line to point d. Complete the
plane by connecting point d to @ and a to ¢. Using
(1, 0, 1) as the plane origin, x = -1, y = %2 and z = -%4. The intercept reciprocals then become

1 1 1 — s

—=-1, — =2, — =-2. The Miller indices are (1 2 2).

X b% z

(2, 0, %)

0,0,0) :

(17 0’ 1/-7’) [ ]

(1,7, 1)
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 55
Determine the Miller indices of the cubic crystal plane that intersects the following position coordinates:

(0,0, 3); (1,0,0); (3,7.0).

Chapter 3, Solution 55
After locating the three position coordinates, connect points b and ¢ and extend the line to point d. Complete the
plane by connecting point d to a and a to b. Using

1 1 1
(0, 0, 0) as the plane origin, x =1, y = Y2 and z = Y. The intercept reciprocals are thus — =1, — =2, — =2,
X y z
The Miller indices are therefore (12 2).
® a4 a
/ (0. 0,0) Q\
9 9 %E a
(0,0, %, SRS
¢ (0, %, 0)
(1,0,0)
(%2, %4, 0)

Chapter 3, Problem 56
Rodium is FCC and has a lattice constant a of 0.38044 nm. Calculate the following interplanar spacings:
(a) din (D) dago (€) drro
Chapter 3, Solution 56

0.38044 nm _ 0.38044 nm
(@) dyy, = = =0.220 nm

2412+ V3

0.38044 nm _ 0.38044 nm

(b) dyy = = =0.190 nm

V22 +07 +0° V4

0.38044 nm _ 0.38044 nm

(¢) dyyy = = =0.135nm

V22 422 402 V8
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Problems and Solutions to Smith/Hashemi

Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 57

Tungsten is BCC and has a lattice constant a of 0.31648 nm. Calculate the following interplanar spacings:

(@) di1o (b) dyzo (¢) d31o

Chapter 3, Solution 57

0.31648 nm _ 0.31648 nm

JE+2+0r 2

_0.31648nm _ 0.31648 nm

=0.224 nm

(a) djjg =

(b) d220 - m = \/g =0.112nm
_ 031648 nm _031648nm _ o

(©) d3yo = =
310 P10 Jio

Chapter 3, Problem 58

The d5; interplanar spacing in a BCC element is 0.1587 nm. (¢) What is its lattice constant a? (b) What is the

atomic radius of the element? (¢) What could this element be?

Chapter 3, Solution 58

@ a=ds \Nh* +k* +1* =(0.1587 nm)y/3* +1> +0° =0.502nm

(b) R= =0.217 nm

V3a _ \/5(0.502 nm)
4 4

(c) The element is barium (Ba).

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the
prior written permission of the publisher, or used beyond the limited distribution to teachers and

educators permitted by McGraw-Hill for their individual course preparation. If you are a student using

this Manual, you are using it without permission.

Page 27



Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 59

The dy,; interplanar spacing in an FCC metal is 0.083397 nm. (¢) What is its lattice constant a? () What is the
atomic radius of the metal? (¢) What could this metal be?

Chapter 3, Solution 58

@) a=ds \Nh* +k* +1* =(0.1587 nm)y/3” +1> +0° =0.502nm

=0.217 nm

& R= 3a _ \/5(0.5:)2 nm)

4

(c) The element is barium (Ba).

Chapter 3, Problem 60
How are crystallographic planes indicated in HCP unit cells?

Chapter 3, Solution 60

In HCP unit cells, crystallographic planes are indicated using four indices which correspond to four axes: three basal
axes of the unit cell, a;, a,, and a3 , which are separated by 120°; and the vertical ¢ axis.
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 61
What notation is used to describe HCP crystal planes?

Chapter 3, Solution 61
HCP crystal planes are described using the Miller-Bravais indices, (hkil).
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 62

Draw the hexagonal crystal planes whose Miller-Bravais indices are:
(a) (1011) (d) (1212) (g) (1212) () (1100)
(b) (0111) (e) (2111) (k) (2200) (k) (2111)
(c) (1210) (f) A1101) (i) (1012) () (1012)

Chapter 3, Solution 62

The reciprocals of the indices provided give the intercepts for the plane (ay, ay, a3, and ¢).
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Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 63
Determine the Miller-Bravais indices of the hexagonal crystal planes in Fig. P3.63.
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Problems and Solutions to Smith/Hashemi

Foundations of Materials Science and Engineering 4le

Chapter 3, Solution 63

Miller-Bravais Indices for Planes Shown in Figure P3.63(a)

Plane a Plane b Plane ¢
Planar Reciprocals Planar Reciprocals Planar Reciprocals
Intercepts of Intercepts Intercepts of Intercepts Intercepts of Intercepts
1 1 1
a; = o _:0 01:1 _:1 611:-1/2 _:_2
4 4 4
1 1 1
a,=-1 —=-1 a, =0 —=0 a="% =2
a, a, a,
1 1 1
a3=1 _:1 03:*1 :_1 asz = © _:O
a3 ) a3
Planar Reciprocals Planar Reciprocals Planar Reciprocals
Intercepts of Intercepts Intercepts of Intercepts Intercepts of Intercepts
1 1
c=o —=0 c=% 2 c=o —=0
C C
The Miller indices of plane a The Miller indices of plane b The Miller indices of plane ¢
are(0110). are(101 2). are(2200).

Miller-Bravais Indices for the Planes Shown in Figure P3.63(b)

Plane a Plane b Plane ¢
Planar Reciprocals Planar Reciprocals Planar Reciprocals
Intercepts of Intercepts Intercepts of Intercepts Intercepts of Intercepts
1 1 1
a; = o —=0 a; =1 —=1 a; =1 —=1
4 4 4
1 1 1
(12:1 :1 612:-1 _:_1 a2:-1 —=-1
a a a,
1 1 1
a3=—1 _:_1 asz = © _:0 az = ®© :0
a3 a3 a3
1 a. L 1
c=o —=0 c=1 B,LO c=1 —=1
c L c
The Miller indices of plane a The Miller indices of plane b The Miller indices of plane ¢
are(0110). are(1101). are(1101).
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Chapter 3, Problem 64
Determine the Miller-Bravais direction indices of the —a;, -a,, and —a; directions.

Chapter 3, Solution 64

The Miller-Bravais direction indices corresponding to the —a;, -a, and —aj; directions are respectively,
o 1 1 o

H = ' » =13

Chapter 3, Problem 65

Determine the Miller-Bravais direction indices of the vectors originating at the center of the lower basal plane and
ending at the endpoints of the upper basal plane as indicated in Fig. 3.18d.
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Chapter 3, Solution 65
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[1211] —[2111]
a
4y

Chapter 3, Problem 66

Determine the Miller-Bravais direction indices of the basal plane of the vectors originating at the center of the lower
basal plane and exiting at the midpoints between the principal planar axes.

Chapter 3, Solution 66

[3034],[3304],[033 4], (3034] [3304]
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Chapter 3, Problem 67
Determine the Miller-Bravais direction indices of the directions indicated in Fig. P3.67.

(a) (h)

Figure P3.67

Chapter 3, Solution 67
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For Fig. P3.67(a), the Miller-Bravais direction indices indicated are [E 111]and 11 2 1]. Those associated

with Fig. P3.67(h) are [1101] and [10 1 1].
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 68

What is the difference in the stacking arrangement of close-packed planes in (a) the HCP crystal structure and ()
the FCC crystal structure?

Chapter 3, Solution 68

Although the FCC and HCP are both close-packed lattices with APF = 0.74, the structures differ in the three
dimensional stacking of their planes:

(a) the stacking order of HCP planes is ABAB... ;
(b)  the FCC planes have an ABCABC... stacking sequence.

Chapter 3, Problem 69
What are the densest-packed directions in (@) the FCC structure and (b) the HCP structure?

Chapter 3, Solution 69

(a) The most densely packed planes of the FCC lattice are the {1 1 1} planes.
(b) The most densely packed planes of the HCP structure are the {0 0 0 1} planes.

Chapter 3, Problem 70
What are the closest-packed directions in (a) the FCC structure and (b) the HCP structure?

Chapter 3, Solution 70

(a) The closest-packed directions in the FCC lattice are the <1 i 0> directions.

(b) The closest-packed directions in the HCP lattice are the <1 12 0> directions.
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Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 71

The lattice constant for BCC tantalum at 20°C is 0.33026 nm and its density is
16.6 g/cm’. Calculate a value for its atomic mass.

Chapter 3, Solution 71
The atomic mass can be assessed based upon the mass of tantalum in a unit BCC cell:

mass/unit cell = p, (volume/unit cell) = p, a’
=(16.6 g/cm?)(10°cm’/m?*)(0.33026 x10~° m)?
=5.98x107* g/u.c.

Since there are two atoms in a BCC unit cell, the atomic mass is:

Atomic mass = (5.98x107* g/unit cell)(6.023 x10* atoms/mol)

2 atoms/unit cell
=180.09 g/mol

Chapter 3, Problem 72

Calculate a value for the density of FCC platinum in grams per cubic centimeter from its lattice constant a of
0.39239 nm and its atomic mass of 195.09 g/mol.

Chapter 3, Solution 72

First calculate the mass per unit cell based on the atomic mass and the number of atoms per unit cell of the FCC
structure,

(4 atoms/unit cell)(195.09 g/mol)
6.023x10* atoms/mol

mass/unit cell = =1.296 x10~*! g/unit cell

The density is then found as,

_ mass/unit cell _ mass/unitcell _ 1.296x107*! g/unit cell
Y volume/unit cell a’ [(0.39239%107° m)*]/unit cell

=21,445,113 g/m® A 0 =21.45g/em’
iOO cmH
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Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 73

Calculate the planar atomic density in atoms per square millimeter for the following crystal planes in BCC
chromium, which has a lattice constant of 0.28846 nm: (a) (100), (b) (110), (c) (111).

Chapter 3, Solution 73
(Solution C is on the next page.)

(a)

To calculate the density, the planar area and the number of atoms contained in that area must first be determined.

(a) The area intersected by the (1 0 0) plane inside the cubic unit cell is * while the number of atoms contained is: (
4 corners)* (4 atom per corner) = | atom. The density is,

_ equiv. no. of atoms whose centers are intersected by selected area

P selected area

= 1at0m_9 > =(1.202 ><101931t0ms/m2)D m_gf
(0.28846x10™" m) 5000 m

=1.202x10" atoms/mm?>

(b) For the more densely packed (1 1 0) plane, there are:

1 atom at center + ( 4 corners) X (¥ atom per corner) = 2 atoms
And the area is given as (\/Ea)(a) =24 The density is thus,

p = 2 atoms
P J2(0.28846x10™° m)>

=(1.699 x10"’ atoms/m?)(10™° m?/mm?)

=1.699x10" atoms/mm?>
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(c) The triangular (1 1 1) plane contains: (3 corners) x (/¢ atom per corner) = ¥ atom.
1 1 3 0 Ve
The area is equal to = Ebh = 5 (\/Ea) % aﬁ = % a’*. The density is thus,

1/2 atom

p,= NG =(9.813 x10"® atoms/m?)(10™® m?*/mm?)

T(O.28846><10_9 m)?

=9.813x10'* atoms/mm?

Chapter 3, Problem 74

Calculate the planar atomic density in atoms per square millimeter for the following crystal planes in FCC gold,
which has a lattice constant of 0.40788 nm: (a) (100), (b) (110), (¢) (111).

Chapter 3, Solution 74
(Solutions B and C are on the next page.)

(a) (b) ‘ (c)

(a) The
area intersected by the (1 0 0) plane and the FCC unit cell is a* while the number of atoms contained is:

1 atom at center + ( 4 corners) X (¥ atom per corner) = 2 atoms
The density is therefore,

_ equiv. no. of atoms whose centers are intersected by selected area

r selected area
2 atoms m
=  =(1.202x10"atoms/m?) u
(0.40788x10™° m) H000 mmH
=1.20x10" atoms/mm?>
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(b) For the more densely packed (1 1 0) plane, there are:

(2 face atoms) x (%2 atom) + (4 corners) x (% atom per corner) = 2 atoms

And the area is given as (\/Ea)(a) = \/Ea 2. The density is thus,

1 1

(c) The triangular (1 1 1) plane contains:

D
(3 face atoms x ¥4 atom) + (3 corners) x (/¢ atom per corner) = 2 atoms

U
The area is equal to: = lbh = l (\/Ea) D\/§ ag= ﬁ a’. The density is therefore,
2 2 22 H 4

2 atoms

p, = NG =(1.963 x10"’ atoms/m*)(10™° m?*/mm?)

7(0.40788><10'9 m)*

=1.963 x10" atoms/mm?>
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Chapter 3, Problem 75

Calculate the planar atomic density in atoms per square millimeter for the (0001) plane in HCP beryllium, which has
a lattice constant ¢ = 0.22856 nm and a ¢ constant of 0.35832 nm.

Chapter 3, Solution 75

The area intersected by the (0 0 0 1) plane and the HCP unit cell is simply
the basal area, shown in the sketch to the right:

. . . 1 3 0 343
Selected Area = (6 triangles) X (equilateral triangle area) = 6 - aDD\F ag= ia2
2 “He2 2
While the number of atoms contained is:
1 atom at center + ( 6 corners) X (V5 atom per corner) = 3 atoms

The density is therefore,

_ equiv. no. of atoms whose centers are intersected by selected area

P selected area
3 atoms m
=3 7 =(2.201x10" atoms/m?) ﬁwg
- mm
T(0.22856><1o ? m)?

=2.21x10" atoms/mm”*
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Chapter 3, Problem 76

Calculate the linear atomic density in atoms per millimeter for the following directions in BCC vanadium, which has
a lattice constant of 0.3039 nm: (a) [100], (b) [110], (c) [111].

Chapter 3, Solution 76

(@) (b) (© }['1 11]

[ 100 ] [110]

In general, the linear atomic density is derived from:

_ no. of atomic diam. intersected by selected length of direction line

Pr= selected length of line
(a) For the [100] direction of BCC vanadium,
. a. 1
o = no. atom dia _ 9a‘[om : ~3.29%10° mm
a (0.3039 nm)(10” m/nm)(10° mm/m)
(b) For the [110] direction of BCC vanadium,
, = no. atom dia. _ 1 atom : ~233x10° mm
V2a V2(0.3039 nm)(10° mm/nm)
(©) For the [111] direction of BCC vanadium,
. 1a. 2
o = no. atom dia _ atoms : ~3.80x10° mm
J3a V3(0.3039 nm)(10° mm/nm)
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Chapter 3, Problem 77

Calculate the linear atomic density in atoms per millimeter for the following directions in FCC iridium, which has a
lattice constant of 0.38389 nm: (@) [100], (b) [110], (¢) [111].

Chapter 3, Solution 77

(a) (b) ©) L]
'Y
[ 100 ] [ 110 ]
In general, the linear atomic density is derived from:
p = no. of atomic diam. intersected by selected length of direction line
! selected length of line
(a) For the [100] direction of FCC iridium,
. at ia. 1 at
pl:no atom dia _ aom6 5 60x10° mm
a (0.38389 nm)(10™” mm/nm)
(b) For the [110] direction of FCC iridium,
o = no. atom dia. _ 2 atoms : ~3.68x10° mm
V2a V2(0.38389 nm)(10° mm/nm)
(c) For the [111] direction of FCC iridium,
. a. 1
o = no. atom dia _ atom : ~1.50x10° mm
J3a V/3(0.38389 nm)(10"° mm/nm)
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Chapter 3, Problem 78
What is polymorphism with respect to metals?

Chapter 3, Solution 78

A metal is considered polymorphic if it can exist in more than one crystalline form under different conditions of
temperature and pressure.

Chapter 3, Problem 79

Titanium goes through a polymorphic change from BCC to HCP crystal structure upon cooling through 332°C.
Calculate the percentage change in volume when the crystal structure changes from BCC to HCP. The lattice
constant a of the BCC unit cell at 882°C is 0.332 nm, and the HCP unit cell has ¢ = 0.2950 nm and ¢ = 0.4683 nm.

Chapter 3, Solution 79

To determine the volume change, the individual volumes per atom for the BCC and HCP structures must be
calculated:

3.3, 3
_ a” nm”/unit cell _ (0.332 nm) =0.0183 nm?/atom

2 atoms/unit cell 2 atoms

BCC

_ (3a’¢)(sin60°) nm’/unit cell _ (3)(0.2950 nm)*(0.4683 nm)(sin60°)

Vi ;
6 atoms/unit cell 6 atoms

=0.01765 nm>/atom

Thus the change in volume due to titanium’s allotropic transformation is,
Vier =V,
% Volume change = —2—BCC (100%)
BCC
_0.01765 nm*/atom —0.0183 nm>/atom

Y TrTe—r. (100%) =-3.55%
. nm /atom

PROPRIETARY MATERIAL. (c) 2006 The McGraw-Hill Companies, Inc. All rights reserved. No part Page 45
of this Manual may be displayed, reproduced or distributed in any form or by any means, without the

prior written permission of the publisher, or used beyond the limited distribution to teachers and

educators permitted by McGraw-Hill for their individual course preparation. If you are a student using

this Manual, you are using it without permission.



Problems and Solutions to Smith/Hashemi
Foundations of Materials Science and Engineering 4le

Chapter 3, Problem 80

Pure iron goes through a polymorphic change from BCC to FCC upon heating through 912°C. Calculate the volume
change associated with the change in crystal structure from BCC to FCC if at 912°C the BCC unit cell has a lattice
constant ¢ = 0.293 nm and the FCC unit cell ¢ = 0.363 nm.

Chapter 3, Solution 80
First determine the individual volumes per atom for the iron BCC and FCC crystal structures:

_ @ nm’/unit cell _ (0.293 nm)’

= : =0.01258 nm*/atom
2 atoms/unit cell 2 atoms

VBCC

_ @ nm’/unit cell _ (0.363 nm)’
Vece = =

: =0.01196 nm>/atom
4 atoms/unit cell 4 atoms

Thus the change in volume due to iron’s allotropic transformation is,

Vice = . : 0. >
% Volume change :LVBCC(IOO%) _ 0.01196 nm”/atom 0301258 nm’/atom (100%)
BCC 0.01258 nm/atom
=-4.94%
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