Chapitre 4: Problème de plus court chemin

4.1. Description du problème

Soit le graphe G = (X, U, L) avec $X = \{1, 2, ..., n\}$; $U = \{u_1, u_2, ..., u_m\}$

L est l'ensemble des valeurs sur les arcs appelées longueurs Le problème consiste à trouver un plus court chemin PCC pour l'un des cas suivants :

- D'un sommet donné x à un autre sommet donné y.
- D'un sommet donné x à tous les autres sommets.
- De tout sommet x à tout sommet y.

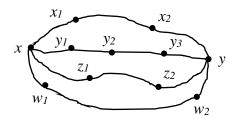


Fig 4.1: Description du problème de PCC

Les algorithmes qui seront traités au cours de ce chapitre donnent en général les plus courts chemins d'un sommet x à tous les autres sommets (cas 2)

Supposons qu'on cherche un PCC entre le sommet 1 et chacun des sommets 2, 3, ..., n

Soit *i* le sommet en cours, et soient :

- P(i): le chemin actuel entre 1 et i, $\pi(i)$ la longueur de ce chemin
- P*(i) un plus court chemin entre 1 et i, de longueur π *(i)

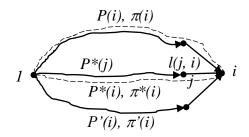


Fig 4.2: Caractéristiques de PCC

Si j est un prédécesseur de i, alors on a :

 $\pi^*(i) = \text{Min}[\ \pi(j) + l(j, i)]\ j \in \Gamma^-(i)$ avec : l(j, i) est la longueur de l'arc entre les sommets j et i

On a également :

$$\pi^*(i) \le Min\{ \pi(i) ; \pi(j) + l(j, i) \} j \in \Gamma^-(i)$$

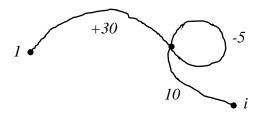


Fig 4.3: Problème de circuits négatifs

Une condition nécessaire d'existence d'un PCC de 1 à *i* est qu'il n'existe aucun chemin de 1 à *i* avec un circuit de longueur négative engendrant un chemin de longueur inférieure s'il est parcouru un nombre aléatoirement de fois.

4.2. Quelques propriétés de plus court chemin

1. Tout sous chemin d'un chemin de longueur minimum est luimême de longueur minimum.

- 2. On peut appliquer aussi cette propriété avec les chemins de longueur maximum et on dit d'une manière générale : tout sous chemin d'un chemin optimum est lui-même optimum.
- 3.Le plus court chemin PCC = $(1, x_1, x_2, ..., x_s)$ entre 1 et x_s forme une arborescence de racine 1 et contenant tous les sommets x_i (i = 1, 2, ..., s)

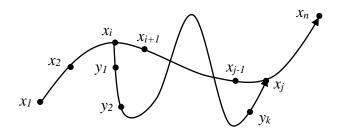
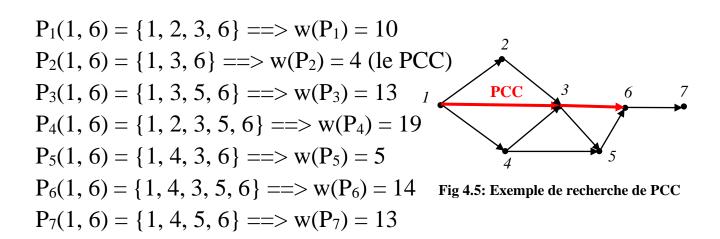


Fig 4.4: PCC et arborescence

Exemple 4.1: Exemple de cherchons d'un un PCC entre 1 et 6



4.3. Algorithmes de recherche de plus court chemin

4.3.1. Algorithme de Dijkstra:

Cet algorithme donne tous les plus courts chemins d'un sommet donné vers tous les autres sommets du graphe

- i) $S = \{s\}$; $\alpha = s$; $\pi(s) = \pi(\alpha) = 0$; $\pi(x) = +\infty$ $\forall x \in (X S)$; $A(x) = \phi$ $\forall x \in (X S)$
- ii) On considère tous les arcs u tel que : $I(u) = \alpha$ et $T(u) = x \in (X S)$

Si $\pi(\alpha)+d(u) < \pi(x)$ alors poser $\pi(x) = \pi(\alpha)+d(u)$; $A(x) = \{u\}$

Sinon continuer

iii) Choisir un sommet $y \in (X - S)$; $\pi(y) = Min[\pi(x)] \forall x \in (X - S)$

Si $\pi(y) = +\infty$ alors terminer S n'est pas racine de G Sinon poser $\alpha = y$ S = S $\cup \{\alpha\}$

Si S = X alors terminer {le problème est résolu} **Sinon** aller en (i)

Exemple 4.3: Application de l'algorithme de Dijkstra

 $i) \qquad S = \{s\} \; ; \; \alpha = s \; ; \; \pi(s) = \pi(\alpha) = 0 \; ;$ $\pi(x) = +\infty \; \; \forall x \in (X - S) \; ;$ $A(x) = \phi \; \; \forall x \in (X - S)$

ii) On considère tous les arcs u tel que : $I(u) = \alpha$ et $T(u) = x \in (X - S)$ on a : (s, 1), (s, 2)

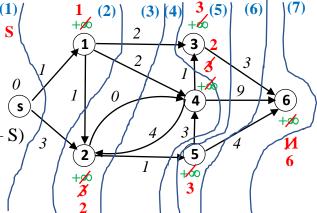


Fig 4.7: Différentes phases de l'algorithme de Dijkstra

Pour
$$(s, 1)$$
: $\pi(1) = 0+1=1$; $A(1) = \{(s, 1)\}$
Pour $(s, 2)$: $\pi(2) = 0+3=3$; $A(2) = \{(s, 2)\}$

iii) Choisir un sommet $y \in (X - S)$; $\pi(y) = Min[\pi(x)] \forall x \in (X - S)$ y = 1; $\alpha = 1$; $S = \{s, 1\}$

Aller en (ii) : On considère tous les arcs u tel que : I(u) = 1 et $T(u) = x \in (X - S)$ On a : (1, 2), (1, 3), (1, 4)

Pour
$$(1, 2)$$
: $\pi(2) = 1+1=2 < \pi(2) = 3$; $A(2) = \{(1, 2)\}$

Pour
$$(1, 3)$$
: $\pi(3) = 1+2=3 < \pi(3) = +\infty$; $A(3) = \{(1, 3)\}$

Pour
$$(1, 4)$$
: $\pi(4) = 1+2=3 < \pi(4) = +\infty$; $A(4) = \{(1, 4)\}$

iii) Choisir un sommet $y \in (X - S)$; $\pi(y) = Min[\pi(x)] \forall x \in (X - S)$ y = 2; $\alpha = y = 2$; $S = \{s, 1, 2\}$

Aller en (ii) : On considère tous les arcs u tel que : $I(u) = \alpha = 2$ et $T(u) = x \in (X - S)$ On a : (2, 4), (2, 5)

Pour
$$(2, 4)$$
: $\pi(4) = 2+0=2 < \pi(4) = 3$; $A(4) = \{(2, 4)\}$
Pour $(2, 5)$: $\pi(5) = 2+1=3 < \pi(4) = +\infty$; $A(5) = \{(2, 5)\}$

- iii) Choisir un sommet $y \in (X S)$; $\pi(y) = \text{Min}[\pi(x)] \quad \forall x \in (X S)$ y = 4; $\alpha = y = 4$; $S = \{s, 1, 2, 4\}$
- Aller en (ii) : On a les arcs: (4, 3), (4, 6)Pour $(4, 3) : \pi(3) = 2+1=3 = \pi(3) = 3; A(3) = \{(4, 3)\}$

Pour
$$(4, 6)$$
: $\pi(6) = 2+9=3 < \pi(6) = +11$; $A(6) = \{(4, 6)\}$

iii) Choisir un sommet $y \in (X - S)$; $\pi(y) = Min[\pi(x)] \forall x \in (X - S)$ y = 3; $\alpha = y = 3$; $S = \{s, 1, 2, 4, 3\}$

Aller en (ii) : On a les arcs : (3, 6) $\pi(6) = 3+3=6 < \pi(6) = 11; \quad A(6) = \{(3, 6)\}$

iii) Choisir un sommet $y \in (X - S)$; $\pi(y) = Min[\pi(x)] \forall x \in (X - S)$ y = 5; $\alpha = y = 5$; $S = \{s, 1, 2, 4, 3, 5\}$

Aller en (ii) : On a les arcs : (5, 6) $\pi(6) = 3+4=7 > \pi(6) = 6; \quad A(6) = \{(3, 6)\}$

iii) Choisir un sommet $y \in (X - S)$; $\pi(y) = Min[\pi(x)] \forall x \in (X - S)$ y = 6; $\alpha = y = 6$; $S = \{s, 1, 2, 4, 3, 5, 6\}$

On constate que S = X ==> Terminer l'algorithme et le problème est résolu

4.3.2. Algorithme de Bellman :

Le graphe doit être sans circuit, et l(u) quelconque

- i) $S = \{s\}$; $\pi(s) = 0$; $A = \phi$
- ii) Chercher un sommet $x \in (X S)$ tel que tous ses prédécesseurs sont dans S

$$(\Gamma(x) \in S)$$

Si (x n'existe pas) alors terminer avec :

S n'estpas une racine ou \exists circuit dans G S = X

Sinon $(\exists x \in (X - S))$ alors continuer

iii) Poser $\pi(x) = \text{Min}[\pi(I(u)) + d(u)]$ avec $I(u) \in S$, T(u) = x $S \cup \{x\}$; $A = A \cup \{u\}$; aller en (ii)

Exemple 4.4: Application de l'algorithme de Bellman

Soit le graphe G(X, U, C) suivant Sans circuit, I(u) est quelconque

- i) $S = \{s\}$; $\pi(s) = 0$; $A = \phi$
- ii) Chercher un sommet $x \in (X S)$ tel que $(\Gamma^{-}(x) \in S)$ $x = 1 \ (x = 2 \text{ non, } \operatorname{car} \Gamma^{-}(2) \notin S)$

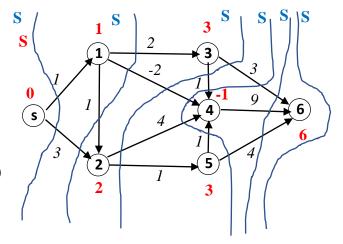


Fig 4.8: Différentes phases de l'algorithme de Bellmann

Pour
$$x = 1$$
 $\pi(1) = Min[\pi(s)+1] = Min[0+1] = 1$, $S = \{S, 1\}$; $A = \{(S, 1)\}$

Aller en (ii) : Chercher un sommet $x \in (X - S)$ tel que $(\Gamma^{-}(x) \in S)$

$$x = 2$$
; $x = 3$

Pour
$$x = 2$$
 $\pi(2) = Min[0+3, 1+1] = 2$, $S = \{S, 1, 2\}$; $A = \{(S, 1), (1, 2)\}$

Pour
$$x = 3$$
 $\pi(3) = Min[1+2] = 3$, $S = \{S, 1, 2, 3\}$; $A = \{(S, 1), (1, 2), (1, 3)\}$

Aller en (ii) : Chercher un sommet $x \in (X - S)$ tel que $(\Gamma(x) \in S)$

$$x = 5$$

$$\pi(5) = Min[2+1] = 3$$
, $S = \{S, 1, 2, 3, 5\}$; $A = \{(S, 1), (1, 2), (1, 3), (2, 5)\}$ (4 non, 6 non)

Aller en (ii) : Chercher un sommet $x \in (X - S)$ tel que $(\Gamma(x) \in S)$

$$x = 4$$
; $\pi(4) = Min[1-2, 3+1, 2+4] = -1$, $S = \{S, 1, 2, 3, 5, 4\}$; $A = \{(S, 1), (1, 2), (1, 3), (2, 5), (1, 4)\}$

Aller en (ii) : Chercher un sommet $x \in (X - S)$ tel que $(\Gamma(x) \in S)$

$$x = 6$$
; $\pi(6) = Min[3+3, -1+9, 3+4] = 6$, $S = \{S, 1, 2, 3, 5, 4, 6\}$; $A = \{(S, 1), (1, 2), (1, 3), (2, 5), (1, 4), (3, 6)\}$

Aller en (ii) : Chercher un sommet $x \in (X - S)$ tel que $(\Gamma^{-}(x) \in S)$

$$S = X$$
 Terminer