
Solution TD Diode

Exercice 1

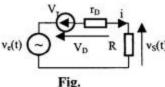
 Le prolongement de la partie rectiligne de la caractéristique de la diode donne la tension de seuil V_γ = 0,65 V (Fig.

 Une variation autour du point de fonctionnement donne la valeur de la résistance dynamique (Fig.

$$r_{\scriptscriptstyle D}\!=\!\!\frac{\Delta U_{\scriptscriptstyle D}}{\Delta I}\!=\!\!\frac{0,\!87\!-\!0,\!72}{(150\!-\!50)}\!\cdot\!10^3\!=\!\!1,\!5\,\Omega$$

 Dans le sens direct, la diode peut être modélisée par l'équation suivante :

$$U_D = V_{\gamma} + r_D.I$$


4. En appliquant la loi des mailles dans le circuit de la Fig on obtient :

$$E = U_D + R.I$$
Pour $I = 0 \Rightarrow U_D = E = 3 \text{ V}$
Pour $U_D = 0 \Rightarrow I = \frac{E}{R} = \frac{3}{22} = 0,14\text{A}$

D'où l'équation de la droite de charge: $I = \frac{-U_D}{R} + \frac{E}{R} \quad \text{qui passe par les}$ points P_1 , P_2 , définis par : P_1 : (3 V ; 0 mA), P_2 : (0 V ; 140 mA) et coupe la caractéristique au point de fonctionnement P_0 tel que P_0 : (0,8 V ; 100 mA).

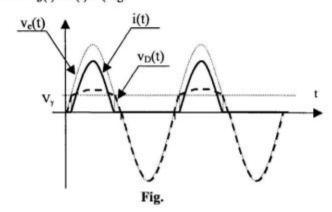
Exercice 2

- la diode est bloquée si $v_e \le V_y \implies i(t) = 0$
- la diode conduit si $v_e > V_{\gamma}$ et on a le schéma équivalent suivant :

En appliquant la loi des mailles, on obtient l'équation suivante : $v_e(t) = V_{\gamma} + (R + r_D).i(t)$

D'où
$$i(t) = \frac{v_e(t) - V_y}{R + r_c}$$

$$v_{e}(t) = V_{\gamma} + (R + r_{D}).i(t)$$


$$D'où i(t) = \frac{v_{e}(t) - V_{\gamma}}{R + r_{D}}$$

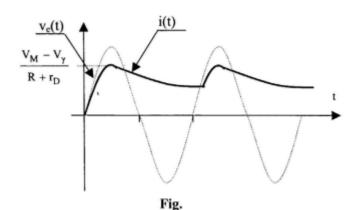
$$= v_{e}(t) \quad pour \quad i = 0$$

$$Et V_{D}(t) = v_{e}(t) - R.i(t)$$

$$= \frac{r_{D}}{R + r_{D}} ve(t) + \frac{R}{R + r_{D}} V_{\gamma} \approx V_{\gamma} \text{ si } r_{D} << R$$

Allure de V_D(t) et i(t): (Fig.

3. A l'angle de déblocage θ, on aura :


$$V_e(\theta) = V_y = V_M \sin\theta$$

D'où
$$\theta = Arc \sin \frac{V_{\gamma}}{V_{M}}$$

- Pour $V_M = 2V_y \Rightarrow \theta = Arcsin \frac{1}{2} = \frac{\pi}{6} = 0.52 \text{ rad}$
- Pour $V_M = 10V \Leftrightarrow \theta = Arcsin \frac{0.5}{10} = 0.05 \text{ rad}$
- 4. Dans le cas d'une diode au Germanium V, = 0,3 V
 - Pour $V_M = 2V_Y \Rightarrow \theta = Arc \sin \frac{1}{2} = \frac{\pi}{6} = 0,52 \text{ rd}$
 - Pour $V_M = 10V \Rightarrow \theta = Arc \sin \frac{0.3}{10} = 0.03 \text{ rd}$

On voit que le changement de la diode n'influe presque pas sur l'angle de déblocage de celle-ci. Pour un bon redressement on a intérêt à prendre V_M >> V_r.

- 5. Lorsqu'on branche en parallèle sur R un condensateur C, ce dernier se charge, lorsque la diode est conductrice, jusqu'à la tension V_M -V_y (puisque v_s(t) = v_e(t) v_D(t)) et lorsque la diode sera bloquée (si v_e(t) < V_M -V_y) le condensateur se décharge à travers la résistance R. Pour un bon filtrage (obtention d'une tension vs(t) presque continue), on a intérêt à avoir une constante de temps RC grande devant la période.
- L'allure sera comme suit : (Fig.

- Pour trouver le courant traversant la diode, on utilise le théorème de Thévenin.
 - Détermination de R_{Th}:(Fig.

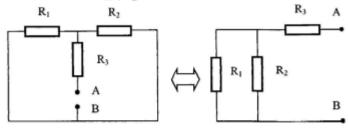
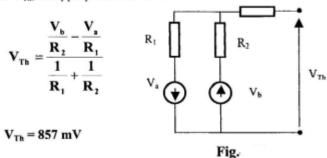
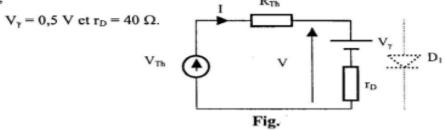


Fig.


$$R_{Th} = \frac{R_1.R_2}{R_1 + R_2} + R_3$$

 $R_{Th} = 186 \Omega$


A.N.:

Détermination de V_{Th}:(Fig.

Pour trouver V_{Th}, on applique le théorème de Millman: R

Le schéma du montage devient alors celui de la Fig. avec, d'après la Fig Rp.

La loi des mailles donne l'équation suivante:

$$V_{Th} = V + R_{Th} \cdot I$$

 $V_{Th} = V_{\gamma} + (R_{Th} + r_{D}) \cdot I$

D'où
$$I = \frac{V_{Th} - V_{\gamma}}{R_{Th} + r_{D}}$$

A.N.: $I = \frac{0.857 - 0.47}{186 + 40} \approx 1.71 \text{ mA}$

 Le point M est l'intersection de la droite de charge et de la caractéristique statique de la diode. C'est donc le point de fonctionnement.

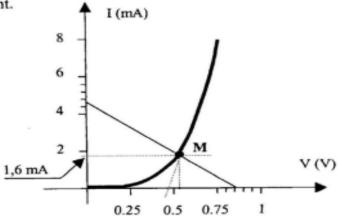


Fig.

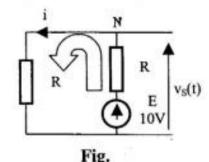
L'équation de la droite de charge est :

$$I = -\frac{1}{R_{Th}}.V + \frac{V_{Th}}{R_{Th}}$$

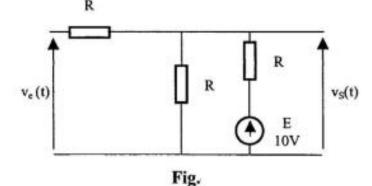
$$\begin{cases} Pour V = 0 \Rightarrow I = \frac{V_{Th}}{R_{Th}} = 4,6 \text{ mA} \\ Pour I = 0 \Rightarrow V = V_{Th} \approx 850 \text{ mV} \end{cases}$$

3. La Fig. lonne la solution graphique:

$$I_0\approx 1,6~mA~~et~~V_0\approx 0,55~V$$
 On peut vérifier que
$$V_0=V_{Th}-R_{Th}.I_0=0,56~V.$$


Exercice 4

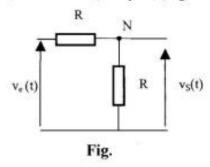
- Si la diode D₁ est bloquée la diode D₂ est forcément passante car son potentiel d'anode est le plus élevé du montage (V_{A2}=E=10 V) par suite les états possibles des diodes sont donc:
 - a) D₁ bloquée, D₂ conduit;
 - b) D₁ conduit, D₂ conduit;
 - c) D₁ conduit, D₂ bloquée.
- a) Si la diode D₁ est bloquée alors la diode D₂ est passante. (Fig.)
 Or D₁ bloquée ⇒ v_N ≥ v_e(t) et D₂ conduit ⇒ v_N <10 V


soit:
$$v_e(t) \le v_N < 10 \text{ V}$$
.

On a dans ce cas:

$$v_s(t) = v_R = \frac{R}{R+R} \cdot E = \frac{E}{2} = 5V$$

Supposons maintenant que D1 et D2 conduisent; (Fig.)

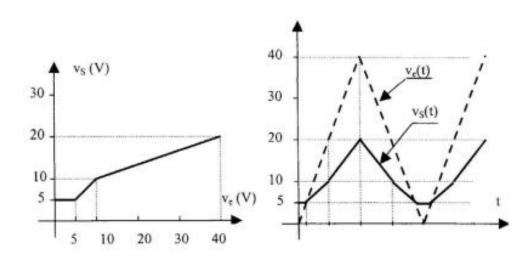

- D_1 conduit $\Rightarrow v_N \le v_e(t)$
- D₂ conduit ⇒ v_N ≤ 10 V

Par ailleurs en appliquant le théorème de Millman on obtient :

$$v_s(t) = \frac{\frac{10}{R} + \frac{v_e(t)}{R}}{\frac{3}{R}} = \frac{v_e(t) + 10}{3}$$

Les relations permettent de dire que cette hypothèse n'est possible que si : $v_e(t) \le 20 \text{ V}$

Supposons enfin que D1 conduit et D2 bloquée; (Fig.



- D₁ conduit ⇒ v_N < v_e(t)
- D₂ bloquée ⇒ v_N ≥ 10 V

On a ainsi $v_s(t) = v_v = v_e(t) / 2$. Cette hypothèse n'est donc possible que si : $v_e(t) / 2 \ge 10 \text{ V} \implies v_e(t) \ge 20 \text{ V}$

et on a :
$$v_s(t) = v_c(t) / 2$$

- Les courbes de v_S = f(v_e) et v_S = f(t) seront tracées à partir du résumé suivant: (Fig.
 - $v_e(t) \le 5 \text{ V} \implies v_s(t) = 5 \text{ V}$
 - 5 V \leq v_c(t) \leq 20 V \Rightarrow v_s(t) = $\frac{v_e(t) + 10}{3}$: c'est une droite de pente 1/3.
 - v_e(t) ≥ 20 V ⇒ v_s(t) = v_e(t) / 2: c'est une droite de pente 1/2.

