Exercice 1

Réponse :

1)

Maille d'entrée : $V_{BE} + R_BI_B = V_{CC}$

On a $I_B = I_C / \beta = 1 \text{ mA}$

Donc
$$R_B = (V_{CC} - V_{BE})/I_B = (12 - 0.7)/1 (K\Omega)$$

Finalement on doit prendre $R_B = 11,3 \text{ K}\Omega$ pour obtenir un courant de 100mA dans la résistance R_L .

2)

 I_C est maximal lorsque $I_C = V_{CC}/R_C$.

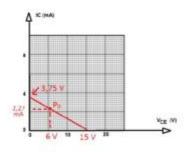
Donc $I_C = 12/60 = 0.2$ A soit 200 mA.

Le transistor est saturé donc lorsque IC atteint la valeur 200 mA

3) pour avoir I = Isat = 200 mA il faut avoir IBsat = ICsat / β = 200/100 = 2mA

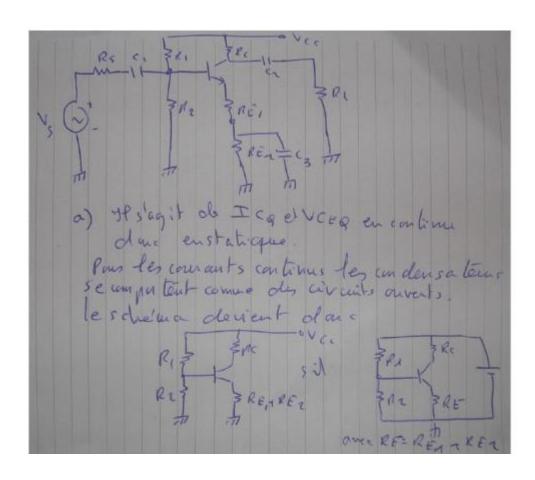
Il faut donc $R_{Bsat} = (V_{CC} - V_{BE})/I_{Bsat} = (12-0,7)/2 = 5,65 \text{ K}\Omega$

Pour saturer le transistor I_B doit être > 2 mA et donc R_B < 5,65 K Ω


3)

Si on diminue R_B I_B augmente et aussi I_C mais lorsque R_B devient inférieure à 5,65 IB devient supérieure à 2 mA mais IC ne peut plus suivre cette augmentation et se sature à 200mA.

Exercice 2


$$V_{BE} + R_{B} = V_{CC} - V_{BE} = V_{CC} - V_$$

Exercice 3

$$V_C = V_{CC} - R_C I_C \ 15 - 2.2,27 = 10,46 \ V$$

$$V_B = VCC - RBIB = 15 - 430 \ . \ (2,27/100) = 12,73 \ V$$

$$VE = VB - 0,7 = 12 \ V$$

Exercice 4

