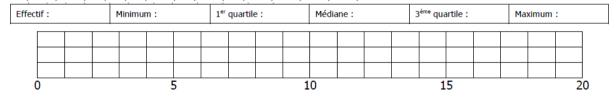
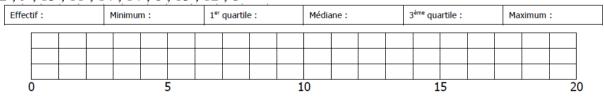

EXERCICE 1

Un professeur souhaite comparer les résultats de ses classes de première sur ces 5 dernières années. Pour cela, il souhaite construire le diagramme en boite à moustache des moyennes annuelles.


2010/2011: 5; 8; 6; 3; 11; 4; 8; 15; 8; 11; 14; 12; 10; 10; 1; 12; 14; 14; 5; 6; 10; 14; 10; 8; 9; 0; 8; 10; 6; 16; 12


2009/2010: 13; 2; 13; 13; 16; 16; 18; 11; 15; 10; 15; 11; 15; 11; 19; 12; 6; 10; 17; 11; 12; 5; 16; 10; 17; 18; 2; 16; 4; 9; 14; 12

2008/2009: 14; 12; 16; 8; 9; 13; 7; 8; 5; 14; 10; 13; 13; 10; 8; 12; 13; 4; 10; 13; 11; 11; 11; 8; 7; 9; 11; 6; 13; 5; 12; 12; 11; 10; 10

2007/2008: 11;6;8;4;7;15;13;6;12;9;12;11;9;9;11;15;14;6;17;10;2;9;13;11;14;14;6;13;12;8

2006/2007: 9; 7; 12; 8; 9; 8; 11; 12; 10; 12; 13; 9; 15; 9; 14; 15; 9; 14; 13; 16; 5; 17; 13

Effectif:		Minimum :			1 ^{er}	1 ^{er} quartile :			Médiane :			3 ^{ème} quartile :			Ma	Maximum :			
0					<u> </u> 5				1	.0			1	.5				2	0

CORRIGEE

Un professeur souhaite comparer les résultats de ses classes de première sur ces 5 dernières années. Pour cela, il souhaite construire le diagramme en boite à moustache des moyennes **M** annuelles.

2010/2011:

Il faut mettre les données dans l'ordre croissant

n = 31 donc n est impair :

•
$$Med = M(n+1)/2 = M(31+1)/2 = M32/2 = M16 = 10$$

Med=10

• 1^{er} quartile q_{0.25}

$$\mathbf{q_{0.25}} = (\mathbf{M} (_{\Gamma}31 * 0.25_{\gamma}) + \mathbf{M} (_{L}31 * 0.25 + 1_{J})) / 2$$

$$= \mathbf{M} (_{\Gamma}7.75_{\gamma}) + \mathbf{M} (_{L}7.75 + 1_{J}) / 2$$

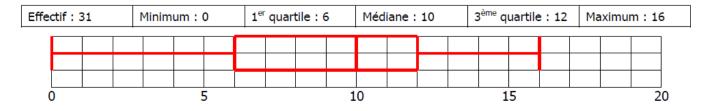
$$= \mathbf{M} (_{\Gamma}7.75_{\gamma}) + \mathbf{M} (_{L}8.75_{J}) / 2$$

$$= \mathbf{M} (8) + \mathbf{M} (8) / 2$$

$$= \mathbf{M} (8)$$

$$q_{0.25} = 6$$

$$\mathbf{q_{0.75}} = (\mathbf{M} (_{\Gamma}31 * 0.75_{\gamma}) + \mathbf{M} (_{L}31 * 0.75 + 1_{J})) / 2$$


$$= \mathbf{M} (_{\Gamma}23.25_{\gamma}) + \mathbf{M} (_{L}23.25 + 1_{J}) / 2$$

$$= \mathbf{M} (_{\Gamma}23.25_{\gamma}) + \mathbf{M} (_{L}24.25_{J}) / 2$$

$$= \mathbf{M} (_{2}4) + \mathbf{M} (_{2}4) / 2$$

$$= \mathbf{M} (_{2}4)$$

$$q_{0.75} = 12$$

2009/2010:

Il faut mettre les données dans l'ordre croissant

n = 32 donc n est pair :

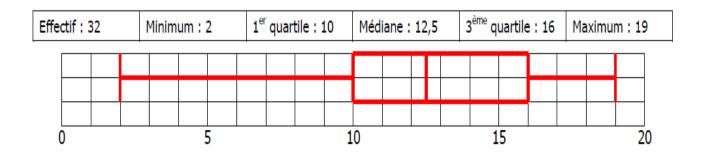
•
$$\underline{\text{Med}} = (\underline{\text{M}}(\underline{\text{n}/2}) + \underline{\text{M}}(\underline{\text{n}/2}) + \underline{\text{1}}) / \underline{2} = (\underline{\text{M}}(16) + \underline{\text{M}}(17)) / \underline{2} = \underline{\text{M}} 32 / \underline{2}$$

= $(12 + 13) / \underline{2} = 25 / \underline{2}$

Med=12.5

• 1^{er} quartile q_{0.25}

$$q_{0.25} = (M (32 * 0.25))$$


$$= M (8)$$

$$q_{0.25} = 10$$

$$\mathbf{q_{0.75}} = (\mathbf{M} (32 * 0.75))$$

$$= \mathbf{M} (24)$$

$$\mathbf{q_{0.75}} = 16$$

2008/2009:

Il faut mettre les données dans l'ordre croissant

n = 35 donc n est impair :

•
$$Med = M (n+1) / 2 = M (35+1) / 2 = M 36 / 2 = M18=11$$

Med=11

• 1^{er} quartile q_{0.25}

$$\mathbf{q_{0.25}} = (\mathbf{M} (_{\Gamma}35 * 0.25_{\neg}) + \mathbf{M} (_{\bot}35 * 0.25 + 1_{\bot})) / 2$$

$$= \mathbf{M} (_{\Gamma}8.75_{\neg}) + \mathbf{M} (_{\bot}8.75 + 1_{\bot}) / 2$$

$$= \mathbf{M} (_{\Gamma}7.75_{\neg}) + \mathbf{M} (_{\bot}9.75_{\bot}) / 2$$

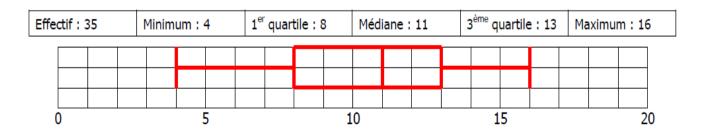
$$= \mathbf{M} (9) + \mathbf{M} (9) / 2$$

$$= \mathbf{M} (9)$$

$$q_{0.25} = 8$$

• $3^{\text{ème}}$ quartile $q_{0.75}$

$$\mathbf{q_{0.75}} = (\mathbf{M} (_{\Gamma}35 * 0.75_{\gamma}) + \mathbf{M} (_{L}35 * 0.75 + 1_{J})) / 2$$


$$= \mathbf{M} (_{\Gamma}26.25_{\gamma}) + \mathbf{M} (_{L}26.25 + 1_{J}) / 2$$

$$= \mathbf{M} (_{\Gamma}26.25_{\gamma}) + \mathbf{M} (_{L}27.25_{J}) / 2$$

$$= \mathbf{M} (27) + \mathbf{M} (27) / 2$$

$$= \mathbf{M} (27)$$

$$q_{0.75} = 13$$

2007/2008:

Il faut mettre les données dans l'ordre croissant

n = 31 donc n est impair :

•
$$Med = M(n+1)/2 = M(31+1)/2 = M32/2 = M16 = 11$$

Med=11

• 1^{er} quartile q_{0.25}

$$\mathbf{q_{0.25}} = (\mathbf{M} (_{\Gamma}31 * 0.25_{\gamma}) + \mathbf{M} (_{L}31 * 0.25 + 1_{J})) / 2$$

$$= \mathbf{M} (_{\Gamma}7.75_{\gamma}) + \mathbf{M} (_{L}7.75 + 1_{J}) / 2$$

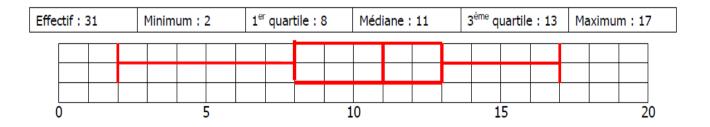
$$= \mathbf{M} (_{\Gamma}7.75_{\gamma}) + \mathbf{M} (_{L}8.75_{J}) / 2$$

$$= \mathbf{M} (8) + \mathbf{M} (8) / 2$$

$$= \mathbf{M} (8)$$

$$q_{0.25} = 8$$

$$\mathbf{q_{0.75}} = (\mathbf{M} (_{\Gamma}31 * 0.75_{\gamma}) + \mathbf{M} (_{L}31 * 0.75 + 1_{J})) / 2$$


$$= \mathbf{M} (_{\Gamma}23.25_{\gamma}) + \mathbf{M} (_{L}23.25 + 1_{J}) / 2$$

$$= \mathbf{M} (_{\Gamma}23.25_{\gamma}) + \mathbf{M} (_{L}24.25_{J}) / 2$$

$$= \mathbf{M} (_{24}) + \mathbf{M} (_{24}) / 2$$

$$= \mathbf{M} (_{24})$$

$$q_{0.75} = 13$$

2006/2007:

5; 7; 8; 8; 9; 9; 9; 9; 10; 11; 12; 12; 12; 13; 13; 14; 14; 15; 15; 16; 17 n = 23 donc n est impair:

• Med = M (n+1) / 2 = M (23+1) / 2 = M 24 / 2 = M12 = 12

Med=12

• 1^{er} quartile q_{0.25}

$$\mathbf{q_{0.25}} = (\mathbf{M} (_{\Gamma}23 * 0.25_{\neg}) + \mathbf{M} (_{L}23 * 0.25 + 1_{\bot})) / 2$$

$$= \mathbf{M} (_{\Gamma}5.75_{\neg}) + \mathbf{M} (_{L}5.75 + 1_{\bot}) / 2$$

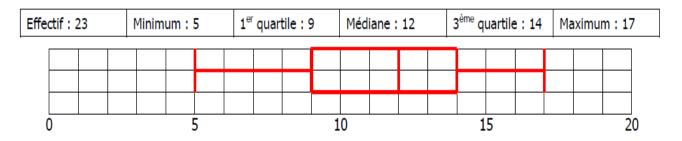
$$= \mathbf{M} (_{\Gamma}5.75_{\neg}) + \mathbf{M} (_{L}6.75_{\bot}) / 2$$

$$= \mathbf{M} (6) + \mathbf{M} (6) / 2$$

$$= \mathbf{M} (6)$$

$$q_{0.25} = 9$$

$$\mathbf{q_{0.75}} = (\mathbf{M} (_{\Gamma} 23 * 0.75 _{\gamma}) + \mathbf{M} (_{L} 23 * 0.75 + 1 _{J})) / 2$$


$$= \mathbf{M} (_{\Gamma} 17.25 _{\gamma}) + \mathbf{M} (_{L} 17.25 + 1 _{J}) / 2$$

$$= \mathbf{M} (_{\Gamma} 17.25 _{\gamma}) + \mathbf{M} (_{L} 18.25 _{J}) / 2$$

$$= \mathbf{M} (18) + \mathbf{M} (18) / 2$$

$$= \mathbf{M} (18)$$

$$q_{0.75} = 14$$

EXERCICE 2

On cherche à étudier la relation entre le nombre d'enfants d'un couple et son salaire. On dispose de la série bidimensionnelle suivante :

Salaire en DA (X)	Nombre d'enfants (Y)
5100	4
5900	3
9000	2
14200	1
20000	0
6000	5
8500	6
13000	7
22000	8

- a) Calculer le coefficient de corrélation linéaire entre ces deux variables statistiques. Conclusion ?
- b) Un expert en démographie affirme que les deux caractéristiques sont indépendantes. Qu'en pensez-vous ?

CORRIGEE

- a- Calculer R le coefficient de corrélation linéaire
 - 1- On calcule la variance

Variance ou covariance = moy(X-moy(X)).(Y-moy(Y))

	Salaire en	Nombre			
	DA (X)	d'enfants (Y)	X-moy(X)	Y-moy(Y)	(X-moy(X)).(Y-moy(Y))
	5100,00	4,00	-6422,22	0,00	0,00
	5900,00	3,00	-5622,22	-1,00	5622,22
	9000,00	2,00	-2522,22	-2,00	5044,44
	14200,00	1,00	2677,78	-3,00	-8033,33
	20000,00	0,00	8477,78	-4,00	-33911,11
	6000,00	5,00	-5522,22	1,00	-5522,22
	8500,00	6,00	-3022,22	2,00	-6044,44
	13000,00	7,00	1477,78	3,00	4433,33
	22000,00	8,00	10477,78	4,00	41911,11
Moyenne	11522,22	4,00			COV= 388,89
Ecart type	6223,50	2,74			

2- le coefficient de corrélation R = La Variance / Ecart type (X). Ecart type (Y)

R = 388.89 / 6223.50 * 2.74

$\mathbf{R} = \mathbf{0.022}$

b - Les deux caractéristiques salaire et nombres d'enfants sont indépendantes car R est proche de zéro donc le nombre d'enfant n'influe pas sur l'augmentation ou la diminution du salaire, et le contraire est vrai.