Université de M'sila Faculté de Mathématiques et de l'informatique Département de Mathématiques Module: Introduction à la théorie de groupes

Série 01

2020/2021

Exercice 01

- 1. Déterminer les quels des ensembles des nombres suivants sont des groupes muni des opérations données. Pour chaque groupe préciser l'élément neutre et l'élément symétrique de chaque élément.
- a) {1}, multiplication.
- b) Les rationnels non nuls, multiplication.
- c) Les rationnels, addition.
- d) Les rationnels, multiplication.
- e) $\{-1,1\}$, multiplication.
- $f) \{-1, 0, 1\}, addition.$
- g) L'ensemble des entiers relatifs, multiplication.
- h) $M_{10} = \{n/n = 10k, k \in \mathbb{Z}\}, \text{ addition.}$
- i) Les rationnels non nuls, division.
- j) L'ensemble des entiers relatifs, sous traction.
- 2. Vérifier que l'ensemble $\{2^m/m \in \mathbb{Z}\}$ muni de la multiplication est un groupe. De même avec l'ensemble $\{2^m3^n/m, n \in \mathbb{Z}\}$ muni de la multiplication.
- 3. Vérifier que $M\left(2,\mathbb{Z}\right)=\left\{\left(\begin{array}{cc}a&c\\b&d\end{array}\right)/a,b,c,d\in\mathbb{Z}\right\}$ avec l'addition des matric es est un groupe.
- 4. On note par M(S) l'ensemble des applications de l'ensemble S vers S. Montrer que si |S| > 1, alors $(M(S), \circ)$ n'est pas un groupe.

Exercice 02

- 1. Pour tout $(\alpha, \beta) \in \mathbb{R}^2$, avec $\alpha \neq 0$, soit $\varphi_{\alpha,\beta} : \mathbb{R} \longrightarrow \mathbb{R}$, $\varphi_{\alpha,\beta}(x) = \alpha x + \beta$. On note par A l'encemble de ces applications. Montrer que (A, \circ) est un groupe.
- 2. On note par $GL(2,\mathbb{R}) = \{M \in M(2,\mathbb{R}) : \det(M) \neq 0\}$. Monter que $(GL(2,\mathbb{R}), \times)$ est un groupe.
- 3. Soient $M=\begin{pmatrix}1&0\\0&-1\end{pmatrix},\,N=\begin{pmatrix}1&1\\0&-1\end{pmatrix}$ deux éléments de $GL\left(2,\mathbb{R}\right)$. Calculer $ord\left(M\right),ord\left(N\right),ord\left(M\times N\right)$.

Exercice 03

1. Soit G un groupe et A une partie non vide de G.

Soit $\langle A \rangle = \{x = a_1 a_2 ... a_n / n \in \mathbb{N}^* \text{ et } \forall i \in \{1, ..., n\}, a_i \in A \cup A^{-1}\} \text{ avec } A^{-1} = \{a^{-1} / a \in A\}.$

Montrer que $\langle A \rangle$ est le plus petit sous groupe de G contenant A.

- 2. Soit $G = (\mathbb{Z}, +)$.
- Pour $A = \{9, 12\}$, montrer que $\langle \{9, 12\} \rangle = \langle \{3\} \rangle$.
- Pour $A = \{2, 5\}$, montrer que $\langle \{2, 5\} \rangle = \mathbb{Z}$.
- 3. Soit $a\mathbb{Z}, b\mathbb{Z}$ deux sous groupes de \mathbb{Z} .

Montrer que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$ avec $d = p \gcd(a, b)$ et $a\mathbb{Z} \cap b\mathbb{Z} = m\mathbb{Z}$ avec m = ppcm(a, b).

Exercice 04

- 1. Montrer que H est un sous groupe de $(\mathbb{Z}, +)$ si, et seulement si $H = n\mathbb{Z}, n \in \mathbb{N}$.
- 2. Soit (G, +) un groupe commutatif, on considère deux sous groupes H_1 et H_2 de G et on désigne par : $H_1 + H_2 = \{x + y/x \in H_1, y \in H_2\}$.

Montrer que H_1+H_2 est le plus petit sous groupe de G contenant $H_1\cup H_2$ i. e $H_1+H_2=\langle H_1\cup H_2\rangle$.

3. Soit (G, \cdot) un groupe et H, K deux sous groupes de G. On désigne par : $H \cdot K = \{x \cdot y / x \in H, y \in K\}$.

Montrer que $H \cdot K$ est un sous groupe de G, si, et seulement si $H \cdot K = K \cdot H$.

Exercice 05

Soit (S_n, \circ) le groupe des permutations de n éléments.

- 1. Pour n=3, combien d'éléments de S_3 applique 3 sur 3.
- 2. Combien d'éléments de S_n laisse l'élément n fixé.
- 3. Montrer que le cycle $(a_1a_2...a_k)$ s'écrit de la forme $(a_1a_k)...(a_1a_3)(a_1a_2)$, pour $1 \le k \le n$.
- 4. En déduire que S_n est engendré par les transpositions. (Expliquer pourquoi on a, $\alpha \circ \beta = \beta \circ \alpha$ si α, β sont des cycles disjoints).

Exercice 06

- 1. On note (S_n, \circ) le groupe des permutations de n éléments. Montrer que $|S_n| = n!$.
- 2. Pour n=3, calculer les éléments de S_3 . Construire la table de Cayley de (S_3, \circ) . Montrer que (S_3, \circ) n'est pas commutatif.
- 3. Soient $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$, $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$ deux éléments de S_4 . Calculer les éléments suivants :

$$\alpha \circ \beta, \beta \circ \alpha, \alpha^{-1}, \beta^{-1}, \alpha^{-1} \circ \beta^{-1}, \beta^{-1} \circ \alpha^{-1}, (\alpha \circ \beta)^{-1}, (\beta \circ \alpha)^{-1}$$

4. Ecrire les éléments suivants sous forme de cycles disjoints. $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 4 & 2 & 1 \end{pmatrix}$, $\beta = (12)(13), \gamma = (145)(1235)(13), \delta = (145)(1235)^{-1}(13)$.

5. Ecrire d'inverse de $(\alpha_1\alpha_2...\alpha_k)$ sous forme de cycle.

Exercice 07

Soit $(G_1, *), (G_2, \Delta)$ deux groupes.

- 1. Montrer que $(G_1 \times G_2, \cdot)$ est un groupe muni de l'opération définie par : pour $(x, y), (x', y') \in G_1 \times G_2, (x, y) \cdot (x', y') = (x * x', y \Delta y')$.
- 2. Citer les éléments de $S_3 \times \mathbb{Z}_2$.
- 3. Citer les éléments du sous groupe cyclique $\langle ((1,2), \overline{1}) \rangle$ du groupe $S_3 \times \mathbb{Z}_2$.
- 4. Citer les éléments de sous groupe cyclique $\langle (\overline{2}, \overline{2}) \rangle$ du groupe $\mathbb{Z}_4 \times \mathbb{Z}_8$.

Exercice 08

Soit a un élément d'un ensemble E et soit $H = \{ f \in S(E) : f(a) = a \}$. Montrer que H est un sous groupe de $(S(E), \circ)$.

Soit G un groupe fini de cardinal n.

- 1. Montrer que $\forall x \in G : x^n = e$ où e est l'élément neutre de G.
- 2. Montrer que si n est premier, alors G est cyclique. déterminer les générateurs de G.
- 3. Soient H_1, H_2 deux sous groupe finis de G d'ordre respectifs n_1, n_2 . Montrer que si n_1 et n_2 sont premier entre eux, alors l'intersection $H_1 \cap H_2$ est réduite à $\{e\}$.

Exercice 09

Soit
$$G = (S_3, \circ)$$
 et $H = \langle (13) \rangle$.

- 1. Déterminer les classes à droite modulo H dans G $((G/H)_d)$.
- 2. Déterminer les classes à gauche modulo H dans $G((G/H)_g)$.
- 3. Verifier que $(G/H)_d \neq (G/H)_g$ et que $|(G/H)_d| = |(G/H)_g|$.
- 4. En déduire (G:H) l'indice de H dans G.