1 Morphisme de groupes

Définition 1

Soient (G,*) et (K, \bullet) deux groupes. Une application de G dans K est un morphisme de groupes lorsque:

$$\forall x, y \in G, f(x * y) = f(x) \bullet f(y).$$

Si G = K et $* = \bullet$, on parle d'endomorphisme.

Si f est bijective, on parle d'isomorphisme.

Si f est un endomorphisme bijectif, on parle d'automorphisme.

Exemple 2

- 1. $x \mapsto lnx$ réalise un isomorphisme de $(\mathbb{R}_+^*, .)$ sur $(\mathbb{R}, +)$.
- 2. L'application $exp: \mathbb{R} \to \mathbb{R}_+^*$ qui à tout nombre réel associe son exponentielle est un morphisme de groupes de \mathbb{R} muni de l'addition dans \mathbb{R}_+^* muni de la multiplication, car:

$$exp(x+y) = expx \times expy$$
, pour tous $x, y \in \mathbb{R}$.

Notation 3

On note Hom(G,G') l'ensemble des morphismes de groupes de G dans G'.

Proposition 4

Si f est un isomorphisme de groupes de G sur \acute{G} , alors la bijection réciproque f^{-1} est un isomorphisme de groupes de \acute{G} sur G.

Proof.

Soient x' et y' deux éléments quelconques de G'. Posons $x = f^{-1}(x')$ et $y = f^{-1}(y')$. Puisque f est un morphisme de groupes, on a f(x.y) = f(x).f(y), donc f(x.y) = x'.y', d'ou $x.y = f^{-1}(x'.y')$, c'est-à-dire $f^{-1}(x').f^{-1}(y') = f^{-1}(x'.y')$. Ceci prouve que f^{-1} est un morphisme de groupes de G' sur G.

Proposition 5

Tout élément f de $Hom(G,\acute{G})$ vérifie les propriétés suivantes:

- 1. $f(1_G) = 1_{G'}$.
- 2. $f(x^{-1}) = (f(x))^{-1}$ pour tout élément x de G.
- 3. $H \le G \Rightarrow f(H) \le \acute{G}$.
- 4. $\acute{H} \leq \acute{G} \Longrightarrow f^{-1}(H) \leq G \text{ avec } f^{-1}(\acute{H}) = \{x \in G, f(x) \in \acute{H}\}.$

Proof.

- 1. Notons 1_G et $1_{G'}$ les éléments neutres respectifs de G et G. Soit x un élément de G, on a $f(x) = f(x1_G) = f(x)f(1_G)$. Or $f(x) = f(x)1_{G'}$, d'où $f(1_G) = 1_{G'}$.
- 2. Pour tout x de G, on a $1_{G'} = f(1_G) = f(xx^{-1}) = f(x)f(x^{-1})$, d'où $f(x^{-1}) = (f(x))^{-1}$.
- 3. Pour tous y_1 et y_2 dans f(H), il existe x_1 et x_2 dans H tels que $f(x_1) = y_1$ et $f(x_2) = y_2$. D'où $y_1y_2^{-1} = f(x_1)f(x_2)^{-1} = f(x_1)f(x_2^{-1}) = f(x_1x_2^{-1})$ qui appartient à f(H).
- 4. Pour tous x et y dans $f^{-1}(H)$ on a f(x) et f(y) dans H, d'où $f(xy^{-1}) = f(x)f(y)^{-1}$ appartient à H, et xy^{-1} appartient à $f^{-1}(H)$.

Proposition 6

Soient G, G', G'' trois groupes. Alors pour tout f de $Hom(G, \acute{G})$ et tout g de $Hom(\acute{G}, G''), g \circ f$ appartient à Hom(G, G'').

Proof.

Soient les groupes $(G, \cdot), (\acute{G}, *)$ et (G'', \triangleright) . Il est clair que $g \circ f$ est une application de G dans G''. Soit $a, b \in G$, montrons que $(g \circ f)(ab) = (g \circ f)(a) \triangleright (g \circ f)(b)$. Puisque f et g sont des morphismes de groupes on obtient :

$$(g \circ f)(ab) = g(f(ab)) = g(f(a) * f(b)) = g(f(a)) \triangleright g(f(b)) = (g \circ f)(a) \triangleright (g \circ f)(b). \quad \blacksquare$$

Définition 7

Soit $f: G \to \acute{G}$ un morphisme de groupes.

- i) L'ensemble $f(G) = \{y \in G; \exists x \in G, f(x) = y\} = \{f(x); x \in G\}$ est un sous-groupe de G, appelé l'image de f, et noté Im(f)
- ii) L'ensemble $f^{-1}(\{\acute{e}\}) = \{x \in G, f(x) = \acute{e}\}$ est un sous-groupe de G, appelé le noyau de f, et noté Ker(f).

Théorèm 8

Soit $f: (G, *, e_G) \longrightarrow (\acute{G}, \cdot, e_{\acute{G}})$ un morphisme de groupes alors:

- 1. Ker(f) est un sous-groupe de G.
- 2. f est injectif si, et seulement si, $Ker(f) = \{e_G\}$.
- 3. Im(f)est un sous-groupe de G'.
- 4. f est surjectif si, et seulement si, Im(f) = G'.

Proof.

1) On sait que $e_G \in Ker(f)$ car $f(e_G) = e_G$, donc Ker(f) est non-vide.

Si $x, y \in Ker(f)$, il suffit de démontrer que $x * y^{-1} \in Ker(f)$, on a

$$f(x * y^{-1}) = f(x) \cdot f(y)^{-1} = e_{G'} \cdot e_{G'}^{-1} = e_{G'}$$

Donc $x * y^{-1} \in Ker(f)$ et Ker(f) est un sous-groupe de G.

2) Si f est injectif on a alors:

 $\forall x \in Ker(f), f(x) = e_{G'} = f(e_G) \Rightarrow x = e_G \text{ et donc } Ker(f) = \{e_G\}.$

Réciproquement si $Ker(f) = \{e_G\}$ pour x, y dans G tels que f(x) = f(y), on a :

$$e_{G'} = f(x)^{-1} \cdot f(x) = f(x)^{-1} \cdot f(y) = f(x^{-1}) \cdot f(y) = f(x * y^{-1})$$

donc, $x * y^{-1} \in Ker(f)$ et $x * y^{-1} = e_G$, ce qui équivaut à x = y.

3) On sait que $Im(f) \neq 0$ car $f(e_G) \in Im(f)$, donc Im(f) est non-vide.

Si $x, y \in Im(f)$, il suffit de démontrer que $x \cdot y^{-1} \in Im(f)$. Comme $x, y \in Im(f)$, il existe $a, b \in G$ tels que:

x = f(a) et y = f(b) alors: $x \cdot y^{-1} = f(a) \cdot f(b)^{-1} = f(a * b^{-1}) \in Im(f)$.

4) La preuve de cette propriété est immédiate sachant que Im(f) = f(G).

Exercice 9

• Soit G un groupe. On désigne par Aut(G) l'ensemble des automorphismes de G. Soit $a \in G$, on définit l'application suivante:

 $f_a: G \longrightarrow G, x \longmapsto axa^{-1}$. Montrer que $f_a \in Aut(G)$, on l'appelle automorphisme intérieur de G.

• On désigne par Int(G) l'ensemble des automorphismes intérieurs de G. Montrer que $\psi: G \longrightarrow Aut(G)$, $a \mapsto f_a$

est un morphisme de groupes dont on déterminera l'image et le noyau. En déduire que $Int\left(G\right)$ est un groupe.

- Soit $g \in G$, on considère l'application suivante: $\phi_g: G \longrightarrow G, x \longmapsto g.x$. Montrer que ϕ_g est bijective.
- On considère l'application θ suivante: $\theta: G \longrightarrow S(G), g \longmapsto \phi_g$. Montrer que θ est un morphisme de groupes. Montrer que θ est injectif et en déduire que G est isomorphe un sous groupe de S(G).