Chapitre 2

Modélisation des machines à courant alternatif

Contenu

- 1- Méthodes de modélisations d'une machine à courant alternatif
- 2- Modélisation de la machine asynchrone
- 3- Modélisation de la machine synchrone à aimants permanents

Méthodes de modélisations d'une machine à courant alternatif

Il existe deux méthodes pour établir un modèle pour une machine à courant alternatif :

- en utilisant un formalisme matriciel ;

- en utilisant la notion de vecteur spatial complexe.

I)- Modélisation de la machine asynchrone (Three-phase induction machine modeling)

Description des bobinages statoriques et rotoriques

La machine asynchrone est formée de :

- Trois bobines statoriques fixes décalées de 120° ;

- Trois bobines rotoriques mobiles décalées de 120° ;

Chaque enroulement est considéré en convention récepteur comme il est montré la figure cidessous. On admet aussi que les bobinages statoriques et rotoriques sont couplées en étoile avec neutre isolé.

Hypothèses simplificatrices

- La parfaite symétrie de la machine ;
- Le circuit magnétique n'est pas saturé et les pertes fer sont négligeables ;
- Les résistances des enroulements ne varient pas avec la température ;
- La densité du courant dans la section des conducteurs est uniforme ;
- La distribution spatiale des forces magnétomotrices d'entrefer est parfaitement sinusoïdale ;
- L'entrefer est constant et l'effet des encoches est négligeable.

Conséquences

L'additivité des flux générés par les différents courants ;

Les inductances propres sont constantes ;

Une variation sinusoïdale des inductances mutuelles.

Equations de la MAS dans le repère (abc)

Le comportement de la MAS est entièrement défini par ses équations électriques, magnétiques et mécaniques.

Dans la figure ci-dessous, les phases rotoriques sont court-circuitées sur elles-mêmes. θ est l'angle électrique entre l'axe d'une phase du stator et l'axe de la phase correspondante du rotor.

Equations électriques

Les lois de Faraday et d'Ohm permettent d'écrire :

Côté stator :

$$v_{sa} = R_s i_{sa} + \frac{d\phi_{sa}}{dt}$$
$$v_{sb} = R_s i_{sb} + \frac{d\phi_{sb}}{dt}$$
$$v_{sc} = R_s i_{sc} + \frac{d\phi_{sc}}{dt}$$

Où R_s est la résistance d'un enroulement statorique.

Côté rotor :

$$v_{ra} = R_r i_{ra} + \frac{d\phi_{ra}}{dt} = 0$$
$$v_{rb} = R_r i_{rb} + \frac{d\phi_{rb}}{dt} = 0$$
$$v_{rc} = R_r i_{rc} + \frac{d\phi_{rc}}{dt} = 0$$

Où R_r est la résistance d'un enroulement rotorique.

Les deux équations précédentes peuvent être mises sous la forme matricielle suivante :

$$\overbrace{\begin{bmatrix} \mathbf{v}_{sa} \\ \mathbf{v}_{sb} \\ \mathbf{v}_{sc} \end{bmatrix}}^{\text{Pour le stator}} = \mathbf{R}_{s} \overbrace{\begin{bmatrix} \mathbf{i}_{sa} \\ \mathbf{i}_{sb} \\ \mathbf{i}_{sc} \end{bmatrix}}^{\text{Hour le stator}} + \frac{d}{dt} \Biggl[\begin{matrix} \boldsymbol{\varphi}_{sa} \\ \boldsymbol{\varphi}_{sb} \\ \boldsymbol{\varphi}_{sc} \end{bmatrix} \quad \text{et} \quad \overbrace{\begin{bmatrix} \mathbf{v}_{ra} \\ \mathbf{v}_{rb} \\ \mathbf{v}_{rc} \end{bmatrix}}^{\text{Pour le rotor}} = \left[\begin{matrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{matrix} \right] = \mathbf{R}_{r} \Biggl[\begin{matrix} \mathbf{i}_{ra} \\ \mathbf{i}_{rb} \\ \mathbf{i}_{rc} \end{matrix} \right] + \frac{d}{dt} \Biggl[\begin{matrix} \boldsymbol{\varphi}_{ra} \\ \boldsymbol{\varphi}_{rb} \\ \boldsymbol{\varphi}_{rc} \end{bmatrix}$$

Sous une forme plus compactée, on peut écrire :

$$\begin{bmatrix} v_{sabc} \end{bmatrix} = R_s \begin{bmatrix} i_{sabc} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \phi_{sabc} \end{bmatrix}$$
$$\begin{bmatrix} v_{rabc} \end{bmatrix} = R_r \begin{bmatrix} i_{rabc} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \phi_{rabc} \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

 $o\dot{u}[v_{sabc}]$ est le vecteur regroupant les tensions statoriques, $[v_{rabc}]$ est le vecteur regroupant les tensions rotoriques, $[i_{sabc}]$ est le vecteur regroupant les courants statoriques, $[i_{rabc}]$ est le vecteur regroupant les courants statoriques, $[\phi_{rabc}]$ est le vecteur regroupant les flux statoriques.

Equations magnétiques

Les expressions des flux en fonction des courants sont données par :

- Côté stator

$$\begin{split} \phi_{sa} &= l_{s}i_{sa} + m_{s}i_{sb} + m_{s}i_{sc} + m_{sr}\cos(\theta)i_{ra} + m_{sr}\cos(\theta + \frac{2\pi}{3})i_{rb} + m_{sr}\cos(\theta - \frac{2\pi}{3})i_{rc} \\ \phi_{sb} &= m_{s}i_{sa} + l_{s}i_{sb} + m_{s}i_{sc} + m_{sr}\cos(\theta - \frac{2\pi}{3})i_{ra} + m_{sr}\cos(\theta)i_{rb} + m_{sr}\cos(\theta + \frac{2\pi}{3})i_{rc} \\ \phi_{sc} &= m_{s}i_{sa} + m_{s}i_{sb} + l_{s}i_{sc} + m_{sr}\cos(\theta + \frac{2\pi}{3})i_{ra} + m_{sr}\cos(\theta - \frac{2\pi}{3})i_{rb} + m_{sr}\cos(\theta)i_{rc} \end{split}$$

Où l_s est l'inductance d'une phase statorique, m_s est l'inductance mutuelle entre deux phases statoriques, m_{sr} est le maximum de l'inductance mutuelle entre une phase statorique et une phase rotorique.

- Côté rotor

$$\begin{split} \phi_{ra} &= l_{r}i_{ra} + m_{r}i_{rb} + m_{r}i_{rc} + m_{sr}\cos(\theta)i_{sa} + m_{sr}\cos(\theta - \frac{2\pi}{3})i_{sb} + m_{sr}\cos(\theta + \frac{2\pi}{3})i_{sc} \\ \phi_{rb} &= m_{r}i_{ra} + l_{r}i_{rb} + m_{r}i_{rc} + m_{sr}\cos(\theta + \frac{2\pi}{3})i_{sa} + m_{sr}\cos(\theta)i_{sb} + m_{sr}\cos(\theta - \frac{2\pi}{3})i_{sc} \\ \phi_{rc} &= m_{r}i_{ra} + m_{r}i_{rb} + l_{r}i_{rc} + m_{sr}\cos(\theta - \frac{2\pi}{3})i_{sa} + m_{sr}\cos(\theta + \frac{2\pi}{3})i_{sb} + m_{sr}\cos(\theta)i_{sc} \end{split}$$

Où l_r est l'inductance d'une phase rotorique, m_r est l'inductance mutuelle entre deux phases rotoriques.

Posons :

$$m_{1} = m_{sr} \cos(\theta)$$
$$m_{2} = m_{sr} \cos(\theta - \frac{2\pi}{3})$$
$$m_{3} = m_{sr} \cos(\theta + \frac{2\pi}{3})$$

Ou m_1, m_2, m_3 sont les mutuelles inductances entre les phases statoriques et rotoriques.

Les expressions des flux deviennent donc :

$$\begin{split} \varphi_{sa} &= l_{s}i_{sa} + m_{s}i_{sb} + m_{s}i_{sc} + m_{1}i_{ra} + m_{3}i_{rb} + m_{2}i_{rc} \\ \varphi_{sb} &= m_{s}i_{sa} + l_{s}i_{sb} + m_{s}i_{sc} + m_{2}i_{ra} + m_{1}i_{rb} + m_{3}i_{rc} \\ \varphi_{sc} &= m_{s}i_{sa} + m_{s}i_{sb} + l_{s}i_{sc} + m_{3}i_{ra} + m_{2}i_{rb} + m_{1}i_{rc} \end{split}$$

$$\begin{split} \varphi_{ra} &= l_r i_{ra} + m_r i_{rb} + m_r i_{rc} + m_l i_{sa} + m_2 i_{sb} + m_3 i_{sc} \\ \varphi_{rb} &= m_r i_{ra} + l_r i_{rb} + m_r i_{rc} + m_3 i_{sa} + m_l i_{sb} + m_2 i_{sc} \\ \varphi_{rc} &= m_r i_{ra} + m_r i_{rb} + l_r i_{rc} + m_2 i_{sa} + m_3 i_{sb} + m_l i_{sc} \end{split}$$

Sous une forme matricielle :

$$\begin{bmatrix} \phi_{sa} \\ \phi_{sb} \\ \phi_{sc} \end{bmatrix} = \begin{bmatrix} 1_{s} & m_{s} & m_{s} \\ m_{s} & 1_{s} & m_{s} \\ m_{s} & m_{s} & 1_{s} \end{bmatrix} \begin{bmatrix} i_{sc} \\ i_{sb} \\ i_{sc} \end{bmatrix} + \begin{bmatrix} m_{1} & m_{3} & m_{2} \\ m_{2} & m_{1} & m_{3} \\ m_{3} & m_{2} & m_{1} \end{bmatrix} \begin{bmatrix} i_{ra} \\ i_{rb} \\ i_{rc} \end{bmatrix}$$
$$\begin{bmatrix} \phi_{ra} \\ \phi_{rb} \\ \phi_{rc} \end{bmatrix} = \begin{bmatrix} 1_{r} & m_{r} & m_{r} \\ m_{r} & 1_{r} & m_{r} \\ m_{r} & m_{r} & 1_{r} \end{bmatrix} \begin{bmatrix} i_{ra} \\ i_{rb} \\ i_{rc} \end{bmatrix} + \begin{bmatrix} m_{1} & m_{2} & m_{3} \\ m_{3} & m_{1} & m_{2} \\ m_{2} & m_{3} & m_{1} \end{bmatrix} \begin{bmatrix} i_{sa} \\ i_{sb} \\ i_{sc} \end{bmatrix}$$

Sous une forme plus compactée on obtient :

$$\begin{bmatrix} \phi_{sabc} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{ss} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{sabc} \end{bmatrix} + \begin{bmatrix} \mathbf{M}_{sr}(\theta) \end{bmatrix} \begin{bmatrix} \mathbf{i}_{rabc} \end{bmatrix} \\ \begin{bmatrix} \phi_{rabc} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{rr} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{rabc} \end{bmatrix} + \begin{bmatrix} \mathbf{M}_{rs}(\theta) \end{bmatrix} \begin{bmatrix} \mathbf{i}_{sabc} \end{bmatrix}$$

Avec :

$$\begin{bmatrix} M_{ss} \end{bmatrix} = \begin{bmatrix} 1_{s} & m_{s} & m_{s} \\ m_{s} & 1_{s} & m_{s} \\ m_{s} & m_{s} & 1_{s} \end{bmatrix}, \quad \begin{bmatrix} M_{sr} \end{bmatrix} = \begin{bmatrix} m_{1} & m_{3} & m_{2} \\ m_{2} & m_{1} & m_{3} \\ m_{3} & m_{2} & m_{1} \end{bmatrix} = m_{sr} \begin{bmatrix} \cos(\theta) & \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) \\ \cos(\theta - \frac{2\pi}{3}) & \cos(\theta) & \cos(\theta + \frac{2\pi}{3}) \\ \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{M}_{rr} \end{bmatrix} = \begin{bmatrix} \mathbf{l}_{r} & \mathbf{m}_{r} & \mathbf{m}_{r} \\ \mathbf{m}_{r} & \mathbf{l}_{r} & \mathbf{m}_{r} \\ \mathbf{m}_{r} & \mathbf{m}_{r} & \mathbf{l}_{r} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{M}_{sr}(\theta) \end{bmatrix} = \begin{bmatrix} \mathbf{m}_{1} & \mathbf{m}_{2} & \mathbf{m}_{3} \\ \mathbf{m}_{3} & \mathbf{m}_{1} & \mathbf{m}_{2} \\ \mathbf{m}_{2} & \mathbf{m}_{3} & \mathbf{m}_{1} \end{bmatrix} = \begin{bmatrix} \mathbf{M}_{rs}(\theta) \end{bmatrix}^{t}$$

Transformation triphasé - diphasé

Objectif : Le passage d'un système triphasé (abc) fixe vers un système diphasé équivalent ($\alpha\beta$) fixe en vue de diagonaliser les matrices inductances. Il existe principalement deux transformations :

- La transformation de Clarke : Cette transformation conserve l'amplitude des grandeurs mais pas la puissance et le couple ;

- La transformation de Concordia : Cette transformation conserve la puissance mais pas les amplitudes.

- Passage d'un système triphasé (abc) vers un système diphasé ($\alpha\beta$)

Transformation de Concordia

$$\begin{bmatrix} x_{\alpha\beta} \end{bmatrix} = T_{23} \begin{bmatrix} x_{abc} \end{bmatrix} \text{ avec } T_{23} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

Transformation de Clarke

$$\begin{bmatrix} x_{\alpha\beta} \end{bmatrix} = C_{23} \begin{bmatrix} x_{abc} \end{bmatrix} \text{ avec } C_{23} = \frac{2}{3} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

Chapitre 2

- Passage d'un système diphasé ($\alpha\beta$) vers un système triphasé (abc)

Transformation de Concordia inverse

$$[x_{abc}] = T_{32} [x_{\alpha\beta}] \text{ avec } T_{32} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

Transformation de Clarke inverse

$$[\mathbf{x}_{abc}] = \mathbf{C}_{32} [\mathbf{x}_{\alpha\beta}] \text{ avec } \mathbf{C}_{32} = \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

Application de la transformation de Concordia

- Application sur les équations électriques

- Côté stator

$$\underbrace{T_{23}\left[v_{sabc}\right]}_{\left[v_{sabc}\right]} = T_{23}\left\{R_{s}\left[i_{sabc}\right] + \frac{d}{dt}\left[\phi_{sabc}\right]\right\} = R_{s}\underbrace{T_{23}\left[i_{sabc}\right]}_{\left[i_{sabc}\right]} + \frac{d}{dt}(\underbrace{T_{23}\left[\phi_{sabc}\right]}_{\left[\phi_{sabc}\right]})$$

Ce qui donne :

$$\left[\mathbf{v}_{s\alpha\beta}\right] = \mathbf{R}_{s}\left[\mathbf{i}_{s\alpha\beta}\right] + \frac{d}{dt}\left[\boldsymbol{\phi}_{s\alpha\beta}\right]$$

Sous une forme détaillée, on a :

$$\begin{aligned} \mathbf{v}_{s\alpha} &= \mathbf{R}_{s} \mathbf{i}_{s\alpha} + \frac{\mathrm{d} \phi_{s\alpha}}{\mathrm{d} t} \\ \mathbf{v}_{s\beta} &= \mathbf{R}_{s} \mathbf{i}_{s\beta} + \frac{\mathrm{d} \phi_{s\beta}}{\mathrm{d} t} \end{aligned}$$

- Côté rotor

$$\underbrace{T_{23} \begin{bmatrix} v_{rabc} \end{bmatrix}}_{\begin{bmatrix} v_{rabc} \end{bmatrix}} = R_r \underbrace{T_{23} \begin{bmatrix} i_{rabc} \end{bmatrix}}_{\begin{bmatrix} i_{rabc} \end{bmatrix}} + \frac{d}{dt} \underbrace{(T_{23} \begin{bmatrix} \varphi_{rabc} \end{bmatrix}}_{\begin{bmatrix} \varphi_{rabc} \end{bmatrix}} \underbrace{)$$

Ce qui donne :

$$\left[\mathbf{v}_{r\alpha\beta}\right] = \mathbf{R}_{r}\left[\mathbf{i}_{r\alpha\beta}\right] + \frac{d}{dt}\left[\boldsymbol{\phi}_{r\alpha\beta}\right]$$

Sous une forme détaillée, on a :

$$\begin{split} \mathbf{v}_{\mathbf{r}\alpha} &= \mathbf{R}_{\mathbf{r}}\mathbf{i}_{\mathbf{r}\alpha} + \frac{d\varphi_{\mathbf{r}\alpha}}{dt}\\ \mathbf{v}_{\mathbf{r}\beta} &= \mathbf{R}_{\mathbf{r}}\mathbf{i}_{\mathbf{r}\beta} + \frac{d\varphi_{\mathbf{r}\beta}}{dt} \end{split}$$

- Application sur les équations magnétiques

- Côté stator

$$\underbrace{T_{23}\left[\boldsymbol{\varphi}_{sabc}\right]}_{\left[\boldsymbol{\varphi}_{sa\beta}\right]} = T_{23}\left[\mathbf{M}_{ss}\right]\left[\mathbf{i}_{sabc}\right] + T_{23}\left[\mathbf{M}_{sr}\left(\boldsymbol{\theta}\right)\right]\left[\mathbf{i}_{rabc}\right] \\ T_{32}\left[\mathbf{i}_{sa\beta}\right] T_{32}\left[\mathbf{i}_{ra\beta}\right] T_{32}\left[\mathbf{i}_{rab}\right] T_{32}\left$$

Donc

$$\left[\phi_{s\alpha\beta}\right] = T_{23}\left[M_{ss}\right]T_{32}\left[i_{s\alpha\beta}\right] + T_{23}\left[M_{sr}(\theta)\right]T_{32}\left[i_{r\alpha\beta}\right]$$

Calcul de $T_{\scriptscriptstyle 23}[M_{\scriptscriptstyle ss}]T_{\scriptscriptstyle 32}$:

$$T_{23}[M_{ss}]T_{32} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1_{s} & m_{s} & m_{s} \\ m_{s} & 1_{s} & m_{s} \\ m_{s} & m_{s} & 1_{s} \end{bmatrix} \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$
$$T_{23}[M_{ss}]T_{32} = \frac{2}{3} \begin{bmatrix} 1_{s} - m_{s} & -\frac{1}{2}(1_{s} - m_{s}) & -\frac{1}{2}(1_{s} - m_{s}) \\ 0 & \frac{\sqrt{3}}{2}(1_{s} - m_{s}) & -\frac{\sqrt{3}}{2}(1_{s} - m_{s}) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{ss}]T_{32} = \frac{2}{3} \begin{bmatrix} l_s - m_s + \frac{1}{4}(l_s - m_s) + \frac{1}{4}(l_s - m_s) & -\frac{\sqrt{3}}{2}(l_s - m_s) + \frac{\sqrt{3}}{2}(l_s - m_s) \\ -\frac{\sqrt{3}}{4}(l_s - m_s) + \frac{\sqrt{3}}{4}(l_s - m_s) & \frac{3}{4}(l_s - m_s) + \frac{3}{4}(l_s - m_s) \end{bmatrix}$$

$$T_{23}[M_{ss}]T_{32} = \frac{2}{3} \begin{bmatrix} \frac{3}{2}(l_{s} - m_{s}) & 0\\ 0 & \frac{3}{2}(l_{s} - m_{s}) \end{bmatrix} = \begin{bmatrix} l_{s} - m_{s} & 0\\ 0 & l_{s} - m_{s} \end{bmatrix}$$

- Calcul de $T_{_{23}} \big[M_{_{sr}}(\theta) \big] T_{_{32}}$:

$$T_{23}[M_{sr}(\theta)]T_{32} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} m_{sr} \begin{bmatrix} \cos(\theta) & \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) \\ \cos(\theta - \frac{2\pi}{3}) & \cos(\theta) & \cos(\theta + \frac{2\pi}{3}) \\ \cos(\theta + \frac{2\pi}{3}) & \cos(\theta - \frac{2\pi}{3}) & \cos(\theta) \end{bmatrix} \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{sr}(\theta)]T_{32} = \frac{2}{3}m_{sr}\left[\begin{array}{c} \frac{\frac{3}{2}\cos(\theta)}{\cos(\theta) - \frac{1}{2}\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3})} & \frac{\frac{3}{2}\cos(\theta + \frac{2\pi}{3})}{\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta) - \frac{1}{2}\cos(\theta - \frac{2\pi}{3})} \\ \frac{\sqrt{3}}{2}(\cos(\theta - \frac{2\pi}{3}) - \cos(\theta + \frac{2\pi}{3})) & \frac{\sqrt{3}}{2}(\cos(\theta) - \cos(\theta - \frac{2\pi}{3})) \\ \frac{\frac{3}{2}\cos(\theta - \frac{2\pi}{3}) - \cos(\theta + \frac{2\pi}{3})}{\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)} \\ \frac{\frac{3}{2}\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)}{\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)} \\ \frac{\sqrt{3}}{2}(\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)}{\frac{\sqrt{3}}{2}(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta))} \\ \frac{\sqrt{3}}{2}(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta)) \\ \frac{\sqrt{3}}{2}(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta) \\ \frac{\sqrt{3}}{2}(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta)) \\ \frac{\sqrt{3}}{2}(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta) \\ \frac{\sqrt{3}}{2}(\cos(\theta + \frac{2$$

$$T_{23}[M_{sr}(\theta)]T_{32} = \frac{2}{3}m_{sr}\left[\frac{\frac{3}{2}\cos(\theta)}{\frac{3}{2}\sin(\theta)} - \frac{3}{2}\sin(\theta - \frac{\pi}{3}) - \frac{3}{2}\sin(\theta - \frac{\pi}{3}) - \frac{3}{2}\sin(\theta + \frac{\pi}{3})\right]\left[\frac{1}{-\frac{1}{2}} - \frac{\sqrt{3}}{2} - \frac{1}{2} - \frac{\sqrt{3}}{2}\right]$$

$$T_{23} \Big[M_{sr}(\theta) \Big] T_{32} = \frac{2}{3} m_{sr} \frac{3}{2} \begin{bmatrix} \frac{\frac{3}{2} \cos(\theta)}{\cos(\theta) - \frac{1}{2} \cos(\theta + \frac{2\pi}{3}) - \frac{1}{2} \cos(\theta - \frac{2\pi}{3})}{\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2} \cos(\theta - \frac{2\pi}{3})} & \frac{\sqrt{3}}{2} \underbrace{(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta - \frac{2\pi}{3}))}_{2\cos(\theta + \frac{2\pi}{3}) - \cos(\theta - \frac{2\pi}{3})} \\ \underbrace{\frac{\sin(\theta) + \frac{1}{2} \sin(\theta - \frac{\pi}{3}) + \frac{1}{2} \sin(\theta + \frac{\pi}{3})}_{\frac{3}{2} \sin(\theta)} & \frac{\sqrt{3}}{2} \underbrace{(\sin(\theta + \frac{\pi}{3}) - \sin(\theta - \frac{\pi}{3}))}_{2\cos(\theta)\sin(\frac{\pi}{3}) = \sqrt{3}\cos(\theta)} \end{bmatrix} \Big]$$

$$T_{23}[M_{sr}(\theta)]T_{32} = m_{sr} \begin{bmatrix} \frac{3}{2}\cos(\theta) & -\frac{3}{2}\sin(\theta) \\ \frac{3}{2}\sin(\theta) & \frac{3}{2}\cos(\theta) \end{bmatrix} = \frac{3}{2}m_{sr} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Donc les expressions des flux statoriques dans le repère ($\alpha\beta$) deviennent :

$$\begin{bmatrix} \phi_{s\alpha\beta} \end{bmatrix} = \begin{bmatrix} l_s - m_s & 0\\ 0 & l_s - m_s \end{bmatrix} \begin{bmatrix} i_{s\alpha\beta} \end{bmatrix} + \frac{3}{2} m_{sr} \begin{bmatrix} \cos(\theta) & -\sin(\theta)\\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} i_{r\alpha\beta} \end{bmatrix}$$

Posons :

 $L_s = l_s - m_s$: L'inductance cyclique du stator

$$M = \frac{3}{2}m_{sr} : L'inductance cyclique du stator$$
$$P(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

L'équation donnant les flux se simplifiée à :

$$\begin{bmatrix} \phi_{s\alpha\beta} \end{bmatrix} = \begin{bmatrix} L_s & 0\\ 0 & L_s \end{bmatrix} \begin{bmatrix} i_{s\alpha\beta} \end{bmatrix} + MP(\theta) \begin{bmatrix} i_{r\alpha\beta} \end{bmatrix}$$

Sous une forme détaillée on peut écrire :

$$\begin{split} \phi_{s\alpha} &= L_s i_{s\alpha} + M\cos(\theta) i_{r\alpha} - M\sin(\theta) i_{r\beta} \\ \phi_{s\beta} &= L_s i_{s\beta} + M\sin(\theta) i_{r\alpha} + M\cos(\theta) i_{r\beta} \end{split}$$

- Côté rotor

$$\underbrace{T_{23}\left[\boldsymbol{\varphi}_{rabc}\right]}_{\left[\boldsymbol{\varphi}_{r\alpha\beta}\right]} \!=\! T_{23}\left[\boldsymbol{M}_{rr}\right]\!\left[\!\left[i_{rabc}\right]\!+\!T_{23}\!\left[\boldsymbol{M}_{rs}\left(\boldsymbol{\theta}\right)\!\right]\!\left[\!\left[i_{sabc}\right]\!\right]_{T_{32}\!\left[i_{\alpha\beta}\right]}\right]_{T_{32}\!\left[i_{\alpha\beta}\right]}$$

Donc

$$\left[\boldsymbol{\varphi}_{\boldsymbol{r}\boldsymbol{\alpha}\boldsymbol{\beta}}\right] = T_{23}\left[\boldsymbol{M}_{\boldsymbol{r}\boldsymbol{r}}\right]T_{32}\left[\boldsymbol{i}_{\boldsymbol{r}\boldsymbol{\alpha}\boldsymbol{\beta}}\right] + T_{23}\left[\boldsymbol{M}_{\boldsymbol{r}\boldsymbol{s}}\left(\boldsymbol{\theta}\right)\right]T_{32}\left[\boldsymbol{i}_{\boldsymbol{s}\boldsymbol{\alpha}\boldsymbol{\beta}}\right]$$

Calcul de $T_{_{23}} \big[M_{_{rr}} \big] T_{_{32}}$:

$$T_{23}[M_{rr}]T_{32} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1_{r} & m_{r} & m_{r} \\ m_{r} & 1_{r} & m_{r} \\ m_{r} & m_{r} & 1_{r} \end{bmatrix} \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{rr}]T_{32} = \frac{2}{3} \begin{bmatrix} l_{r} - m_{r} & -\frac{1}{2}(l_{r} - m_{r}) & -\frac{1}{2}(l_{r} - m_{r}) \\ 0 & \frac{\sqrt{3}}{2}(l_{r} - m_{r}) & -\frac{\sqrt{3}}{2}(l_{r} - m_{r}) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{rr}]T_{32} = \frac{2}{3} \begin{bmatrix} l_{r} - m_{r} + \frac{1}{4}(l_{r} - m_{r}) + \frac{1}{4}(l_{r} - m_{r}) & -\frac{\sqrt{3}}{2}(l_{r} - m_{r}) + \frac{\sqrt{3}}{2}(l_{r} - m_{r}) \\ -\frac{\sqrt{3}}{4}(l_{r} - m_{r}) + \frac{\sqrt{3}}{4}(l_{r} - m_{r}) & \frac{3}{4}(l_{r} - m_{r}) + \frac{3}{4}(l_{r} - m_{r}) \end{bmatrix}$$

$$T_{23}[M_{rr}]T_{32} = \frac{2}{3}\begin{bmatrix}\frac{3}{2}(l_{r}-m_{r}) & 0\\ 0 & \frac{3}{2}(l_{r}-m_{r})\end{bmatrix} = \begin{bmatrix}l_{r}-m_{r} & 0\\ 0 & l_{r}-m_{r}\end{bmatrix}$$

- Calcul de $T_{23} \big[M_{rs}(\theta) \big] T_{32}$:

$$T_{23}[M_{rs}(\theta)]T_{32} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} m_{sr} \begin{bmatrix} \cos(\theta) & \cos(\theta - \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) \\ \cos(\theta + \frac{2\pi}{3}) & \cos(\theta) & \cos(\theta - \frac{2\pi}{3}) \\ \cos(\theta - \frac{2\pi}{3}) & \cos(\theta + \frac{2\pi}{3}) & \cos(\theta) \end{bmatrix} \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{rs}(\theta)]T_{32} = \frac{2}{3}m_{sr} \begin{bmatrix} \frac{\frac{3}{2}\cos(\theta)}{\cos(\theta) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta - \frac{2\pi}{3})} & \frac{\frac{3}{2}\cos(\theta - \frac{2\pi}{3})}{\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3})} \\ \frac{\sqrt{3}}{2}\underbrace{(\cos(\theta + \frac{2\pi}{3}) - \cos(\theta - \frac{2\pi}{3}))}_{-2\sin(\theta)\sin(\frac{2\pi}{3}) = -\sqrt{3}\sin(\theta)} & \frac{\sqrt{3}}{2}\underbrace{(\cos(\theta) - \cos(\theta + \frac{2\pi}{3}))}_{-2\sin(\theta + \frac{\pi}{3})sin(-\frac{\pi}{3}) = \sqrt{3}\sin(\theta + \frac{\pi}{3})} \\ \frac{\frac{\frac{3}{2}\cos(\theta + \frac{2\pi}{3})}{\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)}}{\cos(\theta + \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)} \\ \frac{\sqrt{3}}{2}\underbrace{(\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta)}_{-2\sin(\theta - \frac{\pi}{3})sin(-\frac{\pi}{3}) = \sqrt{3}sin(\theta - \frac{\pi}{3})} \\ \frac{\sqrt{3}}{2}\underbrace{(\cos(\theta - \frac{2\pi}{3}) - \cos(\theta))}_{-2\sin(\theta - \frac{\pi}{3})sin(-\frac{\pi}{3}) = \sqrt{3}sin(\theta - \frac{\pi}{3})} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{rs}(\theta)]T_{32} = \frac{2}{3}m_{sr} \begin{bmatrix} \frac{3}{2}\cos(\theta) & \frac{3}{2}\cos(\theta - \frac{2\pi}{3}) & \frac{3}{2}\cos(\theta + \frac{2\pi}{3}) \\ -\frac{3}{2}\sin(\theta) & \frac{3}{2}\sin(\theta + \frac{\pi}{3}) & \frac{3}{2}\sin(\theta - \frac{\pi}{3}) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T_{23}[M_{rs}(\theta)]T_{32} = \frac{2}{3}m_{sr}\frac{3}{2}\begin{bmatrix}\frac{\frac{3}{2}\cos(\theta)}{\cos(\theta) - \frac{1}{2}\cos(\theta - \frac{2\pi}{3}) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3})}{\cos(\theta) - \frac{1}{2}\sin(\theta - \frac{\pi}{3}) - \frac{1}{2}\cos(\theta + \frac{2\pi}{3})} & \frac{\sqrt{3}}{2}\underbrace{(\cos(\theta - \frac{2\pi}{3}) - \cos(\theta + \frac{2\pi}{3}))}_{2\cos(\theta)\sin(\frac{\pi}{3}) - \cos(\theta + \frac{2\pi}{3})} \\ \underbrace{-\sin(\theta) - \frac{1}{2}\sin(\theta - \frac{\pi}{3}) - \frac{1}{2}\sin(\theta + \frac{\pi}{3})}_{-\frac{3}{2}\sin(\theta)} & \frac{\sqrt{3}}{2}\underbrace{(\sin(\theta + \frac{\pi}{3}) - \sin(\theta - \frac{\pi}{3}))}_{2\cos(\theta)\sin(\frac{\pi}{3}) = \sqrt{3}\cos(\theta)}\end{bmatrix}$$

$$T_{23}[M_{rs}(\theta)]T_{32} = m_{sr} \begin{bmatrix} \frac{3}{2}\cos(\theta) & \frac{3}{2}\sin(\theta) \\ -\frac{3}{2}\sin(\theta) & \frac{3}{2}\cos(\theta) \end{bmatrix} = \frac{3}{2}m_{sr} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

Donc les expressions des flux rotoriques dans le repère ($\alpha\beta$) deviennent :

$$\begin{bmatrix} \phi_{r\alpha\beta} \end{bmatrix} = \begin{bmatrix} l_r - m_r & 0\\ 0 & l_r - m_r \end{bmatrix} \begin{bmatrix} i_{r\alpha\beta} \end{bmatrix} + \frac{3}{2} m_{sr} \begin{bmatrix} \cos(\theta) & \sin(\theta)\\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} i_{s\alpha\beta} \end{bmatrix}$$

Posons :

 $L_r = l_r - m_r$: L'inductance cyclique du rotor

 $M = \frac{3}{2}m_{sr}$: L'inductance cyclique du stator

$$P(-\theta) = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

L'équation donnant les flux se simplifiée à :

$$\begin{bmatrix} \phi_{r\alpha\beta} \end{bmatrix} = \begin{bmatrix} L_s & 0\\ 0 & L_s \end{bmatrix} \begin{bmatrix} i_{r\alpha\beta} \end{bmatrix} + MP(-\theta) \begin{bmatrix} i_{s\alpha\beta} \end{bmatrix}$$

Sous une forme détaillée on peut écrire :

$$\begin{split} \varphi_{r\alpha} &= L_r i_{r\alpha} + M\cos(\theta) i_{s\alpha} + M\sin(\theta) i_{s\beta} \\ \varphi_{r\beta} &= L_r i_{r\beta} - M\sin(\theta) i_{s\alpha} + M\cos(\theta) i_{s\beta} \end{split}$$

Passage d'un repère diphasé fixe ($\alpha\beta$) vers un repère mobile (uv)

- Les grandeurs statoriques sont transformées par :

$$\begin{bmatrix} \mathbf{x}_{s\alpha\beta} \end{bmatrix} = \mathbf{P}(\boldsymbol{\theta}_{s}) \begin{bmatrix} \mathbf{x}_{sdq} \end{bmatrix} \text{ avec}$$
$$\mathbf{P}(\boldsymbol{\theta}_{s}) = \begin{bmatrix} \cos(\boldsymbol{\theta}_{s}) & -\sin(\boldsymbol{\theta}_{s}) \\ \sin(\boldsymbol{\theta}_{s}) & \cos(\boldsymbol{\theta}_{s}) \end{bmatrix}$$

- Les grandeurs rotoriques sont transformées par :

$$\begin{bmatrix} x_{r\alpha\beta} \end{bmatrix} = P(\theta_r) \begin{bmatrix} x_{rdq} \end{bmatrix} \text{ avec}$$

$$P(\theta_r) = \begin{bmatrix} \cos(\theta_r) & -\sin(\theta_r) \\ \sin(\theta_r) & \cos(\theta_r) \end{bmatrix} = \begin{bmatrix} \cos(\theta_s - \theta) & -\sin(\theta_s - \theta) \\ \sin(\theta_s - \theta) & \cos(\theta_s - \theta) \end{bmatrix}$$

- Transformation des équations de tensions dans le repère (uv)

- Côté stator

$$\begin{split} \left[\mathbf{v}_{s\alpha\beta} \right] &= \mathbf{R}_{s} \left[\mathbf{i}_{s\alpha\beta} \right] + \frac{d}{dt} \left[\phi_{s\alpha\beta} \right] \\ &= \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{v}_{suv} \right]}_{\left[\mathbf{v}_{sup} \right]} = \mathbf{R}_{s} \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{i}_{suv} \right]}_{\left[\mathbf{i}_{sap} \right]} + \frac{d}{dt} \left(\underbrace{\mathbf{P}(\theta_{s}) \left[\phi_{suv} \right]}_{\left[\phi_{sup} \right]} \right) \\ &= \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{v}_{suv} \right]}_{suv} = \mathbf{R}_{s} \mathbf{P}(\theta_{s}) \left[\mathbf{i}_{suv} \right] + \frac{d}{dt} \left(\mathbf{P}(\theta_{s}) \left[\phi_{suv} \right] + \mathbf{P}(\theta_{s}) \frac{d}{dt} \left(\left[\phi_{suv} \right] \right) \\ &= \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{v}_{suv} \right]}_{suv} = \mathbf{R}_{s} \mathbf{P}(\theta_{s}) \left[\mathbf{i}_{suv} \right] + \frac{d}{dt} \left(\begin{bmatrix} \cos(\theta_{s}) & -\sin(\theta_{s}) \\ \sin(\theta_{s}) & \cos(\theta_{s}) \end{bmatrix} \right) \left[\phi_{suv} \right] + \mathbf{P}(\theta_{s}) \frac{d}{dt} \left(\left[\phi_{suv} \right] \right) \\ &= \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{v}_{suv} \right]}_{suv} = \mathbf{R}_{s} \mathbf{P}(\theta_{s}) \left[\mathbf{i}_{suv} \right] + \frac{d(\theta_{s})}{dt} \left(\begin{bmatrix} -\sin(\theta_{s}) & -\cos(\theta_{s}) \\ \cos(\theta_{s}) & -\sin(\theta_{s}) \end{bmatrix} \right) \left[\phi_{suv} \right] + \mathbf{P}(\theta_{s}) \frac{d}{dt} \left(\left[\phi_{suv} \right] \right) \\ &= \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{v}_{suv} \right]}_{suv} = \mathbf{R}_{s} \mathbf{P}(\theta_{s}) \left[\mathbf{i}_{suv} \right] + \frac{d(\theta_{s})}{dt} \left(\begin{bmatrix} -\sin(\theta_{s}) & -\cos(\theta_{s}) \\ \cos(\theta_{s}) & -\sin(\theta_{s}) \end{bmatrix} \right) \left[\phi_{suv} \right] + \mathbf{P}(\theta_{s}) \frac{d}{dt} \left(\left[\phi_{suv} \right] \right) \\ &= \underbrace{\mathbf{P}(\theta_{s}) \left[\mathbf{v}_{suv} \right]}_{suv} = \mathbf{P}(\theta_{s}) \left[\mathbf{P}(\theta_{s}) \right] = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos(\theta_{s}) & -\sin(\theta_{s}) \\ \sin(\theta_{s}) & \cos(\theta_{s}) \end{bmatrix} = \mathbf{P}(\frac{\pi}{2}) \mathbf{P}(\theta_{s}) \end{aligned}$$

Donc :

 $P(\theta_{s})[v_{suv}] = R_{s}P(\theta_{s})[i_{suv}] + \frac{d(\theta_{s})}{dt}P(\frac{\pi}{2})P(\theta_{s})[\phi_{suv}] + P(\theta_{s})\frac{d}{dt}([\phi_{suv}])$ en multipliant cette équation par $P(\theta_{s})^{-1}, \text{ il vient :}$

$$[v_{suv}] = R_s [\dot{i}_{suv}] + \dot{\theta}_s P(\theta_s)^{-1} P(\frac{\pi}{2}) P(\theta_s) [\phi_{suv}] + \frac{d}{dt} ([\phi_{suv}])$$

avec
$$P(\theta_s)^{-1}P(\frac{\pi}{2})P(\theta_s) = \begin{bmatrix} \cos(\theta_s) & \sin(\theta_s) \\ -\sin(\theta_s) & \cos(\theta_s) \end{bmatrix} \begin{bmatrix} -\sin(\theta_s) & \cos(\theta_s) \\ \cos(\theta_s) & \sin(\theta_s) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = P(\frac{\pi}{2})$$

$$[v_{suv}] = R_s [i_{suv}] + \dot{\theta}_s P(\frac{\pi}{2}) [\phi_{suv}] + \frac{d}{dt} ([\phi_{suv}])$$

En forme détaillée on obtient :

$$\begin{split} \mathbf{v}_{su} &= \mathbf{R}_{s}\dot{\mathbf{i}}_{su} - \dot{\boldsymbol{\theta}}_{s}\boldsymbol{\varphi}_{sv} + \frac{d\boldsymbol{\varphi}_{su}}{dt}\\ \mathbf{v}_{sv} &= \mathbf{R}_{s}\dot{\mathbf{i}}_{sv} - \dot{\boldsymbol{\theta}}_{s}\boldsymbol{\varphi}_{su} + \frac{d\boldsymbol{\varphi}_{sv}}{dt} \end{split}$$

- Côté rotor

$$\begin{bmatrix} v_{ro\beta} \end{bmatrix} = R_r \begin{bmatrix} i_{ro\beta} \end{bmatrix} + \frac{d}{dt} \begin{bmatrix} \phi_{ro\beta} \end{bmatrix}$$

$$\frac{P(\theta_r) [v_{ruv}]}{[v_{ra\beta}]} = R_r \underbrace{P(\theta_r) [i_{ruv}]}_{[i_{ra\beta}]} + \frac{d}{dt} (\underbrace{P(\theta_r) [\phi_{ruv}]}_{[\phi_{ra\beta}]})$$

$$P(\theta_r) [v_{ruv}] = R_r P(\theta_r) [i_{ruv}] + \frac{d}{dt} (P(\theta_r)) [\phi_{ruv}] + P(\theta_r) \frac{d}{dt} ([\phi_{ruv}])$$

$$P(\theta_r) [v_{ruv}] = R_r P(\theta_r) [i_{ruv}] + \frac{d}{dt} (\begin{bmatrix} \cos(\theta_r) & -\sin(\theta_r) \\ \sin(\theta_r) & \cos(\theta_r) \end{bmatrix}) [\phi_{ruv}] + P(\theta_r) \frac{d}{dt} ([\phi_{ruv}])$$

$$P(\theta_r) [v_{ruv}] = R_r P(\theta_r) [i_{ruv}] + \frac{d(\theta_r)}{dt} (\begin{bmatrix} -\sin(\theta_r) & -\cos(\theta_r) \\ \cos(\theta_r) & -\sin(\theta_r) \end{bmatrix}) [\phi_{ruv}] + P(\theta_r) \frac{d}{dt} ([\phi_{ruv}])$$

$$P(\theta_r) [v_{ruv}] = R_r P(\theta_r) [i_{ruv}] + \frac{d(\theta_r)}{dt} (\begin{bmatrix} -\sin(\theta_r) & -\cos(\theta_r) \\ \cos(\theta_r) & -\sin(\theta_r) \end{bmatrix}) [\phi_{ruv}] + P(\theta_r) \frac{d}{dt} ([\phi_{ruv}])$$

$$Avec \begin{bmatrix} -\sin(\theta_r) & -\cos(\theta_r) \\ \cos(\theta_r) & -\sin(\theta_r) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \cos(\theta_r) & -\sin(\theta_r) \\ \sin(\theta_r) & \cos(\theta_r) \end{bmatrix} = P(\frac{\pi}{2}) P(\theta_r)$$

Donc :

 $P(\theta_{r})[v_{ruv}] = R_{r}P(\theta_{r})[i_{ruv}] + \frac{d(\theta_{r})}{dt}P(\frac{\pi}{2})P(\theta_{r})[\phi_{ruv}] + P(\theta_{r})\frac{d}{dt}([\phi_{ruv}])$ en multipliant cette équation par $P(\theta_{r})^{-1}, \text{ il vient :}$

$$\begin{bmatrix} v_{ruv} \end{bmatrix} = R_r \begin{bmatrix} i_{ruv} \end{bmatrix} + \dot{\theta}_r P(\theta_r)^{-1} P(\frac{\pi}{2}) P(\theta_r) \begin{bmatrix} \phi_{ruv} \end{bmatrix} + \frac{d}{dt} (\begin{bmatrix} \phi_{ruv} \end{bmatrix})$$

avec $P(\theta_r)^{-1} P(\frac{\pi}{2}) P(\theta_r) = \begin{bmatrix} \cos(\theta_r) & \sin(\theta_r) \\ -\sin(\theta_r) & \cos(\theta_r) \end{bmatrix} \begin{bmatrix} -\sin(\theta_r) & \cos(\theta_r) \\ \cos(\theta_r) & \sin(\theta_r) \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = P(\frac{\pi}{2})$
 $\begin{bmatrix} v_{ruv} \end{bmatrix} = R_r \begin{bmatrix} i_{ruv} \end{bmatrix} + \dot{\theta}_r P(\frac{\pi}{2}) \begin{bmatrix} \phi_{ruv} \end{bmatrix} + \frac{d}{dt} (\begin{bmatrix} \phi_{ruv} \end{bmatrix})$

En forme détaillée on obtient :

$$\begin{split} \mathbf{v}_{ru} &= \mathbf{R}_{r}\dot{\mathbf{i}}_{ru} - \dot{\boldsymbol{\theta}}_{r}\phi_{rv} + \frac{d\phi_{ru}}{dt}\\ \mathbf{v}_{rv} &= \mathbf{R}_{r}\dot{\mathbf{i}}_{rv} - \dot{\boldsymbol{\theta}}_{r}\phi_{ru} + \frac{d\phi_{rv}}{dt} \end{split}$$

- Transformation des équations magnétiques dans le repère (uv)

- Côté stator

Nous avons

$$\begin{bmatrix} \phi_{s\alpha\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{s} & 0 \\ 0 & \mathbf{L}_{s} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{s\alpha\beta} \end{bmatrix} + \mathbf{MP}(\theta) \begin{bmatrix} \mathbf{i}_{r\alpha\beta} \end{bmatrix}$$
$$\underbrace{\mathbf{P}(\theta_{s}) \begin{bmatrix} \phi_{suv} \end{bmatrix}}_{\begin{bmatrix} \phi_{s\alpha\beta} \end{bmatrix}} = \begin{bmatrix} \mathbf{L}_{s} & 0 \\ 0 & \mathbf{L}_{s} \end{bmatrix} \underbrace{\mathbf{P}(\theta_{s}) \begin{bmatrix} \mathbf{i}_{suv} \end{bmatrix}}_{\begin{bmatrix} \mathbf{i}_{s\alpha\beta} \end{bmatrix}} + \mathbf{MP}(\theta) \underbrace{\mathbf{P}(\theta_{r}) \begin{bmatrix} \mathbf{i}_{ruv} \end{bmatrix}}_{\begin{bmatrix} \mathbf{i}_{r\alpha\beta} \end{bmatrix}}$$
$$\begin{bmatrix} \phi_{suv} \end{bmatrix} = \underbrace{\mathbf{P}(\theta_{s})^{-1} \begin{bmatrix} \mathbf{L}_{s} & 0 \\ 0 & \mathbf{L}_{s} \end{bmatrix} \mathbf{P}(\theta_{s}) \begin{bmatrix} \mathbf{i}_{suv} \end{bmatrix} + \mathbf{MP}(\theta_{s})^{-1} \mathbf{P}(\theta) \mathbf{P}(\theta_{r}) \begin{bmatrix} \mathbf{i}_{ruv} \end{bmatrix}}_{L_{s}(1) = \begin{bmatrix} \mathbf{L}_{s} & 0 \\ 0 & \mathbf{L}_{s} \end{bmatrix}}$$

Calcul de $P(\theta_s)^{-1}P(\theta)$:

$$P(\theta_{s})^{-1}P(\theta) = P(\theta_{s})^{t}P(\theta) = \begin{bmatrix} \cos(\theta_{s}) & \sin(\theta_{s}) \\ -\sin(\theta_{s}) & \cos(\theta_{s}) \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
$$P(\theta_{s})^{-1}P(\theta) = \begin{bmatrix} \frac{\cos(\theta_{s}-\theta)}{\cos(\theta_{s})\cos(\theta) + \sin(\theta_{s})\sin(\theta)} & \frac{\sin(\theta_{s}-\theta)}{-\cos(\theta_{s})\sin(\theta) + \sin(\theta_{s})\cos(\theta)} \\ \frac{-\sin(\theta_{s})\cos(\theta) + \cos(\theta_{s})\sin(\theta)}{-\sin(\theta_{s}-\theta)} & \frac{\sin(\theta_{s})\sin(\theta) + \cos(\theta_{s})\cos(\theta)}{\cos(\theta_{s}-\theta)} \end{bmatrix}$$

$$\mathbf{P}(\theta_{s})^{-1}\mathbf{P}(\theta) = \begin{bmatrix} \cos(\theta_{s} - \theta) & \sin(\theta_{s} - \theta) \\ -\sin(\theta_{s} - \theta) & \cos(\theta_{s} - \theta) \end{bmatrix} = \mathbf{P}(\theta_{s} - \theta)^{-1} = \mathbf{P}(\theta_{r})^{-1}$$

$$\begin{bmatrix} \phi_{suv} \end{bmatrix} = \begin{bmatrix} L_s & 0 \\ 0 & L_s \end{bmatrix} \begin{bmatrix} i_{suv} \end{bmatrix} + \underbrace{MP(\theta_r)^{-1}P(\theta_r)}_{M[I] = \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix}} \begin{bmatrix} i_{ruv} \end{bmatrix} = \begin{bmatrix} L_s & 0 \\ 0 & L_s \end{bmatrix} \begin{bmatrix} i_{suv} \end{bmatrix} + \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} i_{ruv} \end{bmatrix}$$

Après transformation, la matrice des inductances mutuelles est diagonale et ne dépend pas de l'angle électrique entre le stator et le rotor.

Sous une forme détaillée on peut écrire :

$$\begin{split} \varphi_{su} &= L_s i_{su} + M i_{ru} \\ \varphi_{sv} &= L_s i_{sv} + M i_{rv} \end{split}$$

- Côté rotor

Nous avons

$$\begin{bmatrix} \phi_{r\alpha\beta} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{r} & 0 \\ 0 & \mathbf{L}_{r} \end{bmatrix} \begin{bmatrix} \mathbf{i}_{r\alpha\beta} \end{bmatrix} + \mathbf{MP}(-\theta) \begin{bmatrix} \mathbf{i}_{s\alpha\beta} \end{bmatrix}$$
$$\underbrace{\mathbf{P}(\theta_{r}) \begin{bmatrix} \phi_{ruv} \end{bmatrix}}_{\begin{bmatrix} \phi_{r\alpha\beta} \end{bmatrix}} = \begin{bmatrix} \mathbf{L}_{r} & 0 \\ 0 & \mathbf{L}_{r} \end{bmatrix} \underbrace{\mathbf{P}(\theta_{r}) \begin{bmatrix} \mathbf{i}_{ruv} \end{bmatrix}}_{\begin{bmatrix} \mathbf{i}_{r\alpha\beta} \end{bmatrix}} + \mathbf{MP}(-\theta) \underbrace{\mathbf{P}(\theta_{r}) \begin{bmatrix} \mathbf{i}_{suv} \end{bmatrix}}_{\begin{bmatrix} \mathbf{i}_{s\alpha\beta} \end{bmatrix}}$$
$$\begin{bmatrix} \phi_{ruv} \end{bmatrix} = \underbrace{\mathbf{P}(\theta_{r})^{-1} \begin{bmatrix} \mathbf{L}_{r} & 0 \\ 0 & \mathbf{L}_{r} \end{bmatrix} \mathbf{P}(\theta_{r}) \begin{bmatrix} \mathbf{i}_{ruv} \end{bmatrix} + \mathbf{MP}(\theta_{r})^{-1} \mathbf{P}(-\theta) \mathbf{P}(\theta_{s}) \begin{bmatrix} \mathbf{i}_{suv} \end{bmatrix}}_{\mathbf{L}_{r}(1) = \begin{bmatrix} \mathbf{L}_{r} & 0 \\ 0 & \mathbf{L}_{r} \end{bmatrix}}$$

Calcul de $P(\theta_r)^{-1}P(-\theta)$:

$$P(\theta_{r})^{-1}P(-\theta) = P(\theta_{r})^{t}P(-\theta) = \begin{bmatrix} \cos(\theta_{r}) & \sin(\theta_{r}) \\ -\sin(\theta_{r}) & \cos(\theta_{r}) \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

$P(\theta_r)^{-1}P(-\theta) = \Bigg[$	$\frac{\cos(\theta_{r},\theta)}{\cos(\theta_{r})\cos(\theta)-\sin(\theta_{r})\sin(\theta)}$	$\overbrace{\cos(\theta_{r})\sin(\theta)+\sin(\theta_{r})\cos(\theta)}^{\sin(\theta_{r}+\theta)}$	
	$\underbrace{-\sin(\theta_{r})\cos(\theta) - \cos(\theta_{r})\sin(\theta)}_{-\sin(\theta_{r}+\theta)}$	$\underbrace{-\sin(\theta_{r})\sin(\theta) + \cos(\theta_{r})\cos(\theta)}_{\cos(\theta_{r}+\theta)}$	

$$P(\theta_r)^{-1}P(-\theta) = \begin{bmatrix} \cos(\theta_r + \theta) & \sin(\theta_r + \theta) \\ -\sin(\theta_r + \theta) & \cos(\theta_r + \theta) \end{bmatrix} = P(\theta_r + \theta)^{-1} = P(\theta_s)^{-1}$$

$$\begin{bmatrix} \phi_{\text{ruv}} \end{bmatrix} = \begin{bmatrix} L_r & 0 \\ 0 & L_r \end{bmatrix} \begin{bmatrix} i_{\text{ruv}} \end{bmatrix} + \underbrace{MP(\theta_s)^{-1}P(\theta_s)}_{M[1] = \begin{bmatrix} M_{\text{suv}} \end{bmatrix}} \begin{bmatrix} i_{\text{suv}} \end{bmatrix} = \begin{bmatrix} L_r & 0 \\ 0 & L_r \end{bmatrix} \begin{bmatrix} i_{\text{ruv}} \end{bmatrix} + \begin{bmatrix} M & 0 \\ 0 & M \end{bmatrix} \begin{bmatrix} i_{\text{suv}} \end{bmatrix}$$

La matrice des inductances mutuelles entre le rotor et le stator est diagonale et indépendante de l'angle θ , ce qui justifié l'intérêt de la transformation adoptée.

Sous une forme détaillée on peut écrire les équations des flux rotoriques comme :

$$\begin{split} \varphi_{\mathrm{ru}} &= L_{\mathrm{r}} i_{\mathrm{ru}} + M i_{\mathrm{su}} \\ \varphi_{\mathrm{rv}} &= L_{\mathrm{r}} i_{\mathrm{rv}} + M i_{\mathrm{sv}} \end{split}$$

Résumé

Les équations électriques et magnétiques de la machine asynchrone dans un repère (uv) tournant avec une vitesse de $\dot{\theta}_s$ par rapport au stator et par une vitesse de $\dot{\theta}_r$ par rapport au rotor sont regroupées dans le tableau suivant :

	Côté stator	Côté rotor
Equations dos tonsions	$v_{su}=R_{s}\dot{i}_{su}-\dot{\theta}_{s}\varphi_{sv}+\frac{d\varphi_{su}}{dt}$	$v_{\rm ru} = R_{\rm r} \dot{i}_{\rm ru} - \dot{\theta}_{\rm r} \varphi_{\rm rv} + \frac{d \varphi_{\rm ru}}{dt}$
Equations des tensions	$v_{_{sv}}=R_{_{s}}i_{_{sv}}-\dot{\theta}_{_{s}}\varphi_{_{su}}+\frac{d\varphi_{_{sv}}}{dt}$	$v_{\rm rv}=R_{\rm r}\dot{i}_{\rm rv}-\dot{\theta}_{\rm r}\varphi_{\rm ru}+\frac{d\varphi_{\rm rv}}{dt}$
Equations dos flux	$\phi_{su} = L_s i_{su} + M i_{ru}$	$\phi_{\rm ru} = L_{\rm r} i_{\rm ru} + M i_{\rm su}$
Equations des nux	$\phi_{sv} = L_s i_{sv} + M i_{rv}$	$\phi_{\rm rv} = L_{\rm r} i_{\rm rv} + M i_{\rm sv}$

Transformation de Park

$$\begin{bmatrix} x_{uv} \end{bmatrix} = P(\psi)^{-1} \begin{bmatrix} x_{\alpha\beta} \end{bmatrix} = P(\psi)^{t} \begin{bmatrix} x_{\alpha\beta} \end{bmatrix} \text{ avec } P(\psi)^{t} = \begin{bmatrix} \cos(\psi) & \sin(\psi) \\ -\sin(\psi) & \cos(\psi) \end{bmatrix}$$
$$Or \begin{bmatrix} x_{\alpha\beta} \end{bmatrix} = T_{23} \begin{bmatrix} x_{abc} \end{bmatrix} \text{ avec } T_{23} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

Il vient donc :

$$\begin{bmatrix} \mathbf{x}_{uv} \end{bmatrix} = \underbrace{\mathbf{P}(\psi)^{t} \mathbf{T}_{23}}_{\mathbf{T}(\psi)} \begin{bmatrix} \mathbf{x}_{abc} \end{bmatrix} \text{ avec } \mathbf{T}(\psi) = \mathbf{P}(\psi)^{t} \mathbf{T}_{23} = \begin{bmatrix} \cos(\psi) & \sin(\psi) \\ -\sin(\psi) & \cos(\psi) \end{bmatrix} \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

$$T(\psi) = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\psi) & -\frac{1}{2}\cos(\psi) + \frac{\sqrt{3}}{2}\sin(\psi) & -\frac{1}{2}\cos(\psi) - \frac{\sqrt{3}}{2}\sin(\psi) \\ -\sin(\psi) & \frac{1}{2}\sin(\psi) + \frac{\sqrt{3}}{2}\cos(\psi) & -\frac{1}{2}\sin(\psi) - \frac{\sqrt{3}}{2}\sin(\psi) \\ -\sin(\psi) & \frac{1}{2}\sin(\psi) + \frac{\sqrt{3}}{2}\cos(\psi) & -\frac{1}{2}\sin(\psi) - \frac{\sqrt{3}}{2}\cos(\psi) \\ -\sin(\psi) & -\sin(\psi - \frac{2\pi}{3}) & \cos(\psi + \frac{2\pi}{3}) \\ -\sin(\psi) & -\sin(\psi - \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \end{bmatrix}$$

Transformation de Park inverse

$$[\mathbf{x}_{abc}] = \mathbf{T}_{32} [\mathbf{x}_{\alpha\beta}] \text{ avec } \mathbf{T}_{23} = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix}$$

Or
$$[x_{\alpha\beta}] = P(\psi)[x_{uv}]$$
 avec $P(\psi) = \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix}$

Il vient donc :

$$[x_{abc}] = \underbrace{T_{32}P(\psi)}_{T(\psi)^{-1}} [x_{uv}] \text{ avec } T(\psi)^{-1} = T_{32}P(\psi) = \sqrt{\frac{2}{3}} \begin{bmatrix} 1 & 0 \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{1}{2} & -\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \sin(\psi) & \cos(\psi) \end{bmatrix}$$

г

$$T(\psi)^{-1} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \frac{\cos(\psi - \frac{2\pi}{3})}{-\frac{1}{2}\cos(\psi) + \frac{\sqrt{3}}{2}\sin(\psi)} & \frac{1}{2}\sin(\psi) + \frac{\sqrt{3}}{2}\cos(\psi) \\ \frac{\cos(\psi - \frac{2\pi}{3})}{-\sin(\psi - \frac{2\pi}{3})} \\ \frac{\cos(\psi + \frac{2\pi}{3})}{-\frac{1}{2}\cos(\psi) - \frac{\sqrt{3}}{2}\sin(\psi)} & \frac{-\frac{1}{2}\sin(\psi) - \frac{\sqrt{3}}{2}\cos(\psi)}{-\sin(\psi + \frac{2\pi}{3})} \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\psi) & -\sin(\psi) \\ \cos(\psi - \frac{2\pi}{3}) & -\sin(\psi - \frac{2\pi}{3}) \\ \cos(\psi + \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \end{bmatrix}$$

٦

Généralisation

Transformation de Park	=	Transformation de Concordia/Clarke	+	Rotation
Passage du repère fixe (abc) vers le repère mobile (uv)		Passage du repère fixe (abc) vers le repère fixe (αβ)		Passage du repère fixe ($\alpha\beta$) vers le repère mobile (uv)

Equation mécanique

$$J\frac{d\Omega}{dt} = C_{em} - f\Omega - C_{r}$$

Avec :

C_{em} : couple électromagnétique

 $\mathrm{C}_{\scriptscriptstyle\mathrm{em}}$: couple résistant qui peut être fonction de la vitesse

J: moment d'inertie des masses tournantes

f : coefficient de frottements visqueux

$$\Omega = \frac{\dot{\theta}}{p}$$
: vitesse de rotation de la machine

p : nombre de paires de pôles

Expression du couple électromagnétique

La puissance instantanée absorbée par la machine dans le repère (abc) est :

 $\mathbf{P} = \mathbf{v}_{sa}\mathbf{i}_{sa} + \mathbf{v}_{sb}\mathbf{i}_{sb} + \mathbf{v}_{sc}\mathbf{i}_{sc}$

Cette expression peut être écrite sous la forme compactée suivante:

$$P \!=\! \left[v_{\text{sabc}} \right]^{t} \! \left[i_{\text{sabc}} \right]$$

En appliquant la transformation de Park normée on obtient :

$$\mathbf{P} = (\mathbf{T}(\theta_{s})^{-1} [\mathbf{v}_{suv}])^{t} (\mathbf{T}(\theta_{s})^{-1} [\mathbf{i}_{suv}]) = [\mathbf{v}_{suv}]^{t} \underbrace{\underbrace{(\mathbf{T}(\theta_{s})^{-1})^{t}}_{\mathbf{T}(\theta_{s})} \mathbf{T}(\theta_{s})^{-1}}_{\mathbf{T}(\theta_{s})} [\mathbf{i}_{suv}] = [\mathbf{v}_{suv}]^{t} [\mathbf{i}_{suv}] = [\mathbf{v}_{su} \ \mathbf{v}_{sv}] \begin{bmatrix} \mathbf{i}_{su} \\ \mathbf{i}_{sv} \end{bmatrix}$$

 $P = v_{su}i_{su} + v_{sv}i_{sv}$

En remplaçant $\,v_{_{su}},v_{_{sv}}\,$ par leurs expressions on obtient :

$$\mathbf{P} = (\mathbf{R}_{s}\mathbf{i}_{su} - \dot{\theta}_{s}\phi_{sv} + \frac{d\phi_{su}}{dt})\mathbf{i}_{su} + (\mathbf{R}_{s}\mathbf{i}_{sv} - \dot{\theta}_{s}\phi_{su} + \frac{d\phi_{sv}}{dt})\mathbf{i}_{sv}$$

Cette équation peut être arrangée sous la forme suivante :

$$P = \underbrace{R_{s}(\dot{i}_{su}^{2} + \dot{i}_{sv}^{2})}_{\text{Pertes Joule}} + \underbrace{\dot{\theta}_{s}(\phi_{su}\dot{i}_{sv} - \phi_{sv}\dot{i}_{su})}_{\text{Puissance transmise}} + \underbrace{\frac{d\phi_{su}}{dt}\dot{i}_{su}}_{\text{Variation de l'énergie}} \underbrace{\frac{d\phi_{sv}}{dt}\dot{i}_{sv}}_{\text{Variation de l'énergie}}$$

La puissance transmise au rotor est exprimée par :

$$P_{tr} = C_{em}\Omega_s$$
 avec $\Omega_s = \frac{\dot{\theta}_s}{p}$, il vient donc :

$$P_{tr} = C_{em} \frac{\dot{\theta}_s}{p} = \dot{\theta}_s (\phi_{su} i_{sv} - \phi_{sv} i_{su}) \Longrightarrow C_{em} = p(\phi_{su} i_{sv} - \phi_{sv} i_{su})$$

Choix du repère (uv)

- Référentiel fixe par rapport au stator

Si le repère (uv) est immobile par rapport au stator ($\alpha\beta$), il en résulte que :

$$\dot{\theta}_{s} = 0 \\ \dot{\theta}_{r} = -\dot{\theta} = \omega$$

Où $\omega = p\Omega$ est la vitesse électrique du rotor.

En remplaçant $\dot{\theta}_s$, $\dot{\theta}_r$ par leurs valeurs dans le modèle de la machine on obtient :

Tensions et flux du côté	Tensions et flux du côté	Couple
stator	rotor	électromagnétique
$\mathbf{v}_{s\alpha} = \mathbf{R}_{s}\mathbf{i}_{s\alpha} + \frac{\mathrm{d}\phi_{s\alpha}}{\mathrm{d}t}$	$0 = \mathbf{R}_{\mathrm{r}} \mathbf{i}_{\mathrm{r}\alpha} + \omega \phi_{\mathrm{r}\beta} + \frac{\mathrm{d}\phi_{\mathrm{r}\alpha}}{\mathrm{d}t}$	
$v_{s\beta} = R_s \dot{i}_{s\beta} + \frac{d\phi_{s\beta}}{dt}$	$0 = R_{r} \dot{i}_{r\beta} - \omega \phi_{r\alpha} + \frac{d\phi_{r\beta}}{dt}$	$\mathbf{C}_{\rm em} = \mathbf{p}(\phi_{s\alpha}\mathbf{i}_{s\beta} - \phi_{s\beta}\mathbf{i}_{s\alpha})$
$\phi_{s\alpha} = L_s i_{s\alpha} + M i_{r\alpha}$	$\phi_{r\alpha} = L_r i_{r\alpha} + M i_{s\alpha}$	
$\phi_{s\beta} = L_s i_{s\beta} + M i_{r\beta}$	$\phi_{r\beta} = L_r i_{r\beta} + M i_{s\beta}$	

- Référentiel fixe par rapport au rotor

Si le repère (uv) est immobile par rapport au rotor (xy), il en résulte que :

 $\dot{\theta}_{\rm r} = 0 \\ \dot{\theta}_{\rm s} = \dot{\theta} = \omega$

En remplaçant $\dot{\theta}_s$, $\dot{\theta}_r$ par leurs valeurs dans le modèle de la machine on obtient :

Tensions et flux du côté	Tensions et flux du côté	Couple
stator	rotor	électromagnétique
$v_{sx} = R_s i_{sy} - \omega \phi_{sy} + \frac{d\phi_{sy}}{dt}$	$0 = R_r i_x + \frac{d\phi_{rx}}{dt}$	
$v_{sy} = R_s i_{sy} + \omega \phi_{sx} + \frac{d\phi_{sy}}{dt}$	$0 = \mathbf{R}_{\mathrm{r}} \mathbf{i}_{\mathrm{ry}} + \frac{\mathrm{d}\phi_{\mathrm{ry}}}{\mathrm{d}t}$	$C_{em} = p(\phi_{sx}i_{sy} - \phi_{sy}i_{sx})$
$\phi_{sx} = L_s i_{sx} + M i_{rx}$	$\phi_{\rm rx} = L_{\rm r} i_{\rm rx} + M i_{\rm sx}$	
$\phi_{sy} = \mathbf{L}_{s}\mathbf{i}_{sy} + \mathbf{M}\mathbf{i}_{ry}$	$\phi_{\rm ry} = L_{\rm r} i_{\rm ry} + M i_{\rm sy}$	

- Référentiel fixe par rapport au champ tournant

Si le repère (uv) est lié au champ tournant (dq), il en résulte que :

$$\begin{split} \dot{\theta}_{s} &= \omega_{s} \\ \dot{\theta} &= \omega \\ \dot{\theta}_{r} &= \omega_{r} &= \omega_{s} - \omega \end{split}$$

En remplaçant $\dot{\theta}_s$, $\dot{\theta}_r$ par leurs valeurs dans le modèle de la machine, on obtient :

Tensions et flux du côté	Tensions et flux du côté	Couple
stator	rotor	électromagnétique
$\mathbf{v}_{sd} = \mathbf{R}_{s}\mathbf{i}_{sd} - \boldsymbol{\omega}_{s}\boldsymbol{\phi}_{sq} + \frac{d\boldsymbol{\phi}_{sd}}{dt}$	$v_{rd} = R_r \dot{i}_{rd} - (\omega_s - \omega)\phi_{rq} + \frac{d\phi_{rd}}{dt}$	
$v_{sq} = R_s i_{sq} + \omega_s \phi_{sd} + \frac{d\phi_{sq}}{dt}$	$v_{rq} = R_r \dot{i}_{rq} + (\omega_s - \omega)\phi_{rd} + \frac{d\phi_{rq}}{dt}$	$C_{em} = p(\phi_{sd}i_{sq} - \phi_{sq}i_{sd})$
$\phi_{sd} = L_s i_{sd} + M i_{rd}$	$\phi_{rd} = L_r i_{rd} + M i_{sd}$	
$\phi_{sq} = \mathbf{L}_{s}\mathbf{i}_{sq} + \mathbf{M}\mathbf{i}_{rq}$	$\phi_{\rm rq} = L_{\rm r} i_{\rm rq} + M i_{\rm sq}$	

L'avantage d'utiliser ce référentiel est d'avoir des grandeurs constantes en régime permanent. Il est alors plus aisé d'en faire la régulation.

Modèle de la machine asynchrone en régime permanent

Le modèle de la machine asynchrone en régime permanent dans un référentiel lié au champ tournant se réduit au modèle suivant :

$$\begin{split} \mathbf{v}_{sd} &= \mathbf{R}_{s} \mathbf{i}_{sd} - \boldsymbol{\omega}_{s} \boldsymbol{\varphi}_{sq} & \mathbf{v}_{rd} &= \mathbf{R}_{r} \mathbf{i}_{rd} - (\boldsymbol{\omega}_{s} - \boldsymbol{\omega}) \boldsymbol{\varphi}_{rq} \\ \mathbf{v}_{sq} &= \mathbf{R}_{s} \mathbf{i}_{sq} + \boldsymbol{\omega}_{s} \boldsymbol{\varphi}_{sd} & \mathbf{v}_{rq} &= \mathbf{R}_{r} \mathbf{i}_{rq} + (\boldsymbol{\omega}_{s} - \boldsymbol{\omega}) \boldsymbol{\varphi}_{rd} \\ \boldsymbol{\varphi}_{sd} &= \mathbf{L}_{s} \mathbf{i}_{sd} + \mathbf{M} \mathbf{i}_{rd} & \boldsymbol{\varphi}_{rd} &= \mathbf{L}_{r} \mathbf{i}_{rd} + \mathbf{M} \mathbf{i}_{sd} \\ \boldsymbol{\varphi}_{sq} &= \mathbf{L}_{s} \mathbf{i}_{sq} + \mathbf{M} \mathbf{i}_{rq} & \boldsymbol{\varphi}_{rq} &= \mathbf{L}_{r} \mathbf{i}_{rq} + \mathbf{M} \mathbf{i}_{sq} \end{split}$$

- Equations électriques en régime permanent sinusoïdale

En utilisant la notation complexe, il vient :

$$\begin{split} \overline{v}_{s} &= v_{sd} + jv_{sq} = R_{s}(i_{sd} + ji_{sq})\underbrace{-\omega_{s}(\varphi_{sd} - j\varphi_{sq})}_{j\omega_{s}(\varphi_{sd} + j\varphi_{sq})} \\ \overline{v}_{r} &= v_{rd} + jv_{rq} = R_{r}(i_{rd} + ji_{rq})\underbrace{-\omega_{r}(\varphi_{rd} - j\varphi_{rq})}_{j\omega_{r}(\varphi_{rd} + j\varphi_{rq})} \end{split}$$

Ce qui donne :

$$\begin{split} \overline{v}_{s} &= R_{s}\overline{\dot{i}_{s}} + j\omega_{s}\overline{\varphi}_{s} \\ \overline{v}_{r} &= 0 = R_{r}\overline{\dot{i}_{r}} + j\omega_{r}\overline{\varphi}_{r} \end{split}$$

- Equations magnétiques en régime permanent sinusoïdale

En utilisant la notation complexe, il vient :

$$\overline{\phi}_{s} = \phi_{sd} + j\phi_{sq} = L_{s}(i_{sd} + ji_{sq}) + M(i_{rd} + ji_{rq})$$

$$\overline{\phi}_{r} = \phi_{rd} + j\phi_{rq} = L_{r}(i_{rd} + ji_{rq}) + M(i_{sd} + ji_{sq})$$

Ce qui donne :

$$\overline{\varphi}_{s} = L_{s} \overline{\overline{i}_{s}} + M \overline{\overline{i}_{r}}$$

$$\overline{\varphi}_{r} = L_{r} \overline{\overline{i}_{r}} + M \overline{\overline{i}_{s}}$$

Schéma équivalent par phase

Afin d'établir les équations électriques en fonction des courants, il suffit de remplacer les expressions des flux dans les équations des tensions, ce qui en résulte :

:

$$\overline{v}_{s} = R_{s}\overline{\dot{i}}_{s} + j\omega_{s}(L_{s}\overline{\dot{i}}_{s} + M\overline{\dot{i}}_{r}) = R_{s}\overline{\dot{i}}_{s} + jL_{s}\omega_{s}\overline{\dot{i}}_{s} + jM\omega_{s}\overline{\dot{i}}_{r}$$

$$0 = R_{r}\overline{\dot{i}}_{r} + j\omega_{r}(L_{r}\overline{\dot{i}}_{r} + M\overline{\dot{i}}_{s}) = R_{r}\overline{\dot{i}}_{r} + jL_{r}\omega_{r}\overline{\dot{i}}_{r} + jM\omega_{r}\overline{\dot{i}}_{s}$$

Avec $\omega_r = g\omega_s$: pulsation des courants rotoriques, le modèle en courant devient :

$$\overline{v}_{s} = R_{s}\overline{\dot{i}} + jL_{s}\omega_{s}\overline{\dot{i}} + jM\omega_{s}\overline{\dot{i}}$$
$$0 = \frac{R_{r}}{g}\overline{\dot{i}} + jL_{r}\omega_{s}\overline{\dot{i}} + jM\omega_{s}\overline{\dot{i}}$$

Schéma ramené au stator

Côté stator nous avons :

$$\overline{v}_{s} = R_{s}\overline{i}_{s} + jL_{s}\omega_{s}\overline{i}_{s} + jM\omega_{s}\overline{i}_{r}$$

En multipliant le dernier terme par L_s et en le divisant par L_s , il vient :

$$\overline{v}_{s} = R_{s}\overline{i}_{s} + jL_{s}\omega_{s}\overline{i}_{s} + jM\omega_{s}\overline{i}_{r} \times \frac{L_{s}}{L_{s}} \text{ posons } \overline{i}_{r}' = \frac{M}{L_{s}}\overline{i}_{r}, l'\text{équation devient}$$
$$\overline{v}_{s} = R_{s}\overline{i}_{s} + jL_{s}\omega_{s}\overline{i}_{s} + jL_{s}\omega_{s}\overline{i}_{r}' = R_{s}\overline{i}_{s} + jL_{s}\omega_{s}\frac{(\overline{i}_{s} + \overline{i}_{r}')}{(\overline{i}_{m}:\text{courant magnetisant})}$$

Côté rotor nous avons :

$$0 = \frac{R_r}{g}\overline{i} + jL_r\omega_s\overline{i} + jM\omega_s\overline{i}$$

En multipliant par $\frac{L_s}{M}$ et en remplaçant \overline{i} , en fonction de \overline{i} , on obtient :

$$0 = \left(\frac{R_{r}}{g} \frac{\overline{i}_{r}}{\frac{L_{s}}{M}\overline{i}'} + jL_{r}\omega_{s} \frac{\overline{i}_{r}}{\overline{i}_{r}} + jM\omega_{s}\overline{i}_{s}\right)\frac{L_{s}}{M} = \frac{R_{r}}{g}\left(\frac{L_{s}}{M}\right)^{2}\overline{i}_{r}' + jL_{r}\omega_{s}\left(\frac{L_{s}}{M}\right)^{2}\overline{i}_{r}' + jL_{s}\omega_{s}\overline{i}_{s}$$

$$0 = \frac{R_{r}}{g}\left(\frac{L_{s}}{M}\right)^{2}\overline{i}_{r}' + jL_{r}\omega_{s}\left(\frac{L_{s}}{M}\right)^{2}\overline{i}_{r}' + jL_{s}\omega_{s}(\overline{i}_{s} + \overline{i}_{r}' - \overline{i}_{r}') = \frac{R_{r}}{g}\left(\frac{L_{s}}{M}\right)^{2}\overline{i}_{r}' + j\omega_{s}(L_{r}\left(\frac{L_{s}}{M}\right)^{2} - L_{s})\overline{i}_{r}' + jL_{s}\omega_{s}(\overline{i}_{s} + \overline{i}_{r}')$$
Posons $R_{r}' = R_{r}\left(\frac{L_{s}}{M}\right)^{2}$ et $L_{r}' = L_{r}\left(\frac{L_{s}}{M}\right)^{2} - L_{s} = L_{r}\left(\frac{L_{s}}{M}\right)^{2}\left(1 - \frac{M^{2}}{L_{s}L_{r}}\right) = \sigma L_{r}\left(\frac{L_{s}}{M}\right)^{2}$ avec $\sigma = 1 - \frac{M^{2}}{L_{s}L_{r}}$

Où R'_r est la résistance rotorique ramenée au stator, L'_r est l'inductance totale de fuite ramenée au stator.

$$0 = \frac{R'_r}{g} \, \overline{i'}_r + jL'_r \omega_s \, \overline{i'}_r + jL_s \omega_s \underbrace{(\overline{i}_s + \overline{i'})}_{\substack{\overline{i}_n: \text{courant} \\ \text{magnétisant}}}$$

Techniques de la commande électrique Master en Commandes Electriques

Expression du couple électromagnétique en régime permanent

- Calcul de la puissance transmise au rotor

$$P_{tr} = 3\frac{R'_r}{g}i'^2_r$$

Le courant rotorique complexe \overline{i}'_{t} est calculé par l'expression suivante :

$$\overline{\dot{i}_{r}^{\prime}} = -\frac{\overline{v_{s}} - R_{s}\overline{\dot{i}_{s}}}{\frac{R_{r}^{\prime}}{g} + jL_{r}^{\prime}\omega_{s}}$$

En négligeant la résistance statorique, cette expression devient :

$$\overline{i}_{r}^{\prime}=-\frac{\overline{v}_{s}}{\frac{R_{r}^{\prime}}{g}+jL_{r}^{\prime}\omega_{s}}$$

Le module de ce courant est :

$$i'_{r} = \frac{v_{s}}{\sqrt{\left(\frac{R'_{r}}{g}\right)^{2} + \left(L'_{r}\omega_{s}\right)^{2}}}$$

En remplaçant i' dans l'expression de la puissance transmise, on obtient :

$$P_{tr} = 3v_s^2 \frac{\frac{R'_r}{g}}{\left(\frac{R'_r}{g}\right)^2 + (L'_r \omega_s)^2}$$

- Calcul des pertes par effet Joule au rotor

$$P_{Jr} = 3R_r^\prime i_r^{\prime 2} = gP_{tr}$$

- Calcul de la puissance électromagnétique

$$P_{em} = P_{tr} - P_{Jr} = (1 - g)P_{tr}$$

Expression du couple électromagnétique en fonction de la tension statorique

Le couple est défini par :

$$C_{em} = \frac{P_{em}}{\Omega}$$
 avec $\Omega = (1-g)\Omega_s$ et $\Omega_s = \frac{\omega_s}{p}$

$$C_{em} = \frac{(1-g)P_{tr}}{(1-g)\frac{\omega_s}{p}} = p\frac{P_{tr}}{\omega_s}$$

D'où l'expression du couple en fonction de la tension :

$$C_{em} = \frac{3pv_s^2}{\omega_s} \frac{\frac{R'_r}{g}}{\left(\frac{R'_r}{g}\right)^2 + (L'_r\omega_s)^2}$$

Expression du couple électromagnétique en fonction du flux statorique

La tension et le flux sont liés par la relation :

$$\overline{v}_{_{s}}=R_{_{s}}\overline{\dot{i}}_{_{s}}+j\omega_{_{s}}\overline{\varphi}_{_{s}}\simeq j\omega_{_{s}}\overline{\varphi}_{_{s}}\quad (R_{_{s}}\approx 0)$$

Donc :

$$v_s = \omega_s \phi_s$$

Remplaçant v_s dans l'expression du couple, il vient :

$$C_{em} = \frac{3p(\omega_s\phi_s)^2}{\omega_s} \frac{\frac{R'_r}{g}}{\left(\frac{R'_r}{g}\right)^2 + (L'_r\omega_s)^2} = 3p\omega_s\phi_s^2 \frac{\frac{R'_r}{g}}{\left(\frac{R'_r}{g}\right)^2 + (L'_r\omega_s)^2} = 3p\phi_s^2 \frac{R'_rg\omega_s}{R'_r^2 + (L'_rg\omega_s)^2}$$

Avec $\omega_r = g\omega_s$, l'expression du couple en fonction du flux devient :

$$C_{em} = 3p\phi_s^2 \frac{R'_r \omega_r}{R'_r^2 + (L'_r \omega_r)^2}$$

Calcul du couple maximal

Le couple présente un maximum $C_{_{em\,max}}$ pour une pulsation $\omega_{_{r\,max}}$ définit par :

$$\frac{dC_{_{em}}}{d\omega_{_{r}}} = 0 \Longrightarrow 3p\phi_{_{s}}^{^{2}}R'_{_{r}}\frac{R'_{_{r}}^{^{2}} + (L'_{_{r}}\omega_{_{r}})^{^{2}} - 2(L'_{_{r}}\omega_{_{r}})^{^{2}}}{(R'_{_{r}}^{^{\prime 2}} + (L'_{_{r}}\omega_{_{r}})^{^{2}})^{^{2}}} = 0 \Longrightarrow R'_{_{r}}^{^{\prime 2}} - (L'_{_{r}}\omega_{_{r}})^{^{2}} = 0$$

Ce qui donne :

$$\omega_{r max} = \frac{R'_r}{L'_r}$$
 qui correspondant à un glissement de $g_{max} = \frac{R'_r}{L'_r \omega_s}$

Le couple maximal est donc :

$$C_{em max} = C_{em}(\omega_{rmax}) = 3p\phi_{s}^{2} \frac{R_{r}' \frac{R_{r}'}{L_{r}'}}{R_{r}'^{2} + (L_{r}' \frac{R_{r}'}{L_{r}'})^{2}} = \frac{3p\phi_{s}^{2}}{2L_{r}'} = \frac{3p}{2L_{r}'} \left(\frac{v_{s}}{\omega_{s}}\right)^{2}$$

Expression du couple à glissement faible

Pour un fonctionnement au voisinage du synchronisme, le glissement est faible et $\omega_r = g\omega_s \rightarrow 0 \Rightarrow L'_r\omega_r \ll R'_r \Rightarrow (R'_r)^2 + (L'_r\omega_r)^2 \simeq (R'_r)^2$ ce qui en résulte :

$$C_{em} \simeq 3p\phi_s^2 \frac{R_r'\omega_r}{R_r'^2} = 3p\phi_s^2 \frac{\omega_r}{R_r'} = \frac{3p}{R_r'}\phi_s^2 g\omega_s = \frac{3p}{R_r'} \left(\frac{v_s}{\omega_s}\right)^2 \omega_s = \frac{3p}{R_r'} \frac{v_s^2}{\omega_s} g$$

Cette expression montre une variation quasi linéaire du couple en fonction du glissement ou la pulsation rotorique.

Modélisation de la machine synchrone à aimants permanents

Classification générale des machines à aimants permanents

Les machines à aimants permanents peuvent être classées selon la forme de la f.é.m induite en deux familles :

- Machines à aimants permanents trapézoïdales ;

- Machines à aimants permanents sinusoïdales.

Classification des machines à aimants permanents sinusoïdales selon la disposition des aimants sur le rotor

- Machines synchrones à aimants permanents montés en surface (MSAPS); en anglais : Surface Permanent Magnet Synchronous Machines (SPMSM) ;

- Machines synchrones à aimants permanents enterrés (MSAPE); en anglais : Interior Permanent Magnet Synchronous Machines (IPMSM).

Modélisation de la machine synchrone à aimants permanents enterrés en utilisant la notion de phaseur spatial

Hypothèses simplificatrices

- Le stator de la machine est connecté en étoile avec neutre isolé.

- La saturation du circuit magnétique est négligeable.
- La distribution de la force magnétomotrice est sinusoïdale.
- Les pertes par courants de Faucoult et par hystérésis sont négligeables.
- L'effet de peau et celui de la température sur les résistances sont négligeables.

Equations électriques

Les tensions de phases statoriques sont exprimées en fonction des flux par :

$$\begin{aligned} \mathbf{v}_{sa} &= \mathbf{R}_{s} \mathbf{i}_{sa} + \frac{\mathrm{d}\phi_{sa}}{\mathrm{d}t} \\ \mathbf{v}_{sb} &= \mathbf{R}_{s} \mathbf{i}_{sb} + \frac{\mathrm{d}\phi_{sb}}{\mathrm{d}t} \\ \mathbf{v}_{sc} &= \mathbf{R}_{s} \mathbf{i}_{sc} + \frac{\mathrm{d}\phi_{sc}}{\mathrm{d}t} \end{aligned}$$

Notion de phaseur spatial (Vecteur d'espace complexe)

Le phaseur spatial (space phasor) ou le vecteur d'espace complexe (complex space vector) est défini par :

$$\overline{x}_{abc} = \frac{2}{3}(x_a + \overline{a}x_b + \overline{a}^2x_c) \text{ avec } \overline{a} = e^{j\frac{2\pi}{3}} = -\frac{1}{2} + j\frac{\sqrt{3}}{2} \text{ est l'opérateur de rotation}$$

Le facteur $\frac{2}{3}$ est utilisé pour assurer l'égalité entre l'amplitude du phaseur spatial représentant le système triphasé équilibré et l'amplitude d'une phase du système triphasé.

Ecriture vectorielle des équations des tensions :

$$v_{sa} = R_{s}i_{sa} + \frac{d\phi_{sa}}{dt}$$
$$\overline{a}v_{sb} = R_{s}\overline{a}i_{sb} + \frac{d(\overline{a}\phi_{sb})}{dt}$$
$$\overline{a}^{2}v_{sc} = R_{s}\overline{a}^{2}i_{sc} + \frac{d(\overline{a}^{2}\phi_{sc})}{dt}$$

$$v_{sa} + \overline{a}v_{sb} + \overline{a}^2v_{sc} = R_s(i_{sa} + \overline{a}i_{sb} + \overline{a}^2i_{sc}) + \frac{d}{dt}(\phi_{sa} + \overline{a}\phi_{sb} + \overline{a}^2\phi_{sc})$$

Ce qui en résulte :

$$\overline{v}_{sabc} = R_s \overline{\overline{i}}_{sabc} + \frac{d\overline{\phi}_{sabc}}{dt}$$

Equations magnétiques

Les flux totalisés dans les enroulements statoriques en fonction des flux générés par les courants statoriques et le flux des aimants sont :

$$\begin{split} \varphi_{sa} &= L_{sa}i_{sa} + M_{sab}i_{sb} + M_{sac}i_{sc} + \varphi_{PM}\cos(\theta_{r}) \\ \varphi_{sb} &= M_{sba}i_{sb} + L_{sb}i_{sb} + M_{sbc}i_{sc} + \varphi_{PM}\cos(\theta_{r} - \frac{2\pi}{3}) \\ \varphi_{sc} &= M_{sca}i_{sa} + M_{scb}i_{sb} + L_{sc}i_{sc} + \varphi_{PM}\cos(\theta_{r} + \frac{2\pi}{3}) \end{split}$$

Avec :

L_{sa} : Inductance propre de la phase a

M_{sab} : Inductance mutuelle entre les phases a et b

Les autres inductances propres et mutuelles sont définies de la même manière.

 $\phi_{\mbox{\tiny PM}}$: Amplitude du flux établi par l'aimant permanent dans le rotor.

 θ_r : Position électrique du rotor.

Du fait que l'entrefer n'est pas uniforme dans la machine synchrone à aimants permanents enterrés, les inductances propres et mutuelles des bobinages statoriques sont en fonction de la position du rotor.

Les inductances propres des bobines statoriques sont données par :

$$\begin{split} & L_{sa} = L_{ls} + L_{a} - L_{b}\cos(2\theta_{r}) \\ & L_{sb} = L_{ls} + L_{a} - L_{b}\cos(2(\theta_{r} - \frac{2\pi}{3})) = L_{ls} + L_{a} - L_{b}\cos(2\theta_{r} - \frac{4\pi}{3}) \\ & L_{sc} = L_{ls} + L_{a} - L_{b}\cos(2(\theta_{r} + \frac{2\pi}{3})) = L_{ls} + L_{a} - L_{b}\cos(2\theta_{r} + \frac{4\pi}{3}) \end{split}$$

Les inductances mutuelles entre les phases statoriques sont données par :

$$M_{sab} = M_{sba} = -\frac{1}{2}L_{a} - L_{b}\cos(2(\theta_{r} - \frac{\pi}{3})) = -\frac{1}{2}L_{a} - L_{b}\cos(2\theta_{r} - \frac{2\pi}{3})$$
$$M_{sac} = M_{sca} = -\frac{1}{2}L_{a} - L_{b}\cos(2(\theta_{r} + \frac{\pi}{3})) = -\frac{1}{2}L_{a} - L_{b}\cos(2\theta_{r} + \frac{2\pi}{3})$$
$$M_{sbc} = M_{scb} = -\frac{1}{2}L_{a} - L_{b}\cos(2(\theta_{r} + \pi)) = -\frac{1}{2}L_{a} - L_{b}\cos(2\theta_{r})$$

Ecriture vectorielle des équations des flux :

Le vecteur flux $\overline{\phi}_{sabc}$ peut être calculé par :

$$\overline{\varphi}_{sabc} = \frac{2}{3}(\varphi_{sa} + \overline{a}\varphi_{sb} + \overline{a}^2\varphi_{sc})$$

En remplaçant les flux par leurs valeurs, on obtient :

$$\begin{split} \overline{\phi}_{sabc} &= \frac{2}{3} (L_{sa} i_{sa} + M_{sab} i_{sb} + M_{sac} i_{sc} + \phi_{PM} \cos(\theta_r) \\ &+ \overline{a} (M_{sba} i_{sb} + L_{sb} i_{sb} + M_{sbc} i_{sc} + \phi_{PM} \cos(\theta_r - \frac{2\pi}{3})) \\ &+ \overline{a}^2 (M_{sca} i_{sa} + M_{scb} i_{sb} + L_{sc} i_{sc} + \phi_{PM} \cos(\theta_r + \frac{2\pi}{3}))) \end{split}$$

En remplaçant les inductances propres et mutuelles ainsi que les opérateurs \overline{a} et \overline{a}^2 par leurs valeurs, on obtient :

$$\overline{\phi}_{sabc} = (L_{ls} + \frac{3}{2}L_a)\overline{i}_{sabc} + \frac{3}{2}L_b\overline{i}_{sabc}^* e^{j2\theta_r} + \phi_{PM}e^{j\theta_r}$$

Avec :

 $\overline{i}_{sabc} = \frac{2}{3}(i_{sa} + \overline{a}i_{sb} + \overline{a}^{2}i_{sc}) \text{ et } \overline{i}_{sabc}^{*} = \frac{2}{3}(i_{sa} + \overline{a}^{2}i_{sb} + \overline{a}i_{sc}) \text{ sont respectivement le vecteur spatial du courant statorique et de son conjugué.}$

On définit les inductances directe et en quadrature par:

$$L_{d} = L_{ls} + \frac{3}{2}(L_{a} + L_{b})$$
$$L_{q} = L_{ls} + \frac{3}{2}(L_{a} - L_{b})$$

Et observons que :

$$\frac{1}{2}(L_{d} + L_{q}) = \frac{1}{2}(L_{ls} + \frac{3}{2}(L_{a} + L_{b}) + L_{ls} + \frac{3}{2}(L_{a} - L_{b})) = (2L_{ls} + 3L_{a}) = L_{ls} + \frac{3}{2}L_{a}$$
$$\frac{1}{2}(L_{q} - L_{d}) = \frac{1}{2}(L_{ls} + \frac{3}{2}(L_{a} - L_{b}) - L_{ls} - \frac{3}{2}(L_{a} + L_{b})) = -\frac{1}{2}(3L_{b}) = -\frac{3}{2}L_{b}$$

L'équation du vecteur flux devient donc :

$$\overline{\phi}_{sabc} = \frac{1}{2} (L_{d} + L_{q}) \overline{i}_{sabc} - \frac{1}{2} (L_{q} - L_{d}) \overline{i}_{sabc}^{*} e^{j2\theta_{r}} + \phi_{PM} e^{j\theta_{r}}$$

Transformation de Park

Les grandeurs dans le repère (abc) peuvent être transformées dans le repère tournant (uv) en utilisant la matrice de transformation de Park suivante :

$$\begin{pmatrix} x_{u} \\ x_{v} \end{pmatrix} = \frac{2}{3} \begin{pmatrix} \cos(\psi) & \cos(\psi - \frac{2\pi}{3}) & \cos(\psi + \frac{2\pi}{3}) \\ -\sin(\psi) & -\sin(\psi - \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \end{pmatrix} \begin{pmatrix} x_{a} \\ x_{b} \\ x_{c} \end{pmatrix}$$

La transformation inverse est comme suit :

$$\begin{pmatrix} x_{a} \\ x_{b} \\ x_{c} \end{pmatrix} = \begin{pmatrix} \cos(\psi) & -\sin(\psi) \\ \cos(\psi - \frac{2\pi}{3}) & -\sin(\psi - \frac{2\pi}{3}) \\ \cos(\psi + \frac{2\pi}{3}) & -\sin(\psi + \frac{2\pi}{3}) \end{pmatrix} \begin{pmatrix} x_{u} \\ x_{v} \end{pmatrix}$$

Forme vectorielle de la transformation de Park

Nous avons :

$$x_a = x_u \cos(\psi) - x_v \sin(\psi)$$
$$x_b = x_u \cos(\psi - \frac{2\pi}{3}) - x_v \sin(\psi - \frac{2\pi}{3})$$
$$x_c = x_u \cos(\psi + \frac{2\pi}{3}) - x_v \sin(\psi + \frac{2\pi}{3})$$

Calculons le vecteur complexe \bar{x}_{abc}

$$\overline{x}_{abc} = \frac{2}{3}(x_a + \overline{a}x_b + \overline{a}^2x_c) = \frac{2}{3}(x_u\cos(\psi) - x_v\sin(\psi) + \overline{a}(x_u\cos(\psi - \frac{2\pi}{3}) - x_v\sin(\psi - \frac{2\pi}{3}) + \overline{a}^2(x_u\cos(\psi + \frac{2\pi}{3}) - x_v\sin(\psi + \frac{2\pi}{3})))$$

$$\overline{\mathbf{x}}_{abc} = \frac{2}{3}\left(\left(\cos(\psi) + \overline{a}\cos(\psi - \frac{2\pi}{3}) + \overline{a}^2\cos(\psi + \frac{2\pi}{3})\right)\mathbf{x}_u - \left(\sin(\psi) + \overline{a}\sin(\psi - \frac{2\pi}{3}) + \sin(\psi + \frac{2\pi}{3})\right)\mathbf{x}_v\right)$$

$$\cos(\psi) + \overline{a}\cos(\psi - \frac{2\pi}{3}) + \overline{a}^{2}\cos(\psi + \frac{2\pi}{3}) = \cos(\psi) + (-\frac{1}{2} + j\frac{\sqrt{3}}{2})\cos(\psi - \frac{2\pi}{3}) + (-\frac{1}{2} - j\frac{\sqrt{3}}{2})\cos(\psi + \frac{2\pi}{3})$$
$$= \underbrace{\cos(\psi) - \frac{1}{2}\cos(\psi - \frac{2\pi}{3}) - \frac{1}{2}\cos(\psi + \frac{2\pi}{3})}_{\frac{3}{2}\cos(\psi)} + j\frac{\sqrt{3}}{2}\underbrace{(\cos(\psi - \frac{2\pi}{3}) - \cos(\psi + \frac{2\pi}{3}))}_{-2\sin(\psi)\sin(-\frac{2\pi}{3}) = \sqrt{3}\sin(\psi)}$$

$$=\frac{3}{2}\cos(\psi)+j\frac{\sqrt{3}}{2}\sqrt{3}\sin(\psi)=\frac{3}{2}(\cos(\psi)+j\sin(\psi))$$

$$\sin(\psi) + \overline{a}\sin(\psi - \frac{2\pi}{3}) + \overline{a}^{2}\sin(\psi + \frac{2\pi}{3}) = \sin(\psi) + (-\frac{1}{2} + j\frac{\sqrt{3}}{2})\sin(\psi - \frac{2\pi}{3}) + (-\frac{1}{2} - j\frac{\sqrt{3}}{2})\sin(\psi + \frac{2\pi}{3})$$
$$= \underbrace{\sin(\psi) - \frac{1}{2}\sin(\psi - \frac{2\pi}{3}) - \frac{1}{2}\sin(\psi + \frac{2\pi}{3})}_{\frac{3}{2}\sin(\psi)} + j\frac{\sqrt{3}}{2}\underbrace{(\sin(\psi - \frac{2\pi}{3}) - \sin(\psi + \frac{2\pi}{3}))}_{2\cos(\psi)\sin(-\frac{2\pi}{3}) = -\sqrt{3}\cos(\psi)}$$
$$= \frac{3}{2}\sin(\psi) - j\frac{\sqrt{3}}{2}\sqrt{3}\cos(\psi) = \frac{3}{2}(\sin(\psi) - j\cos(\psi)) = -\frac{3}{2}j(\cos(\psi) + j\sin(\psi))$$

Ce qui conduit à :

$$\overline{\mathbf{x}}_{abc} = \frac{2}{3} \left(\frac{3}{2} (\cos(\psi) + j\sin(\psi)) \mathbf{x}_{u} + \frac{3}{2} j(\cos(\psi) + j\sin(\psi)) \mathbf{x}_{v} \right)$$
$$= (\mathbf{x}_{u} + j\mathbf{x}_{v})(\cos(\psi) + j\sin(\psi)) = \overline{\mathbf{x}}_{uv} e^{j\psi}$$

Application de la transformation vectorielle sur les équations électriques

$$\begin{split} \overline{v}_{sabc} &= R_{s}\overline{i}_{sabc} + \frac{d\overline{\varphi}_{sabc}}{dt} \\ \overline{v}_{suv}e^{j\psi} &= R_{s}\overline{i}_{suv}e^{j\psi} + \frac{d}{dt}(\overline{\varphi}_{suv}e^{j\psi}) = R_{s}\overline{i}_{suv}e^{j\psi} + \frac{d\overline{\varphi}_{suv}}{dt}e^{j\psi} + j\frac{d\psi}{dt}\overline{\varphi}_{suv}e^{j\psi} \end{split}$$

En multipliant par $e^{-j\psi}$, on obtient :

$$\overline{v}_{_{suv}}=R_{_{s}}\overline{\dot{i}}_{_{suv}}+\frac{d\overline{\varphi}_{_{suv}}}{dt}+j\dot{\psi}\overline{\varphi}_{_{suv}}$$

Où \overline{v}_{suv} , \overline{i}_{suv} , $\overline{\phi}_{suv}$ sont respectivement les vecteurs complexes de tension, courant et flux dans le repère tournant (uv).

Application de la transformation vectorielle sur les équations magnétiques

Le vecteur spatial du flux est donné par :

$$\overline{\varphi}_{sabc} = \frac{1}{2} (L_d + L_q) \overline{\underline{i}}_{sabc} - \frac{1}{2} (L_q - L_d) \overline{\underline{i}}_{sabc}^* e^{j2\theta_r} + \varphi_{PM} e^{j\theta_r}$$

$$\overline{\phi}_{suv}e^{j\psi} = \frac{1}{2}(L_d + L_q)\overline{i}_{suv}e^{j\psi} - \frac{1}{2}(L_q - L_d)\overline{i}_{suv}^*e^{-j\psi}e^{j2\theta_r} + \phi_{PM}e^{j\theta_r}$$

En multipliant par $e^{-j\psi}$, on obtient :

$$\begin{split} \overline{\varphi}_{suv} &= \frac{1}{2} (L_d + L_q) \overline{i}_{suv} - \frac{1}{2} (L_q - L_d) \overline{i}_{suv}^* e^{-j2\psi} e^{j2\theta_r} + \varphi_{PM} e^{j\theta_r} e^{-j\psi} \\ &= \frac{1}{2} (L_d + L_q) \overline{i}_{suv} - \frac{1}{2} (L_q - L_d) \overline{i}_{suv}^* e^{j2(\theta_r - \psi)} + \varphi_{PM} e^{j(\theta_r - \psi)} \end{split}$$

Modèle de la MSAP dans un repère lié au stator ($\alpha\beta$)

Si le repère est lié stator, $\psi = 0$ et sa vitesse de rotation $\dot{\psi} = 0$. Dans ces conditions, le modèle de la machine se réduit au suivant :

$$\overline{v}_{s\alpha\beta} = R_s \overline{i}_{s\alpha\beta} + \frac{d\overline{\phi}_{s\alpha\beta}}{dt}$$
$$\overline{\phi}_{s\alpha\beta} = \frac{1}{2} (L_d + L_q) \overline{i}_{s\alpha\beta} - \frac{1}{2} (L_q - L_d) \overline{i}_{s\alpha\beta}^* e^{j2\theta_r} + \phi_{PM} e^{j\theta_r}$$

 $\text{Sachant que}: \ \overline{v}_{_{s\alpha\beta}} = v_{_{s\alpha}} + jv_{_{s\beta}} \text{,} \ \overline{i}_{_{s\alpha\beta}} = i_{_{s\alpha}} + ji_{_{s\beta}} \text{,} \ \overline{\varphi}_{_{s\alpha\beta}} = \varphi_{_{s\alpha}} + j\varphi_{_{s\beta}} \text{, il vient}:$

$$v_{s\alpha} + jv_{s\beta} = R_s(i_{s\alpha} + ji_{s\beta}) + \frac{d}{dt}(\phi_{s\alpha} + j\phi_{s\beta})$$

$$\phi_{s\alpha} + j\phi_{s\beta} = \frac{1}{2}(L_d + L_q)(i_{s\alpha} + ji_{s\beta}) - \frac{1}{2}(L_q - L_d)(i_{s\alpha} - ji_{s\beta})(\cos(2\theta_r) + j\sin(2\theta_r)) + \phi_{PM}(\cos(\theta_r) + j\sin(\theta_r))$$

En séparant les parties réelles et imaginaires, on obtient :

Par égalisation des termes réels et imaginaires, on obtient le modèle suivant :

$$v_{s\alpha} = R_s i_{s\alpha} + \frac{d\phi_{s\alpha}}{dt}$$
$$v_{s\beta} = R_s i_{s\beta} + \frac{d\phi_{s\beta}}{dt}$$

$$\begin{split} \varphi_{s\alpha} &= \frac{1}{2} (L_d + L_q - (L_q - L_d) \cos(2\theta_r)) \mathbf{i}_{s\alpha} - \frac{1}{2} (L_q - L_d) \mathbf{i}_{s\beta} \sin(2\theta_r) + \varphi_{PM} \cos(\theta_r) \\ \varphi_{s\beta} &= \frac{1}{2} (L_d + L_q + (L_q - L_d) \cos(2\theta_r)) \mathbf{i}_{s\beta} - \frac{1}{2} (L_q - L_d) \mathbf{i}_{s\alpha} \sin(2\theta_r) + \varphi_{PM} \sin(\theta_r) \end{split}$$

Modèle de la MSAP dans un repère lié au rotor (dq)

Si le repère est lié rotor, $\psi = \theta_r$ et sa vitesse de rotation $\dot{\psi} = \dot{\theta}_r = \omega_r$. Dans ces conditions, le modèle de la machine se réduit au suivant :

$$\overline{\mathbf{v}}_{sdq} = \mathbf{R}_{s} \overline{\mathbf{i}}_{sdq} + \frac{d\overline{\phi}_{sdq}}{dt} + j\dot{\theta}_{r}\overline{\phi}_{sdq}$$
$$\overline{\phi}_{sqd} = \frac{1}{2} (\mathbf{L}_{d} + \mathbf{L}_{q}) \overline{\mathbf{i}}_{sdq} - \frac{1}{2} (\mathbf{L}_{q} - \mathbf{L}_{d}) \overline{\mathbf{i}}_{sdq}^{*} e^{j2(\theta_{r} - \theta_{r})} + \phi_{PM} e^{j(\theta_{r} - \theta_{r})}$$

Ou encore :

$$\overline{v}_{sdq} = \mathbf{R}_{s} \overline{\mathbf{i}}_{sdq} + \frac{d\overline{\phi}_{sdq}}{dt} + \mathbf{j}\omega_{r}\overline{\phi}_{sdq}$$
$$\overline{\phi}_{sdq} = \frac{1}{2}(\mathbf{L}_{d} + \mathbf{L}_{q})\overline{\mathbf{i}}_{sdq} - \frac{1}{2}(\mathbf{L}_{q} - \mathbf{L}_{d})\overline{\mathbf{i}}_{sdq}^{*} + \phi_{PM}$$

 $\text{Sachant que}: \ \overline{v}_{_{sdq}} = v_{_{sd}} + jv_{_{sq}}, \ \ \overline{i}_{_{sdq}} = i_{_{sd}} + ji_{_{sq}}, \ \ \overline{\varphi}_{_{sdq}} = \varphi_{_{sd}} + j\varphi_{_{sq}}, \ \text{il vient}:$

En séparant les parties réelles et imaginaires, on obtient :

$$\begin{aligned} \mathbf{v}_{sd} + j\mathbf{v}_{sq} &= \mathbf{R}_{s}\mathbf{i}_{sd} + j\mathbf{R}_{s}\mathbf{i}_{sq} + \frac{d\phi_{sd}}{dt} + j\frac{d\phi_{sq}}{dt} + j\omega_{r}\phi_{sd} - \omega_{r}\phi_{sq} = \mathbf{R}_{s}\mathbf{i}_{sd} + \frac{d\phi_{sd}}{dt} - \omega_{r}\phi_{sq} + j(\mathbf{R}_{s}\mathbf{i}_{sq} + \frac{d\phi_{sq}}{dt} + \omega_{r}\phi_{sd}) \\ \phi_{sd} + j\phi_{sq} &= \frac{1}{2}(\mathbf{L}_{d} + \mathbf{L}_{q})(\mathbf{i}_{sd} + j\mathbf{i}_{sq}) - \frac{1}{2}(\mathbf{L}_{q} - \mathbf{L}_{d})(\mathbf{i}_{sd} - j\mathbf{i}_{sq}) + \phi_{PM} \\ &= \frac{1}{2}(\mathbf{L}_{d} + \mathbf{L}_{q})\mathbf{i}_{sd} - \frac{1}{2}(\mathbf{L}_{q} - \mathbf{L}_{d})\mathbf{i}_{sd} + \phi_{PM} + j(\frac{1}{2}(\mathbf{L}_{d} + \mathbf{L}_{q})\mathbf{i}_{sq} + \frac{1}{2}(\mathbf{L}_{q} - \mathbf{L}_{d})\mathbf{i}_{sq}) \\ &= \mathbf{L}_{d}\mathbf{i}_{sd} + \phi_{PM} + j\mathbf{L}_{q}\mathbf{i}_{sq} \end{aligned}$$

En égalisant les termes réels et imaginaires, on obtient le modèle suivant :

$$\begin{split} \mathbf{v}_{sd} &= \mathbf{R}_{s} \mathbf{i}_{sd} + \frac{d \phi_{sd}}{dt} - \omega_{r} \phi_{sq} \\ \mathbf{v}_{sq} &= \mathbf{R}_{s} \mathbf{i}_{sq} + \frac{d \phi_{sq}}{dt} + \omega_{r} \phi_{sd} \\ \phi_{sd} &= \mathbf{L}_{d} \mathbf{i}_{sd} + \phi_{PM} \\ \phi_{sq} &= \mathbf{L}_{q} \mathbf{i}_{sq} \end{split}$$

Il est clair que ce modèle ne dépend pas de la position du rotor. Ceci montre l'utilité de la transformation lié au rotor.

Modèle en courant de la MSAP dans le repère (dq) lié au rotor

En remplaçant les expressions des flux dans les expressions des tensions, on obtient :

$$\begin{aligned} \mathbf{v}_{sd} &= \mathbf{R}_s \mathbf{i}_{sd} + \frac{d}{dt} (\mathbf{L}_d \mathbf{i}_{sd} + \phi_{PM}) - \omega_r (\mathbf{L}_q \mathbf{i}_{sq}) = \mathbf{R}_s \mathbf{i}_{sd} + \mathbf{L}_d \frac{d\mathbf{i}_{sd}}{dt} - \mathbf{L}_q \omega_r \mathbf{i}_{sq} \\ \mathbf{v}_{sq} &= \mathbf{R}_s \mathbf{i}_{sq} + \frac{d}{dt} (\mathbf{L}_q \mathbf{i}_{sq}) + \omega_r (\mathbf{L}_d \mathbf{i}_{sd} + \phi_{PM}) = \mathbf{R}_s \mathbf{i}_{sq} + \mathbf{L}_q \frac{d\mathbf{i}_{sq}}{dt} + \mathbf{L}_d \omega_r \mathbf{i}_{sd} + \omega_r \phi_{PM} \end{aligned}$$

Expressions des puissances actives et réactives dans le repère (dq)

La puissance apparente est définie dans le repère (abc) par :

$$\overline{S} = \frac{3}{2} \overline{v}_{sabc} \overline{i}_{sabc}^*$$

Avec $\overline{v}_{sabc} = \overline{v}_{sdq} e^{j\theta_r}$ and $\overline{i}_{sabc} = \overline{i}_{sdq} e^{j\theta_r} \Rightarrow \overline{i}_{sabc}^* = \overline{i}_{sdq}^* e^{-j\theta_r}$, l'expression de \overline{S} devient :

$$\overline{S} = \frac{3}{2} \overline{v}_{sdq} e^{j\theta_r} \overline{i}_{sdq}^* e^{-j\theta_r} = \frac{3}{2} \overline{v}_{sdq} \overline{i}_{sdq}^* \text{ or } \overline{v}_{sdq} = v_{sd} + jv_{sq} \text{ and } \overline{i}_{sdq}^* = i_{sd} - ji_{sq}$$

$$\overline{S} = \frac{3}{2} (v_{sd} + jv_{sq})(i_{sd} - ji_{sq}) = \frac{3}{2} (v_{sd}i_{sd} - jv_{sd}i_{sq} + jv_{sq}i_{sd} + v_{sq}i_{sq}) = \frac{3}{2} (v_{sd}i_{sd} + v_{sq}i_{sq}) + j\frac{3}{2} (v_{sq}i_{sd} - v_{sd}i_{sq}) = P + jQ$$

Les puissances active et réactive sont données par :

$$P = \frac{3}{2}(v_{sd}i_{sd} + v_{sq}i_{sq})$$
$$Q = \frac{3}{2}(v_{sq}i_{sd} - v_{sd}i_{sq})$$

Puissance électromagnétique

L'expression de la puissance active en fonction des courants et des flux est :

$$\begin{split} P &= \frac{3}{2} (v_{sd} i_{sd} + v_{sq} i_{sq}) = \frac{3}{2} ((R_s i_{sd} + \frac{d\phi_{sd}}{dt} - \omega_r \phi_{sq}) i_{sd} + (R_s i_{sq} + \frac{d\phi_{sq}}{dt} + \omega_r \phi_{sd}) i_{sq}) \\ &= \frac{3}{2} (R_s (i_{sd}^2 + i_{sq}^2) + i_{sd} \frac{d\phi_{sd}}{dt} + i_{sq} \frac{d\phi_{sq}}{dt} - \omega_r \phi_{sq} i_{sd} + \omega_r \phi_{sd} i_{sq}) \\ P &= \underbrace{\frac{3}{2} R_s (i_{sd}^2 + i_{sq}^2)}_{Puissance perdue} + \underbrace{\frac{3}{2} (i_{sd} \frac{d\phi_{sd}}{dt} + i_{sq} \frac{d\phi_{sq}}{dt})}_{Variation del 'énergie} + \underbrace{\frac{3}{2} \omega_r (\phi_{sd} i_{sq} - \phi_{sq} i_{sd})}_{Puissance électromagnétique} \end{split}$$

La puissance électromagnétique est donc :

$$P_{em} = \frac{3}{2}\omega_r(\phi_{sd}i_{sq} - \phi_{sq}i_{sd})$$

Couple électromagnétique

Le couple électromagnétique développé par le machine est défini par :

$$C_{em} = \frac{P_{em}}{\Omega} = p \frac{P_{em}}{\omega_r} = p \frac{\frac{3}{2} \omega_r (\phi_{sd} i_{sq} - \phi_{sq} i_{sd})}{\omega_r}$$
$$C_{em} = \frac{3}{2} p (\phi_{sd} i_{sq} - \phi_{sq} i_{sd})$$

Expression du couple en fonction des courants

En remplaçant les flux par leurs expressions, on obtient :

$$C_{em} = \frac{3}{2} p(\phi_{sd} i_{sq} - \phi_{sq} i_{sd}) = \frac{3}{2} p((L_d i_{sd} + \phi_{PM}) i_{sq} - (L_q i_{sq}) i_{sd})$$
$$C_{em} = \frac{3}{2} p((L_d - L_q) i_{sd} i_{sq} + \phi_{PM} i_{sq})$$

Le couple peut être écrit sous la forme suivante :

$$C_{em} = C_{ems} + C_{emr}$$
 avec
 $C_{ems} = \frac{3}{2}p\phi_{PM}i_{sq}$: Le couple synchrone (synchronous torque)

 $C_{emr} = \frac{3}{2}p(L_{d} - L_{q})i_{sd}i_{sq}$: Le couple réluctant (réluctance toruque)

Remarque : Pour une machine SPMSM, $L_d = L_q$ et le couple réluctant n'exixte pas.

Equation mécanique

L'équation mécanique de la machine est :

$$J\frac{d\Omega}{dt} = C_{em} - f\Omega - C_{r}$$

Résumé

Les équations électriques et magnétiques de la machine synchrone à aimants permanents dans un repère (dq) lié au rotor sont regroupées dans le tableau suivant :

Equations des tensions	$\begin{aligned} \mathbf{v}_{sd} &= \mathbf{R}_{s} \mathbf{i}_{sd} + \frac{d\phi_{sd}}{dt} - \omega_{r} \phi_{sq} \\ \mathbf{v}_{sq} &= \mathbf{R}_{s} \mathbf{i}_{sq} + \frac{d\phi_{sq}}{dt} + \omega_{r} \phi_{sd} \end{aligned}$
Equations des flux	$\begin{split} \varphi_{sd} &= L_{d} i_{sd} + \varphi_{PM} \\ \varphi_{sq} &= L_{q} i_{sq} \end{split}$
Equations mécaniques	$J\frac{d\Omega}{dt} = C_{em} - f\Omega - C_{r}$ $C_{em} = \frac{3}{2}p(\phi_{sd}i_{sq} - \phi_{sq}i_{sd})$