

Université Mohamed Boudiaf-M'sila Faculté des Mathématiques et de l'informatique Département des Mathématiques

Module: **Probabilités**,

2 ième Année Licence LMD, Année universitaire: 2020/2021

Cours 03: Variables aléatoires à une dimension

Généralement, on n'est pas intéressé directement par les résultats des expériences aléatoires, mais par une certaine fonction de ce résultat. Considérons par exemple l'expérience qui consiste à lancer une pièce jusqu'à l'obtention pour la première fois 'Pile'. Introduisons donc une fonction de Ω dans \mathbb{R} qui à tout

$$w \in \Omega = \{P, FP, FFP, \ldots\}$$

associe le nombre

$$X(w) =$$
le nombre de lancers nécessaires pour avoir un Pile.
= $\{1, 2, 3, ...\} = \mathbb{N}^*$.

Une telle fonction X définie sur Ω et à valeurs dans \mathbb{R} s'appelle une variable aléatoire réelle.

Définition

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité. Une variable aléatoire réelle X est une application définie sur Ω , qui associe une valeur réelle à chaque résultat de Ω . Donc,

$$X: \Omega \to \mathbb{R}$$
 $w \mapsto X(w)$

à chaque événement élémentaire w, on associe un nombre réel X(w).

Exemple 1.

On lance une pièce trois fois . On définie une variable aléatoire X qui s'intéresse au nombre de fois où PILE apparaît. A chaque événement élémentaire w, on associe X(w). Ainsi,

$$w$$
 PPP PPF PFP FPP FFP FFF FFF $X\left(\Omega\right)$ 3 2 2 2 1 1 0

Exemple 2._

On lance un dé plusieurs fois et on s'intéresse à la variable aléatoire X qui compte le nombre de lancers jusqu'à l'obtention de "6" pour la première fois. On définit donc l'ensemble des valeurs de cette variable comme suite

$$X(\Omega) = \{1, 2,\} = \mathbb{N}^*.$$

Variable aléatoire discrète

Si une variable aléatoire X prend un nombre de valeurs <u>fini</u> ou <u>dénombrable</u>, on parle donc d'une variable aléatoire discrète.

Exemple

- La variable aléatoire qui s'intéresse à la somme de résultats de deux dés:

$$X(\Omega) = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$$

- La variable aléatoire qui s'intéresse au nombre de clients dans un magasin:

$$X(\Omega) = \mathbb{N}.$$

- La variable aléatoire qui s'intéresse au nombre d'appels arrivant à un standard téléphonique en une semaine:

$$X(\Omega) = \mathbb{N}.$$

Loi de probabilité.

La loi d'une variable aléatoire discrète X est la liste de toutes les valeurs différentes que peut prendre X avec les probabilités associées.

Notation

On note

$$\mathbb{P}(X = x) = \mathbb{P}(X^{-1}\{x\})$$
$$= \mathbb{P}(w \in \Omega : X(w) = x)$$

On a

$$\sum_{x_k \in X(\Omega)} \mathbb{P}\left(X = x_k\right) = 1.$$

Exemple 1.

-Dans un jeu du dé, on définie une variable aléatoire X qui donne un gain comme suite

La loi de X est donnée comme suite:

$$x_k$$
 (Valeurs de X) 2 3 4 -5
 $p_k = \mathbb{P}(X = x_k)$ $\frac{3}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$

On remarque que

$$\sum_{k=1}^{4} \mathbb{P}(X = x_k) = \frac{3}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = 1$$

Exemple 2

- Dans le lancer d'une pièce trois fois, X est la variable aléatoire qui compte le nombre de PILE apparaît. La loi de X est donnée comme suite,

On remarque que

$$\sum_{k=1}^{4} p_k = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1.$$

Exemple 3

- La variable aléatoire qui s'intéresse à la somme de deux dés

On remarque que

$$\sum_{k=1}^{11} p_k = 1.$$

Espérance Mathématique

L'espérance mathématique d'une variable aléatoire est l'un des concepts les plus importants en théorie des probabilités. Pour une variable aléatoire discrète X, on définit l'espérance de X, notée E[X], par l'expression

$$E[X] = \sum_{x_k \in X(\Omega)} x_k \mathbb{P}(X = x_k).$$

où $\mathbb{P}(X = x_k)$ est la probabilité correspondante à chaque $x_k \in X(\Omega)$.

Remarque_

On peut comprendre l'espérance E[X] comme étant la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois.

Properiétés de l'espérance

Soit X une variable aléatoire discrète. Alors,

- 1) E[a] = a pour tout $a \in \mathbb{R}$.
- 2) E[bX + c] = bE[X] + c pour tous $b, c \in \mathbb{R}$
- 3) E[X+Y] = E[X] + E[Y] avec Y est une autre variable aléatoire discrète

Variance_

On définit la variance de X comme suite

$$V[X] = E[X^2] - E[X]^2.$$

Proposition_

- 1) V[a] = 0, pour tout $a \in \mathbb{R}$.
- 2) $V[aX + b] = a^2V[X]$, pour tous $b, c \in \mathbb{R}$

Ecart type_

On définir l'écart type de X comme suite

$$\sigma_X = \sqrt{V(X)}.$$

L'écart-type est une caractéristique de dispersion "espérée" pour la loi de probabilité de la variable aléatoire.

Fonction de répartition

On appelle fonction de répartition de la variable aléatoire X, la fonction F_X définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R} : F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(X^{-1}(]-\infty, x])$$

On a aussi:

$$F_X(x) = \sum_{\substack{x_k \in X(\Omega) \\ x_k \le x}} \mathbb{P}(X = x_k)$$

Exemple 1.__

On lance deux dés équilibrés. On définit la variable aléatoire X comme étant : " $le\ max\ de\ deux\ nombres$ ". Tout d'abord, on a

$$F_X(x) = \begin{cases} 0 & \text{si } x < 1\\ \frac{1}{36} & \text{si } 1 \le x < 2\\ \frac{4}{36} & \text{si } 2 \le x < 3\\ \frac{9}{36} & \text{si } 3 \le x < 4\\ \frac{16}{36} & \text{si } 4 \le x < 5\\ \frac{25}{36} & \text{si } 5 \le x < 6\\ 1 & \text{si } x \ge 6 \end{cases}$$

Voici la représentation graphique:

Exemple 2

On lance une pièce de monnaie 3 fois. On définit la variable aléatoire X comme étant : " le nombre de fois où Pile apparaît au cours de ces 3 lancers". Tout d'abord, on a

$$F_X(x) = \begin{cases} 0 & \text{si } x < 0\\ \frac{1}{8} & \text{si } 0 \le x < 1\\ \frac{4}{8} & \text{si } 1 \le x < 2\\ \frac{7}{8} & \text{si } 2 \le x < 3\\ 1 & \text{si } x \ge 3 \end{cases}$$

Voici la représentation graphique:

Properiétés.

Soient X une variable aléatoire discrète et F_X sa fonction de répartition, alors

- 1) F_X est croissante sur \mathbb{R} .
- 2) F_X est continue à droite et admet une limite à gauche en tout point.
- 3) $\lim_{x\to -\infty} F_X(x) = 0$.
- 4) $\lim_{x\to +\infty} F_X(x) = 1$.
- 5) Les deux fonctions de répartitions $F_X = F_Y$ si et seulement si les variables aléatoires X et Y ont même loi.
- 6) $\mathbb{P}(a < X \leq b) = F_X(b) F_X(a)$.
- 7) $\mathbb{P}(X > b) = 1 \mathbb{P}(X \le b) = 1 F_X(b)$.