Notes de cours des systèmes asservis du 1^{ier} ordre

Système du 1er ordre (1)

Système régi par l'équation différentielle

$$T\dot{y}(t) + y(t) = Ku(t)$$

Fonction de transfert

$$T\ddot{y}(t) + y(t) = Ku(t) \implies sTY(s) + Y(s) = KU(s)$$

$$H(s) = \frac{K}{1+T s}$$

$$T : constante de$$

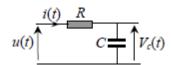
$$K : gain statique$$

$$Pôle : \lambda = -\frac{1}{T}$$

T: constante de temps

Condition de stabilité : T > 0

Exemple



$$RC\dot{y}(t) + y(t) = u(t)$$
 avec $y(t) = V_c(t)$

$$RC\dot{y}(t) + y(t) = u(t) \text{ avec } y(t) = V_c(t)$$

$$C = \frac{1}{1 + Ts} \text{ avec } T = RC$$

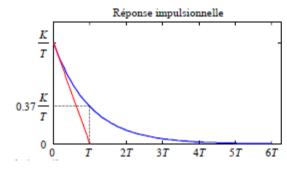
□ Réponse impulsionnelle

• Entrée : $u(t) = \delta(t)$

♦ Réponse du système : $h(t) = \frac{K}{T}e^{-\frac{t}{T}}$

◆ Tangente à l'origine : $x(t) = -\frac{K}{T^2}t + \frac{K}{T}$ (Pente = $-\frac{K}{T^2}$)

La tangente à l'origine coupe l'axe des temps en t = T



0	Τ	2 <i>T</i>	3 <i>T</i>	
$h_0 = \frac{K}{T}$	0.37 h ₀	0.13 h ₀	0.05 h ₀	

□ Réponse indicielle

- ♦ Entrée : signal échelon $u(t) = \Gamma(t)$
- Réponse du système

$$u(t) = \Gamma(t) \implies U(s) = \frac{1}{s}$$
. On en déduit $Y(s) = \frac{K}{s(1+Ts)}$

$$y(t) = K\left(1 - e^{-\frac{t}{T}}\right) = K\left(1 - e^{\lambda t}\right)$$

Valeur de la sortie en régime permanent

$$y_{\infty} = \lim_{t \to \infty} y(t) = K$$

Tangente à l'origine

$$x(t) = \frac{K}{T}t$$
 (Pente = $\frac{K}{T}$)

La tangente à l'origine coupe l'asymptote horizontale y = K en t = T

□ Réponse indicielle (fin)

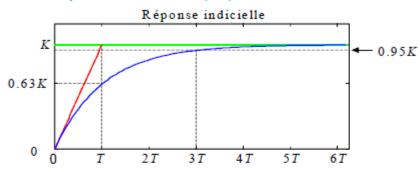
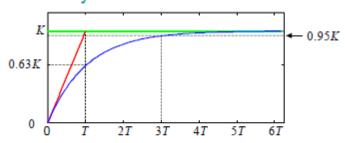


Tableau récapitulatif de l'évolution de la sortie

t	Т	2 <i>T</i>	3 <i>T</i>	5 <i>T</i>	80
$\frac{y(t)}{y_{\infty}}$ (%)	63%	87%	95%	99,4%	100%

y_∞ : valeur de la sortie en régime permanent

Rapidité du système



Temps de réponse t, du système

t, = temps au bout duquel la réponse indicielle atteint 0.95y...

$$t_r\approx 3T$$

Temps de montée t,,

 t_m = temps au bout duquel la réponse passe de $0.1y_{\infty}$ à $0.9y_{\infty}$

$$t_m \approx 2,2T$$

Automatique

□ Réponse à une rampe

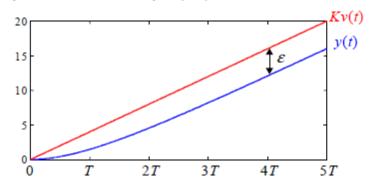
- ◆ Entrée : signal rampe u(t) = v(t)
- Réponse du système

$$u(t) = v(t)$$
 $\Rightarrow U(s) = \frac{1}{s^2}$. On en déduit $Y(s) = \frac{K}{s^2(1+Ts)}$
$$y(t) = K(t-T) + KTe^{-\frac{t}{T}}$$

$$y(t) = K(t-T) + KTe^{-\frac{t}{T}}$$

- Remarques
 - La réponse est la somme de deux termes : une fonction exponentielle décroissante et une rampe retardée, de retard T
 - ► Le terme $KTe^{-\frac{t}{T}} \approx 0$ au bout de $3T \Rightarrow$ la sortie tend asymptotiquement vers K(t-T)
 - La pente à l'origine est nulle

□ Réponse à une rampe (fin)



- ightharpoonup La sortie suit asymptotiquement la rampe Kv(t) avec un retard T
- > L'écart en régime permanent $\varepsilon = Kv(t) y(t)$ est appelé erreur de traînage

Erreur de traînage : $\varepsilon = KT$