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58.1 Introduction

Extensive amounts of knowledge and data stored in medical databases require the development

of specialized tools for accessing the data, data analysis, knowledge discovery, and effective

use of stored knowledge and data, since the increase in data volume causes difficulties in

extracting useful information for decision support. The traditional manual data analysis has

become insufficient, and methods for efficient computer-based analysis indispensable, such as

the technologies developed in the area of Data Mining and knowledge discovery in databases
(Frawley, 1991).

Knowledge discovery in databases is frequently defined as a process (Fayyad, 1996) con-

sisting of the following steps: understanding the domain, forming the data set and cleaning the

data, extracting of regularities hidden in the data thus formulating knowledge in the form of

patterns or models (this step is referred to as Data Mining (DM)), postprocessing of discovered

knowledge, and exploiting the results.

Important issues that arise from the rapidly emerging globality of data and information

are:
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• the provision of standards in terminology, vocabularies and formats to support multi-

linguality and sharing of data,
• standards for the abstraction and visualization of data,
• standards for interfaces between different sources of data,
• integration of heterogeneous types of data, including images and signals, and
• reusability of data, knowledge, and tools.

Many environments still lack standards, which hinders the use of data analysis tools on large

global data sets, limiting their application to data sets collected for specific diagnostic, screen-

ing, prognostic, monitoring, therapy support or other patient management purposes. The emerg-

ing standards that relate to Data Mining are CRISP-DM and PMML. CRISP-DM is a Data

Mining process standard that was crafted by Cross-Industry Standard Process for Data Min-

ing Interest Group (www.crisp-dm.org). PMML (Predictive Data Mining Markup Language,

www.dmg.org), on the other hand, is a standard that defines how to use XML markup language

to store predictive Data Mining models, such as classification trees and classification rule sets.

Modern hospitals are well equipped with monitoring and other data collection devices

which provide relatively inexpensive means to collect and store the data in inter- and intra-

hospital information systems. Large collections of medical data are a valuable resource from

which potentially new and useful knowledge can be discovered through Data Mining. Data

Mining is increasingly popular as it is aimed at gaining an insight into the relationships and

patterns hidden in the data.

Patient records collected for diagnosis and prognosis typically encompass values of anamnes-

tic, clinical and laboratory parameters, as well as results of particular investigations, specific

to the given task. Such data sets are characterized by their incompleteness (missing param-

eter values), incorrectness (systematic or random noise in the data), sparseness (few and/or

non-representable patient records available), and inexactness (inappropriate selection of pa-

rameters for the given task). The development of Data Mining tools for medical diagnosis and

prediction was frequently motivated by the requirements for dealing with these characteristics

of medical data sets (Bratko and Kononenko, 1987, Cestnik et al., 1987).

Data sets collected in monitoring (either acute monitoring of a particular patient in an

intensive care unit, or discrete monitoring over long periods of time in the case of patients

with chronic diseases) have additional characteristics: they involve the measurements of a set

of parameters at different times, requesting the temporal component to be taken into account

in data analysis. These data characteristics need to be considered in the design of analysis tools

for prediction, intelligent alarming and therapy support.

In medicine, Data Mining can be used for solving descriptive and predictive Data Mining

tasks. Descriptive Data Mining tasks are concerned with finding interesting patterns in the

data, as well as interesting clusters and subgroups of data, where typical methods include

association rule learning, and (hierarchical or k-means) clustering, respectively. In contrast,

predictive Data Mining starts from the entire data set and aims at inducing a predictive model

that holds on the data and can be used for prediction or classification of yet unseen instances.

Learning in the predictive Data Mining setting requires labelled data items. Class labels can be

either categorical or continuous; accordingly, predictive tasks concern building classification

models or regression models, respectively.

Data Mining in medicine is most often used for building classification models, these be-

ing used for either diagnosis, prognosis or treatment planning. Predictive Data Mining, which

is the focus of this chapter, is concerned with the analysis of classificatory properties of data

tables. Data represented in the tables may be collected from measurements or acquired from

experts. Rows in the table usually correspond to individuals (training examples) to be ana-

lyzed in terms of their properties (attributes) and the class (concept) to which they belong. In a
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medical setting, a concept of interest can be a disease or a medical outcome. Supervised learn-

ing assumes that training examples are classified whereas unsupervised learning concerns the

analysis of unclassified examples.

This chapter is organized as follows. Section 58.2 presents a selection of symbolic classifi-

cation methods. Section 58.3 complements it by outlining selected subsymbolic classification

methods. Finally, Section 58.4 concludes with a brief outline of other methods for supporting

medical knowledge discovery.

58.2 Symbolic Classification Methods

In medical data analysis it is very important that the results of data mining can be communi-

cated to humans in an understandable way. In this respect, the analysis tools have to deliver

transparent results and preferably facilitate human intervention in the analysis process. A good

example of such methods are symbolic machine learning algorithms that, as a result of data

analysis, aim to derive a symbolic model (e.g., a decision tree or a set of rules) of preferably

low complexity but high transparency and accuracy.

58.2.1 Rule Induction

If-then Rules

Given a set of classified examples, a rule induction system constructs a set of rules. An if-then

rule has the form:

IF Condition THEN Conclusion.

The condition of a rule contains one or more attribute tests of the form Ai = vik for discrete

attributes, and Ai < v or Ai > v for continuous attributes. The condition of a rule is a conjunc-

tion of attribute tests (or a disjunction of conjunctions of attribute tests). The conclusion has

the form C = ci, assigning a particular value ci to class C. An example is covered by a rule if

the attribute values of the example satisfy the condition in the antecedent of the rule.

An example rule below, induced in the domain of early diagnosis of rheumatic diseases

(Lavrač et al., 1993, Džeroski and Lavrač, 1996), assigns the diagnosis crystal-induced syn-

ovitis to male patients older than 46 who have more than three painful joints and psoriasis as

a skin manifestation.

IF Sex = male

AND Age > 46

AND Number of painful joints > 3

AND Skin manifestations = psoriasis

THEN Diagnosis = crystal induced synovitis

If-then rule induction, studied already in the eighties (Michalski, 1986), resulted in a se-

ries of AQ algorithms, including the AQ15 system which was applied also to the analysis of

medical data (Michalski et al. 1986).
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Here we describe the rule induction system CN2 (Clark and Niblett, 1989, Clark and

Boswell, 1991) which is among the best known if-then rule learners capable of handling im-

perfect/noisy data. Like the AQ algorithms, CN2 also uses the covering approach to construct

a set of rules for each possible class ci in turn: when rules for class ci are being constructed,

examples of this class are treated as positive, and all other examples as negative. The cover-

ing approach works as follows: CN2 constructs a rule that correctly classifies some positive

examples, removes the positive examples covered by the rule from the training set and repeats

the process until no more positive examples remain uncovered. To construct a single rule that

classifies examples into class ci, CN2 starts with a rule with an empty condition (IF part) and

the selected class ci as the conclusion (THEN part). The antecedent of this rule is satisfied by

all examples in the training set, and not only those of the selected class. CN2 then progres-

sively refines the antecedent by adding conditions to it, until only examples of class ci satisfy

the antecedent. To allow for the handling imperfect data, CN2 may construct a set of rules

which is imprecise, i.e., does not classify all examples in the training set correctly.

Consider a partially built rule. The conclusion part is fixed to ci and there are some (possi-

bly none) conditions in the IF part. The examples covered by this rule form the current training

set. For discrete attributes, all conditions of the form Ai = vik , where vik is a possible value for

Ai, are considered for inclusion in the condition part. For continuous attributes, all conditions

of the form Ai ≤ vik+vik+1

2 and Ai >
vik+vik+1

2 are considered, where vik and vik+1
are two con-

secutive values of attribute Ai that actually appear in the current training set. For example, if

the values 4.0, 1.0, and 2.0 for attribute Ai appear in the current training set, the conditions

Ai ≤ 1.5, Ai > 1.5, Ai ≤ 3.0, and Ai > 3.0 will be considered.

Note that both the structure (set of attributes to be included) and the parameters (values

of the attributes for discrete ones and boundaries for the continuous ones) of the rule are

determined by CN2. Which condition will be included in the partially built rule depends on

the number of examples of each class covered by the refined rule and the heuristic estimate of

the quality of the rule.

The heuristic estimates used in rule induction are mainly designed to estimate the perfor-

mance of the rule on unseen examples in terms of classification accuracy. This is in accordance

with the task of achieving high classification accuracy on unseen cases. Suppose a rule covers

p positive and n negative examples of class c j. Its accuracy an be estimated by the relative fre-

quency of positive examples of class c j covered, computed as p/(p+n). This heuristic, used

in early rule induction algorithms, prefers rules which cover examples of only one class. The

problem with this metric is that it tends to select very specific rules supported by few exam-

ples. In the extreme case, a maximally specific rule will cover one example and hence have an

unbeatable score using the metrics of apparent accuracy (scoring 100% accuracy). Apparent

accuracy on the training data, however, does not necessarily reflect true predictive accuracy,

i.e., accuracy on new test data. It has been shown (Holte et al., 1989) that rules supported by

few examples have very high error rates on new test instances.

The problem lies in the estimation of the probabilities involved, i.e., the estimate of the

probability that a new instance is correctly classified by a given rule. If we use relative fre-

quency, the estimate is only good if the rule covers many examples. In practice, however,

not enough examples are available to estimate these probabilities reliably at each step. There-

fore, probability estimates that are more reliable when few examples are given should be

used, such as the Laplace estimate which, in two-class problems, estimates the accuracy as

(p + 1)/(p + n + 2) (Niblett and Bratko, 1986). This is the search heuristic used in CN2.

The m-estimate (Cestnik, 1990) is a further upgrade of the Laplace estimate, taking also into

account the prior distribution of classes.
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Rule induction can be used for early diagnosis of rheumatic diseases (Lavrač et al., 1993,

Džeroski and Lavrač, 1996), for the evaluation of EDSS in multiple sclerosis (Gaspari et al.,
2001) and in numerous other medical domains.

Rough Sets

If-then rules can be also induced using the theory of rough sets (Pawlak, 1981,Pawlak, 1991).

Rough sets (RS) are concerned with the analysis of classificatory properties of data aimed at

approximations of concepts. RS can be used both for supervised and unsupervised learning.

Let us introduce the main concepts of the rough set theory. Let U denote a non-empty

finite set of objects called the universe and A a non-empty finite set of attributes. Each object

x ∈U is assumed to be described by a subset of attributes B, B ⊆ A. The basic concept of RS is

an indiscernibility relation. Two objects x and y are indiscernible on the basis of the available

attribute subset B if they have the same values of attributes B. It is usually assumed that this

relation is reflexive, symmetric and transitive. The set of objects indiscernible from x using

attributes B forms an equivalence class and is denoted by [x]B. There are extensions of RS

theory that do not require transitivity to hold.

Let X ⊆ U , and let IndB(X) denote a set of equivalence classes of examples that are

indiscernible, i.e., a set of subsets of examples that cannot be distinguished on the basis of

attributes in B. The subset of attributes B is sufficient for classification if for every [x]B ∈
IndB(X) all the examples in [x]B belong to the same decision class. In this case crisp definitions

of classes can be induced; otherwise, only ‘rough’ concept definitions can be induced since

some examples can not be decisively classified.

The goal of RS analysis is to induce approximations of concepts ci. Let X consist of

training examples of class ci. X may be approximated using only the information contained

in B by constructing the B-lower and B-upper approximations of X , denoted BX and BX
respectively, where BX = {x | x∈X , [x]B ⊆X} and BX = {x | x∈U, [x]B∩X 
= /0}. On the basis

of knowledge in B the objects in BX can be classified with certainty as members of X , while the

objects in BX can be only classified as possible members of X . The set BNB(X) = BX −BX
is called the B-boundary region of X thus consisting of those objects that on the basis of

knowledge in B cannot be unambiguously classified into X or its complement. The set U −BX
is called the B-outside region of X and consists of those objects which can be with certainty

classified as not belonging to X . A set is said to be rough (respectively crisp) if the boundary

region is non-empty (respectively empty). The boundary region consists of examples that are

indiscernible from some examples in X and therefore can not be decisively classified into ci;

this region consists of the union of equivalence classes each of which contains some examples

from X and some examples not in X .

The main task of RS analysis is to find minimal subsets of attributes that preserve the in-

discernibility relation. This is called the reduct computation. Note that there are usually many

reducts. Several types of reducts exist. Decision rules are generated from reducts by reading

off the values of the attributes in each reduct. The main challenge in inducing rules lies in de-

termining which attributes should be included in the condition of the rule. Rules induced from

the (standard) reducts will usually result in large sets of rules and are likely to overfit the data.

Instead of standard reducts, attribute sets that “almost” preserve the indiscernibility relation

are generated. Good results have been achieved with dynamic reducts (Skowron, 1995) that use

a combination of reduct computation and statistical resampling. Many RS approaches to dis-

cretization, feature selection, symbolic attribute grouping, have also been designed (Polkowski

and Skowron, 1998a,Polkowski and Skowron, 1998b). There exist also several software tools

for RS, such as the Rosetta system (Rumelhart, 1986).
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The list of applications of RS in medicine is significant. It includes extracting diagnostic

rules, image analysis and classification of histological pictures, modelling set residuals, EEG

signal analysis, etc (Averbuch et al., 2004, Rokach et al., 2004). Examples of RS analysis in

medicine include (Grzymala-Busse, 1998, Komorowski and Øhrn, 1998, Tsumoto, 1998). For

references that include medical applications, see (Polkowski and Skowron, 1998a, Polkowski

and Skowron, 1998b, Lin and Cercone, 1997).

Ripple Down Rules

The knowledge representation of the form of ripple down rules allows incremental learning by

including exceptions to the current rule set. Ripple down rules (RDR) (Compton and Jansen,

1988, Compton et al., 1989) have the following form:

IF Conditions THEN Conclusion BECAUSE Case EXCEPT

IF ...

ELSE IF ...

For the domain of lens prescription (Cendrowka, 1987) an example RDR (Sammut, 1998)

is shown below.

IF true THEN no lenses BECAUSE case0

EXCEPT

IF astigmatism = not astigmatic and

tear production = normal

THEN

soft lenses BECAUSE case2

ELSE

IF prescription = myope and

tear production = normal

THEN

hard lenses BECAUSE case4

The contact lenses RDR is interpreted as follows: The default rule is that a person does not

use lenses, stored in the rule base together with a ‘dummy’ case0. No update of the system is

needed after entering the data on the first patient who needs no lenses. But the second patient

(case2) needs soft lenses and the rule is updated according to the conditions that hold for

case2. Case3 is again a patient who does not need lenses, but the rule needs to be updated

w.r.t. the conditions of the fourth patient (case4) who needs hard lenses.

The above example illustrates also the incremental learning of ripple down rules in which

EXCEPT IF THEN and ELSE IF THEN statements are added to the RDRs to make them

consistent with the current database of patients.

If the RDR from example above were rewritten as an IF-THEN-ELSE statement it would

look as follows:
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IF true THEN

IF astigmatism = not astigmatic and

tear production = normal

THEN

soft lenses ELSE no lenses

ELSE

IF prescription = myope and

tear production = normal

THEN

hard lenses

There were many successful medical applications of the RDR approach, including the sys-

tem PEIRS (Edwards et al., 1993) which is an RDR reconstruction of the hand-built GARVAN

expert system knowledge base on thyroid function tests (Horn et al., 1985).

58.2.2 Learning of Classification and Regression Trees

Systems for Top-Down Induction of Decision Trees (Quinlan, 1986) generate a decision tree

from a given set of examples. Each of the interior nodes of the tree is labelled by an attribute,

while branches that lead from the node are labelled by the values of the attribute.

The tree construction process is heuristically guided by choosing the ‘most informative’

attribute at each step, aimed at minimizing the expected number of tests needed for classifica-

tion. Let E be the current (initially entire) set of training examples, and c1, . . . ,cN the decision

classes. A decision tree is constructed by repeatedly calling a tree construction algorithm in

each generated node of the tree. Tree construction stops when all examples in a node are of the

same class (or if some other stopping criterion is satisfied). This node, called a leaf, is labelled

by class value. Otherwise the ‘most informative’ attribute, say Ai, is selected as the root of the

(sub)tree, and the current training set E is split into subsets Ei according to the values of the

most informative attribute. Recursively, a subtree Ti is built for each Ei.

Ideally, each leaf is labelled by exactly one class value. However, leaves can also be empty,

if there are no training examples having attribute values that would lead to a leaf, or can be

labelled by more than one class value (if there are training examples with same attribute values

and different class values).

One of the most important features is tree pruning, used as a mechanism for handling

noisy data (Quinlan, 1993). Tree pruning is aimed at producing trees which do not overfit

possibly erroneous data. In tree pruning, the unreliable parts of a tree are eliminated in order

to increase the classification accuracy of the tree on unseen instances.

An early decision tree learner, ASSISTANT (Cestnik et al., 1987), that was developed

specifically to deal with the particular characteristics of medical data sets, supports the han-

dling of incompletely specified training examples (missing attribute values), binarization of

continuous attributes, binary construction of decision trees, pruning of unreliable parts of the

tree and plausible classification based on the ‘naive’ Bayesian principle to calculate the clas-

sification in the leaves for which no evidence is available. An example decision tree that can

be used to predict outcome of patients after severe head injury (Pilih, 1997) is shown in Fig-

ure 58.1. The two attributes in the nodes of the tree are CT score (number of abnormalities
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detected by Computer axial Tomography) and GCS (evaluation of coma according to the Glas-

gow Coma Scale).

CT score

Good outcome 78%
Bad outcome 22%

GCS

Bad outcome 100% Good outcome 63%
Bad outcome 37%

<= 1 > 1

<= 5 > 5

Fig. 58.1. Decision tree for outcome prediction after severe head injury. In the leaves, the

percentages indicate the probabilities of class assignment.

Implementations of the ASSISTANT algorithm include ASSISTANT-R and ASSIST-

ANT-R2 (Kononenko and Šimec, 1995). Instead of the standardly used informativity search

heuristic, ASSISTANT-R employs ReliefF as a heuristic for attribute selection (Kononenko,

1994, Kira and Rendell, 1992b). This heuristic is an extension of RELIEF (Kira and Ren-

dell, 1992a, Kira and Rendell, 1992b) which is a non-myopic heuristic measure that is able

to estimate the quality of attributes even if there are strong conditional dependencies between

attributes. In addition, wherever appropriate, instead of the relative frequency, ASSISTANT-R

uses the m-estimate of probabilities (Cestnik, 1990).

The best known decision tree learner is C4.5 (Quinlan, 1993) (See5 and J48 are its more

recent upgrades) which is widely used and has been incorporated into commercial Data Min-

ing tools as well as in the publicly available WEKA Data Mining toolbox (Witten and Frank,

1999). The system is reliable, efficient and capable of dealing with large sets of training ex-

amples.

Learning of regression trees is similar to decision tree learning: it also uses a top-down

greedy approach to tree construction. The main difference is that decision tree construction

involves the classification into a finite set of discrete classes whereas in regression tree learning

the decision variable is continuous and the leaves of the tree either consist of a prediction into

a numeric value or a linear combination of variables (attributes). An early learning system

CART (Breiman et al., 1984) featured both classification and regression tree learning.

There are many applications of decision trees for analysis of medical data sets. For in-

stance, CART has been applied to the problem of mining a diabetic data warehouse composed

of a complex relational database with time series and sequencing information (Breault and

Goodall, 2002). Decision tree learning has been applied to the diagnosis of sport injuries (Zelic

et al., 1997), patient recovery prediction after traumatic brain injury (Andrews et al., 2002),

prediction of recurrent falling in community-dwelling older persons (Stel et al., 2003), and

numerous other medical domains.
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58.2.3 Inductive Logic Programming

Inductive logic programming (ILP) systems learn relational concept descriptions from rela-

tional data. Well known ILP systems include FOIL (Quinlan, 1990), Progol (Muggleton, 1995)

and Claudien (De Raedt and Dehaspe, 1997). LINUS is an ILP environment (Lavrač and

Džeroski, 1994), enabling the transformation of relational learning problems into the form

appropriate for standard attribute-value learners, while in general ILP systems learn relational

descriptions without such a transformation to propositional learning.

In ILP, induced rules typically have the form of Prolog clauses. The output of an ILP

system is illustrated by a rule of ocular fundus image classification for glaucoma diagnosis,

induced by an ILP system GKS (Mizoguchi et al., 1997) specially designed to deal with low-

level measurement data including images.

class(Image, Segment, undermining) :-

clockwise(Segment, Adjacent, 1),

class confirmed(Image, Adjacent, undermining).

Compared to rules induced by a rule learning algorithm of the form IF Condition THEN

Conclusion, Prolog rules have the form Conclusion :- Condition. For example, the rule for

glaucoma diagnosis means that Segment of Image is classified as undermining (i.e., not nor-

mal) if the conditions of the right-hand side of the clause are fulfilled. Notice that the condi-

tions consist of a conjunction of predicate clockwise/3 defined in the background knowledge,

and predicate class confirmed/3, added to the background knowledge in one of the previous it-

erative runs of the GKS algorithm. This shows one of the features of ILP learning, namely that

learning can be done in several cycles of the learning algorithm in which definitions of new

background knowledge predicates are learned and used in the subsequent runs of the learner;

this may improve the performance of the learner.

ILP has been successfully applied to carcinogenesis prediction in the predictive toxicol-

ogy evaluation challenge (Srinivasan et al., 1997) and to the recognition of arrhythmia from

electrocardiograms (Carrault et al., 2003).

58.2.4 Discovery of Concept Hierarchies and Constructive Induction

The data can be decomposed into equivalent but smaller, more manageable and potentially

easier to comprehend data sets. A method that uses such an approach is called function decom-
position (Zupan and Bohanec, 1998). Besides the discovery of appropriate data sets, function

decomposition arranges them into a concept hierarchy. Function decomposition views clas-

sification data (example set) with attributes X = {x1, . . . ,xn} and an output concept (class) y
defined as a partially specified function y = F(X). The core of the method is a single step

decomposition of F into y = G(A,c) and c = H(B), where A and B are proper subsets of in-

put attributes such that A∪B = X . Single step decomposition constructs the example sets that

partially specify new functions G and H. Functions G and H are determined in the decompo-

sition process and are not predefined in any way. Their joint complexity (determined by some

complexity measure) should be lower than the complexity of F . Obviously, there are many

candidates for partitioning X into A and B; the decomposition chooses the partition that yields

functions G and H of lowest complexity. In this way, single step decomposition also discovers

a new intermediate concept c = H(B). Since the decomposition can be applied recursively
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on H and G, the result in general is a hierarchy of concepts. For each concept in the hierar-

chy, there is a corresponding function (such as H(B)) that determines the dependency of that

concept on its immediate descendants in the hierarchy.

In terms of data analysis, the benefits of function decompositions are:

• Discovery of new data sets that use fewer attributes than the original one and include

fewer instances as well. Because of lower complexity, such data sets may then be easier

to analyze.

• Each data set represents some concept. Function decomposition organizes discovered con-

cepts in a hierarchy, which may itself be interpretable and can help to gain insight into the

data relationships and underlying attribute groups.

Consider for example a concept hierarchy in Figure 58.2 that was discovered for a data

set that describes a nerve fiber conduction-block (Zupan et al., 1997). The original data set

used 2543 instances of six attributes (aff, nl, k-conc, na-conc, scm, leak) and a single class

variable (block) determining nerve fiber conducts or not. Function decomposition found three

intermediate concepts, c1, c2, and c3. When interpreted by the domain expert, it was found

that the discovered intermediate concepts are physiologically meaningful and constitute use-

ful intermediate biophysical properties. Intermediate concept c1, for example, couples the

concentration of ion channels (na-conc and k-conc) and ion leakage (leak) that are all the ax-

onal properties and together influence the combined current source/sink capacity of the axon

which is the driving force for all propagated action potentials. Moreover, new concepts use

fewer attributes and instances: c1, c2, c3, and the output concept block described 125, 25,

184, and 65 instances, respectively.

block

aff c3

c1 c2

k_conc na_conc leak nl scm

Fig. 58.2. Discovered concept hierarchy for the conduction-block domain.

Intermediate concepts discovered by decomposition can also be regarded as new features

that can, for example, be added to the original example set, which can then be examined by
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some other data analysis method. Feature discovery and constructive induction, first inves-

tigated in (Michalski, 1986), are defined as an ability of the system to derive and use new

attributes in the process of learning. Besides pure performance benefits in terms of classifica-

tion accuracy, constructive induction is useful for data analysis as it may help to induce simpler

and more comprehensible models and to identify interesting inter-attribute relationships. New

attributes may be constructed based on available background knowledge of the domain: an ex-

ample of how this facilitated learning of more accurate and comprehensible rules in the domain

of early diagnosis of rheumatic diseases is given in (Džeroski and Lavrač, 1996). Function de-

composition, on the other hand, may help to discover attributes from classified instances alone.

For the same rheumatic domain, this is illustrated in (Zupan and Džeroski, 1998). Although

such discovery may be carried out automatically, the benefits of the involvement of experts in

new attribute selection are typically significant (Zupan et al., 2001).

58.2.5 Case-Based Reasoning

Case-based reasoning (CBR) uses the knowledge of past experience when dealing with new

cases (Aamodt and Plaza, 1994, Macura and Macura, 1997). A “case” refers to a problem

situation. Although, as in instance-based learning (Aha et al., 1991), cases (examples) can be

described by a simple attribute-value vector, CBR most often uses a richer, often hierarchical

data structure. CBR relies on a database of past cases that has to be designed in the way to

facilitate the retrieval of similar cases. CBR is a four stage process:

1. Given a new case to solve, a set of similar cases is retrieved from the database.

2. The retrieved cases are reused in order to obtain a solution for a new case. This may be

simply achieved by selecting the most frequent solution used with similar past cases, or,

if appropriate background knowledge or a domain model exist, retrieved solutions may

be adapted for a new case.

3. The solution for the new case is then checked by the domain expert, and, if not correct,

repaired using domain-specific knowledge or expert’s input. The specific revision may be

saved and used when solving other new cases.

4. The new case, its solution, and any additional information used for this case that may be

potentially useful when solving new cases are then integrated in the case database.

CBR offers a variety of tools for data analysis. The similar past cases are not just retrieved,

but are also inspected for most relevant features that are similar or different to the case in ques-

tion. Because of the hierarchical data organization, CBR may incorporate additional explana-

tion mechanisms. The use of symbolic domain knowledge for solution adaptation may further

reveal specifics and interesting case’s features. When applying CBR to medical data analy-

sis, however, one has to address several non-trivial questions, including the appropriateness

of similarity measures used, the actuality of old cases (as the medical knowledge is rapidly

changing), how to handle different solutions (treatment actions) by different physicians, etc.

Several CBR systems were used, adapted for, or implemented to support reasoning and

data analysis in medicine. Some are described in the special issue of Artificial Intelligence in
Medicine (Macura and Macura, 1997) and include CBR systems for reasoning in cardiology

by Reategui et al., learning of plans and goal states in medical diagnosis by López and Plaza,

detection of coronary heart disease from myocardial scintigrams by Haddad et al., and treat-

ment advice in nursing by Yearwood and Wilkinson. Others include a system that uses CBR

to assist in the prognosis of breast cancer (Mariuzzi et al., 1997), case classification in the

domain of ultrasonography and body computed tomography (Kahn and Anderson, 1994), and



1122 Nada Lavrač and Blaž Zupan

a CBR-based expert system that advises on the identification of nursing diagnoses in a new

client (Bradburn et al., 1993). There is also an application of case-based distance measure-

ments in coronary interventions (Gyöngyösi, 2002).

58.3 Subsymbolic Classification Methods

In medical problem solving it is important that a decision support system is able to explain

and justify its decisions. Especially when faced with an unexpected solution of a new prob-

lem, the user requires substantial justification and explanation. Hence the interpretability of

induced knowledge is an important property of systems that induce solutions from data about

past solved cases. Symbolic Data Mining methods have this property since they induce sym-

bolic representations (such as decision trees) from data. On the other hand, subsymbolic Data

Mining methods typically lack this property which hinders their use in situations for which

explanations are required. Nevertheless, when classification accuracy is the main applicabil-

ity criterion subsymbolic methods may turn out to be very appropriate since they typically

achieve accuracies that are at least as good as those of symbolic classifiers.

58.3.1 Instance-Based Learning

Instance-based learning (IBL) algorithms (Aha et al., 1991) use specific instances to perform

classification, rather than generalizations induced from examples, such as induced if-then

rules. IBL algorithms are also called lazy learning algorithms, as they simply save some or

all of the training examples and postpone all the inductive generalization effort until classi-

fication time. They assume that similar instances have similar classifications: novel instances

are classified according to the classifications of their most similar neighbors.

IBL algorithms are derived from the nearest neighbor pattern classifier (Fix and Hodges,

1957, Cover and Hart, 1968). The nearest neighbor (NN) algorithm is one of the best known

classification algorithms; an enormous body of research exists on the subject (Dasarathy,

1990). In essence, the NN algorithm treats attributes as dimensions of an Euclidean space

and examples as points in this space. In the training phase, the classified examples are stored

without any processing. When classifying a new example, the Euclidean distance between this

example and all training examples is calculated and the class of the closest training example

is assigned to the new example.

The more general k-NN method takes the k nearest training examples and determines the

class of the new example by majority vote. In improved versions of k-NN, the votes of each of

the k nearest neighbors are weighted by the respective proximity to the new example (Dudani,

1975). An optimal value of k may be determined automatically from the training set by using

leave-one-out cross-validation (Weiss and Kulikowski, 1991). In the k-NN algorithm imple-

mentation described in (Wettschereck, 1994), the best k from the range [1,75] was selected

in this manner. This implementation also incorporates feature weights determined from the

training set. Namely, the contribution of each attribute to the distance may be weighted, in

order to avoid problems caused by irrelevant features (Wolpert, 1989).

Let n = Nat . Given two examples x = (x1, . . . ,xn) and y = (y1, . . . ,yn), the distance be-

tween them is calculated as

distance(x,y) =

√
n

∑
i=1

wi ·difference(xi,yi)2 (58.1)
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where wi is a non-negative weight value assigned to feature (attribute) Ai and the difference

between attribute values is defined as follows

difference(xi,yi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|xi − yi| if Ai is continuous

0 if Ai is discrete and xi = yi

1 otherwise

(58.2)

When classifying a new instance z, k-NN selects the set K of k-nearest neighbors accord-

ing to the distance defined above. The vote of each of the k nearest neighbors is weighted by

its proximity (inverse distance) to the new example. The probability p(z,c j,K) that instance z
belongs to class c j is estimated as

p(z,c j,K) =
∑x∈K xcj/distance(z,x)

∑x∈K 1/distance(z,x)
(58.3)

where x is one of the k nearest neighbors of z and xc j is 1 if x belongs to class c j. Class c j with

largest value of p(z,c j,K) is assigned to the unseen example z.

Before training (respectively before classification), the continuous features are normalized

by subtracting the mean and dividing by the standard deviation so as to ensure that the values

output by the difference function are in the range [0,1]. All features have then equal maximum

and minimum potential effect on distance computations. However, this bias handicaps k-NN as

it allows redundant, irrelevant, interacting or noisy features to have as much effect on distance

computation as other features, thus causing k-NN to perform poorly. This observation has

motivated the creation of many methods for computing feature weights.

The purpose of a feature weight mechanism is to give low weight to features that pro-

vide no information for classification (e.g., very noisy or irrelevant features), and to give

high weight to features that provide reliable information. In the k-NN implementation of

Wettschereck (Wettschereck, 1994), feature Ai is weighted according to the mutual informa-

tion (Shannon, 1948) I(c j,Ai) between class c j and attribute Ai.

Instance-based learning was applied to the problem of early diagnosis of rheumatic dis-

eases (Džeroski and Lavrač, 1996).

58.3.2 Neural Networks

Artificial neural networks can be used for both supervised and unsupervised learning. For each

learning type, we briefly describe the most frequently used approaches.

Supervised Learning

For supervised learning and among different neural network paradigm, feed-forward multi-

layered neural networks (Rumelhart and McClelland, 1986,Fausett, 1994) are most frequently

used for modeling medical data. They are computational structures consisting of a intercon-

nected processing elements (PE) or nodes arranged on a multi-layered hierarchical architec-

ture. In general, a PE computes the weighted sum of its inputs and filters it through some

sigmoid function to obtain the output (Figure 58.3.a). Outputs of PEs of one layer serve as in-

puts to PEs of the next layer (Figure 58.3.b). To obtain the output value for selected instance,

its attribute values are stored in input nodes of the network (the network’s lowest layer). Next,

in each step, the outputs of the higher-level processing elements are computed (hence the name

feed-forward), until the result is obtained and stored in PEs at the output layer.
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Fig. 58.3. Processing element (a) and an example of the typical structure of the feed-forward

multi-layered neural network with four processing elements at hidden layer and one at output

layer (b).

A typical architecture of multi-layered neural network comprising an input, a hidden and

and output layer of nodes is given in Figure 58.3.b. The number of nodes in the input and

output layers is domain-dependent and, respectively, is related to number and type of attributes

and a type of classification task. For example, for a two-class classification problem, a neural

net may have two output PEs, each modelling the probability of a distinct class, or a single

PE, if a problem is coded properly.

Weights that are associated with each node are determined from training instances. The

most popular learning algorithm for this is backpropagation (Rumelhart and McClelland,

1986, Fausett, 1994). Backpropagation initially sets the weights to some arbitrary value, and

then considering one or several training instances at the time adjusts the weights so that the

error (difference between the expected and the obtained value of nodes at the output level) is

minimized. Such a training step is repeated until the overall classification error across all of

the training instances falls below some specified threshold.

Most often, a single hidden layer is used and the number of nodes has to be either de-

fined by the user or determined through learning. Increasing the number of nodes in a hidden

layer allows more modeling flexibility but may cause overfitting of the data. The problem of

determining the “right architecture”, together with the high complexity of learning, are two of

the limitations of feed-forward multi-layered neural networks. Another is the need for proper

preparation of the data (Kattan and Beck, 1995): a common recommendation is that all inputs

are scaled over the range from 0 to 1, which may require normalization and encoding of input

attributes.

For data analysis tasks, however, the most serious limitation is the lack of explanational

capabilities: the induced weights together with the network’s architecture do not usually have

an obvious interpretation and it is usually difficult or even impossible to explain “why” a

certain decision was reached. Recently, several approaches for alleviating this limitation have

been proposed. A first approach is based on pruning of the connections between nodes to

obtain sufficiently accurate, but in terms of architecture significantly less complex, neural

networks (Chung and Lee, 1992). A second approach, which is often preceded by the first

one to reduce the complexity, is to represent a learned neural network with a set of symbolic

rules (Andrews et al., 1995, Craven and Shavlik, 1997, Setiono, 1997, Setiono, 1999).

Despite the above-mentioned limitations, multi-layered neural networks often have equal

or superior predictive accuracy when compared to symbolic learners or statistical approaches

(Kattan and Beck, 1995, Shawlik et al., 1991). They have been extensively used to model
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medical data. Example applications areas include survival analysis (Liestøl et al., 1994), clin-

ical medicine (Baxt, 1995), pathology and laboratory medicine (Astion and Wilding, 1992),

molecular sequence analysis (Wu, 1997), pneumonia risk assessment (Caruana et al., 1995),

and prostate cancer survival (Kattan et al., 1997). There are fewer applications where rules

were extracted from neural networks: an example of such data analysis is finding rules for

breast cancer diagnosis (Setiono, 1996).

Different types of neural networks for supervised learning include Hopfield’s recurrent

networks and neural networks based on adaptive resonance theory mapping (ARTMAP). For

the first, an example application is tumor boundary detection (Zhu and Yan, 1997). Exam-

ple studies of application of ARTMAP in medicine include classification of cardiac arrhyth-

mias (Ham and Han, 1996) and treatment selection for schizophrenic and unipolar depressed

in-patients (Modai et al., 1996). Learned ARTMAP networks can also be used to extract sym-

bolic rules (Carpenter and Tan, 1993,Downs et al., 1996). There are numerous medical appli-

cations of neural networks, including brain volumes characterization (Bona et al., 2003).

Unsupervised Learning

For unsupervised learning — learning which is presented with unclassified instances and aims

at identifying groups of instances with similar attribute values — the most frequently used

neural network approach is that of Kohonen’s self organizing maps (SOM) (Kohonen, 1988).

Typically, SOM consist of a single layer of output nodes. An output node is fully connected

with nodes at the input layer. Each such link has an associated weight. There are no explicit

connections between nodes of the output layer.

The learning algorithm initially sets the weights to some arbitrary value. At each learning

step, an instance is presented to the network, and a winning output node is chosen based on

instance’s attribute values and node’s present weights. The weights of the winning node and of

the topologically neighboring nodes are then updated according to their present weights and

instance’s attribute values. The learning results in the internal organization of SOM such that

when two similar instances are presented, they yield a similar “pattern” of networks output

node values. Hence, data analysis based on SOM may be additionally supported by proper

visualization methods that show how the patterns of output nodes depend on input data (Ko-

honen, 1988). As such, SOM may not only be used to identify similar instances, but can, for

example, also help to detect and analyze time changes of input data. Example applications of

SOM include analysis of ophthalmic field data (Henson et al., 1997), classification of lung

sounds (Malmberg et al., 1996), clinical gait analysis (Koehle et al., 1997), analysis of molec-

ular similarity (Barlow, 1995), and analysis of a breast cancer database (Markey et al., 2002).

58.3.3 Bayesian Classifier

The Bayesian classifier uses the naive Bayesian formula to calculate the probability of each

class c j given the values vik of all the attributes for a given instance to be classified (Kononenko,

1993, 1). For simplicity, let (v1, . . . ,vn) denote the n-tuple of values of example ek to be clas-

sified. Assuming the conditional independence of the attributes given the class, i.e., assuming

p(v1..vn|c j) =∏i p(vi|c j), then p(c j|v1..vn) is calculated as follows:

p(c j|v1..vn) =
p(c j.v1..vn)

p(v1..vn)
=

p(v1..vn|c j) · p(c j)

p(v1..vn)
= (58.4)
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∏i p(vi|c j) · p(c j)

p(v1..vn)
=

p(c j)

p(v1..vn)
∏

i

p(c j|vi) · p(vi)

p(c j)
=

p(c j)
∏i p(vi)

p(v1..vn)
∏

i

p(c j|vi)

p(c j)

A new instance will be classified into the class with maximal probability.

In the above equation, ∏i p(vi)
p(v1..vn)

is a normalizing factor, independent of the class; it can

therefore be ignored when comparing values of p(c j|v1..vn) for different classes c j . Hence,

p(c j|v1..vn) is proportional to:

p(c j)∏
i

p(c j|vi)

p(c j)
(58.5)

Different probability estimates can be used for computing the probabilities, i.e., the rela-

tive frequency, the Laplace estimate (Niblett and Bratko, 1986), and the m-estimate (Cestnik,

1990, Kononenko, 1993, 1).

Continuous attributes have to be pre-discretized in order to be used by the naive Bayesian

classifier. The task of discretization is the selection of a set of boundary values that split

the range of a continuous attribute into a number of intervals which are then considered as

discrete values of the attribute. Discretization can be done manually by the domain expert or

by applying a discretization algorithm (Richeldi and Rossotto, 1995).

The problem of (strict) discretization is that minor changes in the values of continuous

attributes (or, equivalently, minor changes in boundaries) may have a drastic effect on the

probability distribution and therefore on the classification. Fuzzy discretization may be used to

overcome this problem by considering the values of the continuous attribute (or, equivalently,

the boundaries of intervals) as fuzzy values instead of point values (Kononenko, 1993). The

effect of fuzzy discretization is that the probability distribution is smoother and the estimation

of probabilities more reliable, which in turn results in more reliable classification.

Bayesian computation can also be used to support decisions in different stages of a diag-

nostic process (McSherry, 1997) in which doctors use

hypothetico-deductive reasoning for gathering evidence which may help to confirm a diag-

nostic hypothesis, eliminate an alternative hypothesis, or discriminate between two alternative

hypotheses. In particular, Bayesian computation can help in identifying and selecting the most

useful tests, aimed at confirming the target hypothesis, eliminating the likeliest alternative

hypothesis, increase the probability of the target hypothesis, decrease the probability of the

likeliest alternative hypothesis or increase the probability of the target hypothesis relative to

the likeliest alternative hypothesis. Bayesian classification has been applied to different medi-

cal domains, including the diagnosis of sport injuries (Zelic et al., 1997).

58.4 Other Methods Supporting Medical Knowledge Discovery

There is a variety of other methods and tools that can support medical data analysis and can be

used separately or in combination with the classification methods introduced above. We here

mention only several most frequently used techniques.

The problem of discovering association rules has recently received much attention in the

Data Mining community. The problem of inducing association rules (Agrawal et al., 1996) is

defined as follows: Given a set of transactions, where each transaction is a set of items (i.e.,

literals of the form Attribute = value), an association rule is an expression of the form X →Y
where X and Y are sets of items. The intuitive meaning of such a rule is that transactions in
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a database which contain X tend to contain Y . Consider a sample association rule: “80% of
patients with pneumonia also have high fever. 10% of all transactions contain both of these
items.” Here 80% is called confidence of the rule, and 10% support of the rule. Confidence of
the rule is calculated as the ratio of the number of records having true values for all items in
X and Y to the number of records having true values for all items in X . Support of the rule is
the ratio of the number of records having true values for all items in X and Y to the number
of all records in the database. The problem of association rule learning is to find all rules that
satisfy the minimum support and minimum confidence constraints.

Association rule learning was applied in medicine, for example, to identify new and inter-
esting patterns in surveillance data, in particular in the analysis of the Pseudomonas aerugi-
nosa infection control data (Brossette et al., 1998). An algorithm for finding a more expressive
variant of association rules, where data and patterns are represented in first-order logic, was
successfully applied to the problem of predicting whether chemical compounds are carcino-
genic or not (Toivonen and King, 1998).

Subgroup discovery (Wrobel, 1997,Gamberger and Lavrač, 2002,Lavrač et al., 2004) has
the goal to uncover characteristic properties of population subgroups by building short rules
which are highly significant (assuring that the distribution of classes of covered instances
are statistically significantly different from the distribution in the training set) and have a
large coverage (covering many target class instances). The approach, using a beam search rule
learning algorithm aimed at inducing short rules with large coverage, was successfully applied
to the problem of coronary heart disease risk group detection (Gamberger et al., 2003).

Genetic algorithms (Goldberg, 1989) are optimization procedures that maintain candidate
solutions encoded as strings (or chromosomes). A fitness function is defined that can assess the
quality of a solution represented by some chromosome. A genetic algorithm iteratively selects
best chromosomes (i.e., those of highest fitness) for reproduction, and applies crossover and
mutation operators to search in the problem space. Most often, genetic algorithms are used in
combination with some classifier induction technique or some schema for classification rules
in order to optimize their performance in terms of accuracy and complexity (e.g., (Larranaga
et al., 1997) and (Dybowski et al., 1996)). They can also be used alone, e.g., for the estimation
of Doppler signals (Gonzalez et al., 1999) or for multi-disorder diagnosis (Vinterbo and Ohno-
Machado 1999). For more information please refer to Chapter 19 in this book.

Data analysis approaches reviewed so far in this chapter mostly use crisp logic: the at-
tributes take a single value and when evaluated, decision rules return a single class value. Fuzzy
logic (Zadeh, 1965) provides an enhancement compared to classical AI approaches (Stein-
mann, 1997): rather than assigning an attribute a single value, several values can be assigned,
each with its own degree or grade. Classically, for example, “body temperature” of 37.2◦C
can be represented by a discrete value “high”, while in fuzzy logic the same value can be rep-
resented by two values: “normal” with degree 0.3 and “high” with degree 0.7. Each value in a
fuzzy set (like “normal” and “high”) has a corresponding membership function that determines
how the degree is computed from the actual continuous value of an attribute. Fuzzy systems
may thus formalize a gradation and may allow handling of vague concepts—both being natural
characteristics of medicine (Steinmann, 1997)—while still supporting comprehensibility and
transparency by computationally relying on a fuzzy rules. In medical data analysis, the best
developed approaches are those that use data to induce a straightforward tabular rule-based
mapping from input to control variables and to find the corresponding membership functions.
Example applications studies include design of patient monitoring and alarm system (Becker
and Thull, 1997), support system for breast cancer diagnosis (Kovalerchuk et al., 1997), de-
sign of a rule-based visuomotor control (Prochazka, 1996). Fuzzy logic control applications
in medicine are discussed in (Rau et al., 1995).
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Support vector machines (SVM) are a classification technique originated from statisti-

cal learning theory (Cristianini, 2000, Vapnik, 1998). Depending on the chosen kernel, SVM

selects a set of data examples (support vectors) that define the decision boundary between

classes. SVM have been proven for excellent classification performance, while it is arguable

whether support vectors can be effectively used in communication of medical knowledge to

the domain experts.

Bayesian networks (Pearl, 1988) are probabilistic models that can be represented by a

directed graph with vertices encoding the variables in the model and edges encoding their

dependency. Given a Bayesian network, one can compute any joint or conditional probability

of interest. In terms of intelligent data analysis, however, it is the learning of the Bayesian

network from data that is of major importance. This includes learning of the structure of the

network, identification and inclusion of hidden nodes, and learning of conditional probabil-

ities that govern the networks (Szolovits, 1995, Lam, 1998). The data analysis then reasons

about the structure of the network (examining the inter-variable dependencies) and the con-

ditional probabilities (the strength and types of such dependencies). Examples of Bayesian

network learning for medical data analysis include a genetic algorithm-based construction of

a Bayesian network for predicting the survival in malignant skin melanoma (Larranaga et al.,
1997), learning temporal probabilistic causal models from longitudinal data (Riva and Bel-

lazzi, 1996), learning conditional probabilities in modeling of the clinical outcome after bone

marrow transplantation (Quaglini et al., 1994), cerebral modeling (Labatut et al., 2003) and

cardiac SPECT image interpretation (Sacha et al., 2002).

There are also different forms of unsupervised learning, where the input to the learner is a

set of unclassified instances. Besides unsupervised learning using neural networks described

in Section 58.3.2 and learning of association rules described in Section 58.4, other forms of

unsupervised learning include conceptual clustering (Fisher, 1987,Michalski and Stepp, 1983)

and qualitative modeling (Bratko, 1989).

The data visualization techniques may either complement or additionally support other

data analysis techniques. They can be used in the preprocessing stage (e.g., initial data anal-

ysis and feature selection) and the postprocessing stage (e.g., visualization of results, tests of

performance of classifiers, etc.). Visualization may support the analysis of the classifier and

thus increase the comprehensibility of discovered relationships. For example, visualization of

results of naive Bayesian classification may help to identify which are the important factors

that speak for and against a diagnosis (Zelic et al., 1997), and a 3D visualization of a decision

tree may assist in tree exploration and increase its transparency (Kohavi et al., 1997).

58.5 Conclusions

There are many Data Mining methods from which one can chose for mining the emerging

medical data bases and repositories. In this chapter, we have reviewed most popular ones,

and gave some pointers where they have been applied. Despite the potential and promising

approaches, the utility of Data Mining methods to analyze medical data sets is still sparse,

especially when compared to classical statistical approaches. It is gaining ground, however,

in the areas where data is accompanied with knowledge bases, and where data repositories

storing heterogenous data from different sources took ground.
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Lavrač, N., Kavšek, B., Flach, P., and Todorovski, L. Subgroup discovery with CN2-SD.

Journal of Machine Learning Research, 5: 153–188, 2004.

Liestøl, K., Andersen, P.K. and Andersen, U. “Survival analysis and neural nets,” Statist.
Med., 13(2): 1189–1200 (1994).

Lin, T.Y and Cercone, N., eds., “Rough Sets and Data Mining”, Kluwer (1997).

Lubsen, J., Pool, J., van der Does, E. A practical device for the application of a diagnostic or

prognostic function. Methods Inf. Med. 17(2): 127–129 (1978).

Macura, R.T. and Macura, K., eds., “Case-based reasoning: opportunities and applications in

health care,” Artificial Intelligence in Medicine, 9(1): 1–4 (1997).

Macura, R.T. and Macura, K., eds., Artificial Intelligence in Medicine: Special Issue on Case-
Based Reasoning, 9(1) (1997).

Malmberg, L.P., Kallio, K., Haltsonen, S., Katila, T. and Sovijarvi, A.R., “Classification of

lung sounds in patients with asthma, emphysema, fibrosing alveolitis and healthy lungs

by using self-organizing maps,” Clinical Physiology, 16(2): 115–129 (1996).

Mariuzzi, G., Mombello, A., Mariuzzi, L., Hamilton, P.W., Weber, J.E.,

Thompson D. and Bartels, P.H., “Quantitative study of ductal breast cancer–patient tar-

geted prognosis: an exploration of case base reasoning,” Pathology, Research & Practice,

193(8): 535–542 (1997).

Markey, M.K., Lo, J.Y., Tourassi, G.D. AND Floyd Jr., C.E., “Self-organizing map for cluster

analysis of a breast cancer database,” Artificial Intelligence in Medicine, 27(2): 113-127

(2002).

McSherry, D., “Hypothesist: A development environment for intelligent diagnostic systems.”

In: Proc. Sixth Conference on Artificial Intelligence in Medicine (AIME’97), Springer,

pp. 223–234 (1997).

Michalski, R.S. and Stepp, R.E., “Learning from observation: Conceptual clustering.” In:

Machine Learning: An AI Approach (Michalski, R.S., Carbonell, J. and Mitchell, T.M.,

eds.), volume I, Palo Alto, CA. Tioga., pp. 331–363 (1983).

Michalski, R.S. (1986) “Understanding the nature of learning: Issues and research direc-

tions.” In: Machine Learning: An AI Approach (Michalski, R.S., Carbonnel, J. and

Mitchell, T.M., eds.) Morgan Kaufmann, pp. 3–25 (1986).
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