CHAPTER

19

Deep Learning

PREAMBLE

The term “deep learning” appears to presume that other kinds of machine-learning
activities are “shallow.” This is not the case. The previous chapters have exposed you to
some very sophisticated methods in predictive analytics (e.g., lag variables for time-series
analysis and ensembles of models). The deepness of deep learning (DL) methods refers
to the depth of a signal that is modeled by a series of “hidden” layers in a neural net.
Current DL technology is restricted to neural net development, but future methods will
be elaborations of other algorithms. For now, we can take a “deep dive” into the current
technology of DL.

What Is DL?

Like “Big Data,” DL has become a buzzword that means many different things to many
people. One of the common foci of interest in subjects associated with DL is the “deep” com-
plexity of the human brain. Fig. 19.1 shows a factually incorrect, but logically fascinating
expression of very complex cause-and-effect relationships resident in the human brain that
functions in the perception of some people as an intricate clock mechanism. The “depth” of
the geared relationships in a given cause-and-effect pathway in the brain can include many
“gears” operating in tandem to generate thoughts and responses, which result in actions of
the body.

Goodfellow et al. (2016) list four key trends in the development of DL:

1. DL has had a long and rich history, but has gone by many names reflecting different
philosophical viewpoints, and has waxed and waned in popularity;

2. DL has become more useful as the amount of available training data has increased;

3. DL models have grown in size over time as computer hardware and software
infrastructure for DL has improved;

4. DL has solved increasingly complicated applications with increasing accuracy
over time.
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FIG. 19.1 Deep learning “gears” of the human brain. From hitps://www.google.com/search? q=deep+
learning+images&biw=1920&bih=942&tbm=isch&imgil=SySt4Ddal-wHcM%253A %253BLGqLwznf80Zt8M%
253Bhttp%25253A%25252F %25252Fhyperverge.co%25252Fa-beginners-introduction-to-deep-learning % 25252 F &source=
in&pf=m&fir=SySt4Ddal-wHcM%253A %252CLGqLwznf80Zt8M %252C_&usg=__NbSnuBtLXzyo7vpMMioD4WE]S3c
%3D&ved=0ahUKEwiHwrmVINPPAhUP-mMKHUCPBsUQyjcINQ&ei=Dnb9V4eDPY _0jwPAnpqoD A#imgrc=EGjVm
OLEZOdCOM%3A.

THE GUIDING CONCEPT OF DL TECHNOLOGY—HUMAN
COGNITION

One of the best perspectives from which to understand DL is to view it within the science
of human cognition, which studies the intricate “gearing” of the human brain (Fig. 19.1) that
facilitates thought. These “gears” are represented in DL algorithms as middle (or “hidden”)
layers in a neural network architecture. Chapter 1 presents the background and history of
data mining (aka predictive analytics), ending with the focus on the most powerful nonlinear
analytical system in the universe—the human brain. Data processing machines have been
around for a long time, possibly as far back as Ancient Greece (the Antikythera mechanism—
Price, 1974). One of the questions that arise inevitably is can a machine think like a human?
The quest to explore this question led to the development of artificial intelligence (Al) tech-
nology, a branch of cognitive science. Initially, Al practitioners focused on solving problems
that are hard for humans, but easy for computers, such as building and using expert systems.
“The bigger challenge, however, was to develop techniques for solving problems that are
easy for humans, but hard for computers,” like image and speech recognition (Schmidhuber,
2015).

The first step in building such Al systems was to mimic rather crudely the way the human
brain analyzes sensory input data through the processing of sensory input in a neural net-
work. Fig. 19.2 shows an artist's rendition of a human neural network, composed of a number
of neurons (the blob-like forms) connected together with slender pathways (dendrites).

Practitioners in cognitive science recognized that the human brain “thinks” through a
series of linked neurons (nerve cells). The dendrites shown in Fig. 19.2 function to pass
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FIG. 19.2 Artist's conception of a network of neurons (a neural network) in the human brain. From https://
www.google.com/search?q=deep+learning+images&biw=1920&bih=942&tbm=isch&imgil=SySt4dDdal-wHcM%253A %
253BLGqLwznf80Zt8M%253Bhttp%25253A %25252F %25252Fhyperverge.co%25252Fa-beginners-introduction-to-deep-
learning %25252F &source=iu&pf=m&fir=SySt4Ddal-wHcM %253A %252CLGqLwznf80Zt8M %252C_&usg=__ Nb8nuBtL
Xzyo7vpMMioD4WE]S3c%3D &ved=0ahUKEwiHwrmVINPPAhUP-mMKHUCPBsUQyjcINQ&ei=Dnb9V4eDPY_0jwP
AnpgoDA#imgre=bSOmXaxpV08xWM%3A.

information in the form of electrical impulses between neurons. These electric impulses (or
“signals”) can become either reduced in strength (attenuated), through biological counter-
parts to electrical resistors, or increased in strength by biological counterparts of electric
capacitors. This signal modulation along the path of the neural impulse flow is analogous
to the sequential processing of data in computers. This insight moved Al scientists to de-
velop computer-expressed counterparts to these human neural networks called artificial
neural networks, or ANNSs.

EARLY ARTIFICIAL NEURAL NETWORKS (ANNs)

The first attempts in this simulation resulted in the development of ANNSs focused on dis-
tinguishing patterns in single data sets. The biggest difference, however, between these early
Al methods and human cognitive abilities is the way humans use experience to adapt to and
refine initial sensory patterns.

Early ANNs had only two layers, a layer of data inputs (analogous to human sensory in-
puts) and a layer of outputs, analogous to the initiation of muscular action. In an ANN, this
output consisted of either a numerical prediction (one output node) or a classification list
(possibly, with multiple output nodes). The processing included two basic functions: (1) an
aggregation function and (2) a response function, mimicking the way the human brain stores
sensory input, until a critical threshold is reached, and then “fires” a neural impulse to the
next neuron connected in the system (the “network”).

Fig. 19.3 shows the general form of a two-layer neural net, composed of an input layer of
four neurons (I-1 through I-4), an aggregation function, a response function, and an output
neuron (O).

The problem with the early ANNs was that this neural architecture and data processing
approach did not function very well when the output response was significantly nonlin-
ear in respect to the inputs. To solve this problem, Al algorithm designers added another
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Aggregation Response °

FIG. 19.3 Diagram of a two-layer neural network.

FIG. 19.4 The architecture of the multilayer perceptron (MLP), with node weights.

layer between the input layer and the output layer. They named this structure the “hidden
layer.” Separate weights between nodes in each layer were optimized. The relationships
between the hidden layer and the input and output layers that are resident in these op-
timized weights functioned to express a large degree of nonlinearity between inputs and
output. Fig. 19.4 shows this architecture was termed the multilayer perceptron, or MLP
(Rosenblatt, 1961, 1958).

The large number 1 in the two left circles of Fig. 19.4 represents inputs; the numbers on
the arrows represent weights; the small numbers in the center circles are the sums of the
weight xinput values directed to them; the large numbers in the center circles represent the
resulting output of the nonlinear activation function controlling the “firing” of that node. The
final value of 0.77 in the output node is the sum of the “hidden” (middle) layer node values
times the weight associated with its link to the output node, processed through a nonlinear
activation function.

This ANN architecture is called a “feed-forward” design, because the data processing steps
all flow in one direction from inputs to the output.
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HOW ANNs WORK

The general processing of an ANN includes the following;:

1. Random assignment of weights for each data input stream of one data subset (called the
“training set”)

2. Accumulation (or aggregation) of weighted inputs provided by each row in the data set,
until a specified threshold is reached, and then “firing” of the accumulated impulse to the
output node

3. Initiation of an output prediction or classification, inferred from the relationships
between input weights of the variables and the output, following a specified response
function (linear, logistic, Poisson, etc.)

4. Calculation of total error in prediction or classification, using another data subset (called
the “testing” or “validation” subset)

5. Slight adjustment of the input weights, based on the magnitude and direction of the error
a. This form of “learning” the most appropriate weights is called “back propagation,”

because the error is used to modify the inputs that generated it.
b. Weights of all variables are adjusted for the given iteration through the data set.

6. Processing of the data set again in another iteration through the data set, and a new
overall prediction error is calculated

7. This process can span many (often hundreds) of data iterations, each one associated with
a slight adjustment in the variable weights, until a “stopping” point has been reached in
terms of the following:

a. Time
b. Number of data iterations
¢. Minimum overall error is reached

The back-propagation technique is explained further in Chapter 7 (basic algorithms).
Other training parameters can be optimized also in a similar manner.

1. The learning rate parameter controls the speed over which the decision landscape is
“traversed” in the course of data processing. This parameter is analogous to the speed of
a ball rolling over an uneven error surface, symbolized by Fig. 19.5.

FIG. 19.5 The decision ball is flowing downhill along the error surface.



746 19. DEEP LEARNING

FIG. 19.6 The decision “trapped” in a local minimum on an error surface.

2. The “momentum” parameter (analogous to strength of the tendency for solution
optimization to “keep going” over an error gradient, like a ball rolling up or down a
hill). The optimization process “seeks” a minimum error point, but the one “found” by
the processing might be only a “local” minimum, not a “global” minimum. Some error
surfaces are rather uneven and “craggy,” which might cause the decision to become
“stuck” in a local minimum as in Fig. 19.6.

The momentum parameter helps to “drive” the decision slightly uphill (toward a higher
error point) until it “finds” a downward gradient again and continues to the state of global
minimum error. The back-propagation process is one of core elements of both original MLP
design, and of DL technology.

Problems in the Use of Machine-Learning (ML) Technology

One of the problems with the use of ML technology like ANNSs is the tendency for the
solutions to get trapped in a local minimum in the error minimization process. Optimizing
the momentum of the neural net is one way to reduce that risk. But, this process works only
within the training-testing process. Another problem is that error minimization process pro-
ceeds to train a relatively accurate model, but it fails miserably when new data are input to it,
because the neural net is trained so closely to the training data set, that if cannot distinguish
similar patterns in a new data set. This problem is called over-training. Patterns in the new
data may be sufficiently different than the patterns in the data used to train the model that the
prediction accuracy is compromised significantly. This form of error is called “generalization
error.” Several processing strategies can reduce the generalization error. This type of process
is called regularization. Regularization is any modification of the ML algorithms that functions
to reduce its generalization error, but not its training error (Goodfellow et al., 2016).

MORE ELABORATE ARCHITECTURES—DL NEURAL NETWORKS

The neural networks in the human brain have many more than just three layers, in which
many of the layers are built from sensory input patterns formed by many different expe-
riences. This means that different variable data are input to different layers, each one the
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result of different experiences. The encapsulation of this experience-based component of hu-
man neural networks was simulated by adding additional layers to the ANN architecture,
fed by different sets of data inputs, analogous to different experiences. The resulting ANN
architecture was far “deeper” in terms of hidden layers and data inputs than the original
MLP, and was termed a deep learning neural net (DLNN). One of the early applications of
deep learning neural networks (DLNNs) was to build the IBM Deep Blue chess-playing com-
puter system, which beat the reigning world champion chess player, Gary Kasparov, in 1997
(Schmidhuber, 2015).
Major elaborations of DLNNSs include

1. representational learning elements,
2. convolutions,
3. separate date sets input in some hidden nodes.

Representational Learning

An earlier development of learning machines involved mapping raw inputs to transformed
features that “represented” raw data inputs. Analysis of these transformed inputs was called
“representational learning” (RL). The problem with representational learning (RL) applied to
early speech and image analysis was that it was difficult to extract nuances like speech accent
or viewing angle of an image. DLNNS5s solve this problem in RL by using a group of simple
representations to build more complex representations.

One application of a DLNN for image recognition dedicates the processing of one hidden
layer to distinguish image elements contours, and the second hidden layer to distinguish
edges, and the third hidden layer to combine contours and edges to compose image parts
(Schmidhuber, 2015).

Convolutional Neural Networks

One of the earliest applications of complex ANNs (those with more than three layers) was
image processing. Studies in computational neuroscience of vision (initially of a cat) sug-
gested that a subtle change in the mathematical operations of a machine-learning algorithm
could have profound benefits on both computational efficiency and noise reduction. The
change was to use one function to modify another function to make it work better. The basic
idea was to use one function to estimate (or generalize) the state of another function, without
having to solve the other function directly. Such a modification is called a convolution. For ex-
ample, we might use an aggregating function to collect noisy inputs from a submarine sonar
sensor, and calculate the average over a small interval of time. Rather than submitting the raw
noisy signal to the processing programs, only the average is input. This approach can have
very significant effects on lowering the processing time to generate the output, and the stor-
age requirements for intermediate products. This averaging is called pooling. This example of
sonar signal processing involves only one input, the signal; there are no predictor variables.
Imagine how this approach could be leveraged to modify the processing of machine-learning
algorithms with many predictor variable inputs. That is how a convolutional neural network
(CNN) was conceived.
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Neural network algorithm developers recognized that the mathematical processing (i.e.,
matrix multiplication operations) during image analysis could be highly optimized in each
layer of the neural network by using various convolutions to estimate parameter values.
These convolutional neural networks were very efficient and effective in the analysis of any
data set that can be represented as a two-dimensional data structure (like pixels in an im-
age). Some convolutional neural networks were developed to work with time-series data
sets, which are essentially two-dimensional data structures (output dimension and the time
dimension). Some specialized convolutional neural networks incorporated time delays in the
input processing strategy, time-delayed neural networks (TDNNS).

In the early 1990s, AT&T developed convolutional neural networks (CNNs) for checking
images in banks (Goodfellow et al., 2016). Subsequently, Nippon Electric Corporation (NEC)
adapted this technology to read over 10% of the checks processed by them in the United
States. Now, all checks are read with variations of this technology.

Sparsely Connected Neural Networks (SCNN)

Another aspect of neural net computing further developed into a DL process is sparsely
connected neural networks (SCNNSs). As the number of hidden layers increased, the amount
of processing increased exponentially. A fully connected neural network associated a weight
with the connection of each input neuron and hidden neuron. In a sparsely connected
network, some of those connections are not made. Fig. 19.7 shows a fully connected neural
network, and Fig. 19.8 shows its sparsely connected counterpart.

FIG. 19.7 A fully connected neural network.

by

FIG. 19.8 A sparsely connected neural network (SCNN).
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FIG. 19.9 A DLNN with fully connected and sparsely connected components. From https://wwuw.
google.com/search?q=sparsely-connected+convoluted+neural+network+images&biw=1536&bih=735&tbm= isch&imgil=yoWhU67BLz_
rKM%253A%253BigBynsCt8wHKMM %253Bhttps %25253 A %25252F %25252 Fwww.anyline.io%25252Fblog %25252Ftag %
25252Fdeep-learning%25252F &source=iu&pf=m&fir=yoWhU67BLz_rKM% 253A%252CigBynsCt8wHKMM %252C_&usg=__ -
j4KI_DzX8EFkphETaRg1wluyvl%3D&dpr=1.25&ved=  0ahUKEwi466K]8q7SAhXMPiYKHcjTCkIQyjclVg&ei=aWGzW-
PiSMcz9mAHIp6uQBA#imgre=IxHDI54iCmB1xM.

The sparsely connected neural network (SCNN) are a lot less “noisy,” yet it may capture
enough of the pattern to be very useful. It requires much less processing, particularly for
many records and many variables. Sparse connectivity is a feature of many CNNs.

In many DLNN algorithms, the fully connected design is combined with the sparsely con-
nected design in the same network architecture (Fig. 19.9).

Notice in Fig. 19.9 that middle layer neurons in last three layers are fully connected with the
layer to the left in the image and the output layer to the right, whereas neurons in the pre-
vious layers are sparsely connected (not connected to each neuron in the layers next to them).

Recurrent ANNs

Another kind of neural network that may be incorporated into DL systems is the recurrent
neural network (RNN). Recurrent neural networks (RNNs) are very different from CNNs in the
ways they can analyze temporal data inputs and generate sequential data output (Vorhies, 2016).

In contract to the standard feed-forward ANNs, RNNs have bidirectional data flow. The
standard feed-forward data flow occurs, followed sometimes by feed-backward of data pro-
cessed in later steps to affect the processing of earlier steps. This processing is referred to as
back-propagation through time. This design does not make the assumption of other ANNs
that data inputs are independent of each other in their effect on the output.

Temporal data. RNNs were modified subsequently to process various types of tempo-
ral data:

* Blocks of text if different lengths
* Audio speech signals
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* Sequences of stock prices
* Streams of sensor data

Each of these types of temporal data can be viewed as sequential data through time. RNNs
can learn from any data expressed as a sequence of data elements.

Memory. Not only can the feed-backward design in RNNs loop just one data unit backward
in time, but also it can “look” backward many time units in the past. This feature permits
simulation of learning over a timescale specified by the user. Proper tuning of the algorithm
can control how long it “remembers” and when to “forget.”

This ability to regulate when to remember and when to forget can help to solve an underly-
ing problem with RNNSs. Each time step in the processing of an RNN is equivalent to training
a feed-forward ANN with 100 hidden layers. This situation leads to very small gradients in
the error surface over which the gradient descent error minimization process must operate.
As the number of time steps increases, the extent of the error surface declines exponentially,
and it is known as the “vanishing gradient problem.” The most common technique is to use
the long short-term memory (LSTM) approach. This feature is particularly useful with sen-
sor data that have long delays, or when there is a mixture of high and low frequency data
(Vorhies, 2016).

Vorhies (2016) lists a number of applications for which RNNs are useful:

Speech recognition

Text processing

Handwriting recognition

Image recognition

Supply-chain demand forecasting

Multiple Input Data Sets

Sometimes, different data sets are input to each hidden layer. These intermediate inputs
are analogous to a serial set of inputs to human neural networks from different experiences,
which drive the sequential learning processes.

Fig. 19.10 shows one way of relating DL to allied disciplines of representational learning,
Al, and machine-learning.

POSTSCRIPT

Now, the groundwork has been laid upon which can be presented as the current focus
of much of the DL technology—the development of the IBM Watson computer, described
in Chapter 22. Before we do that, however, we must consider two caveats in the use of DL
technology.

1. We must relate the concept of prediction accuracy in machine-learning methods to the
concept of significance in parametric statistical analysis (Chapter 20).

2. We must consider the ethical aspects of the application of knowledge gained from
predictive analytics studies (Chapter 21).
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FIG. 19.10  Venn diagram of the relationships between the four levels of Al From Goodfellow, I., Bengio, Y., Courville,
A., 2016. Deep learning. MIT Press. http://www.deeplearningbook.org (in preparation).
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