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INTRODUCTION

Explosive growth in geospatial data and the emergence of new spatial technologies emphasize
the need for the automated discovery of spatial knowledge. Spatial data mining is the process
of discovering interesting and previously unknown but potentially useful patterns from spatial
databases. The complexity of spatial data and intrinsic spatial relationships limits the usefulness
of conventional data mining techniques for extracting spatial patterns. In this chapter we explore
the emerging field of spatial data mining and applications, especially the areas of outlier
detection, colocation rules, classification/prediction, and clustering techniques that explicitly
model spatial neighborhood relationships. We present several case studies utilizing a wide
variety of spatial data sets.

Spatial data mining is the process of exploring large spatial data sets for extracting inter-
esting, potentially useful, and recurrent patterns and relationships. Widespread use of spatial
databases (Guting, 1994; Shekhar & Chawla, 2002; Shekhar et al., 1999; Worboys, 1995) is
leading to an increasing interest in mining interesting and useful, but implicit, spatial patterns
(Greenman, 2000; Koperski, Adhikary, & Han, 1996; Mark, 1999; Roddick & Spiliopoulou,
1999; Stolorz et al., 1995). Spatial data sets and patterns are abundant in many application
domains related to the National Aeronautics and Space Administration, the National Imagery
and Mapping Agency, the National Cancer Institute, and the United States Department of
Transportation. Efficient tools for extracting information from geospatial data are crucial to
organizations that make decisions based on large spatial data sets. These applications are spread
across many domains including ecology and environmental management, public safety, trans-
portation, public health, business, and travel and tourism (Albert & McShane, 1995; Haining,
1989; Hohn, Gribki, & Liebhold, 1993; Issaks, Edward, & Srivastava, 1989; Krugman, 1995;
Shekhar, Yang, & Hancock, 1993; Stolorz et al., 1995; Yasui & Lele, 1997).

General purpose data mining tools such as Clementine (SPSS), See5/C5.0 (Research), and
Enterprise Miner (SAS) are designed for the purpose of analyzing large commercial databases.
Although these tools were primarily designed to identify customer-buying patterns in market-
basket data, they also have been used in analyzing scientific and engineering, astronomical,
multimedia, genomic, and Web data. Extracting interesting and useful patterns from spatial
data sets is more difficult than extracting corresponding patterns from traditional numeric and
categorical data due to the complexity of spatial data types, spatial relationships, and spatial
autocorrelation. Specific features of geographical data that preclude the use of general purpose
data mining algorithms are (a) spatial relationships among the variables, (b) spatial structure
of errors, (c) mixed distributions as opposed to commonly assumed normal distributions,
(d) observations that are not independent, (e) spatial autocorrelation among the features, and
(f) nonlinear interaction in feature space. Of course, one can apply conventional data mining
algorithms, but it is often observed that these algorithms perform more poorly on spatial data.
Many supportive examples can be found in the literature; for instance, parametric classifiers
such as maximum likelihood perform more poorly than nonparametric classifiers when
the assumptions about the parameters (e.g., normal distribution) are violated, and Markov
random fields (MRFs) perform better than per-pixel based classifiers when the features are
autocorrelated.

Now the question arises whether we really need to invent new algorithms or extend the
existing approaches to explicitly model spatial properties and relationships. Although it is
difficult to tell the direction of future research, for now it seems both approaches are gaining
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momentum. In this chapter we present techniques that are specifically designed for analyzing
large volumes of spatial data as well as extensions of conventional data mining techniques that
explicitly model spatial concepts.

This chapter is organized as follows. In the next section we introduce spatial outlier detection
techniques and their use in finding spatiotemporal outliers in traffic data. In the section after
the heading “Spatial Colocation Rules” we present a new approach, called colocation mining,
which finds the subsets of features frequently located together in spatial databases. The section
after the heading “Location Prediction” presents extensions of classification and prediction
techniques that model spatial context. Here we present a case study on a bird nest data set using
MRFs and spatial autoregressive regression (SAR) techniques. The section after the heading
“Clustering” explores expectation maximization (EM) and its spatial extension, neighborhood
expectation maximization (NEM), and provides bird nest prediction results. Finally, this chapter
concludes with a summary of techniques and results.

SPATIAL OUTLIER DETECTION TECHNIQUES

Global outliers have been defined informally as observations in a data set that appear to be
inconsistent with the remainder of that set of data (Barnett & Lewis, 1994), or that deviate so
much from other observations so as to arouse suspicions that they were generated by a different
mechanism (Hawkins, 1980). The identification of global outliers can lead to the discovery
of unexpected knowledge and has a number of practical applications in areas such as credit
card fraud, athlete performance analysis, voting irregularity, and severe weather prediction.
This section focuses on spatial outliers, that is, observations that appear to be inconsistent with
their neighborhoods. Detecting spatial outliers is useful in many applications of geographic
information systems and spatial databases. These application domains include transportation,
ecology, public safety, public health, climatology, and location based services.

We model a spatial data set to be a collection of spatially referenced objects such as houses,
roads, and traffic sensors. Spatial objects have two distinct categories of dimensions along
which attributes may be measured. Categories of dimensions of interest are spatial and non-
spatial. Spatial attributes of a spatially referenced object include location, shape, and other
geometric or topological properties. Nonspatial attributes of a spatially referenced object in-
clude traffic sensor identifiers, manufacturer, owner, age, and measurement readings. A spatial
neighborhood of a spatially referenced object is a subset of the spatial data based on a spatial
dimension, for example, location. Spatial neighborhoods may be defined based on spatial at-
tributes such as location, using spatial relationships such as distance or adjacency. Comparisons
between spatially referenced objects are based on nonspatial attributes.

A spatial outlier is a spatially referenced object the nonspatial attribute values of which
differ significantly from those of other spatially referenced objects in its spatial neighborhood.
Informally, a spatial outlier is a local instability (in values of nonspatial attributes) or a spatially
referenced object the nonspatial attributes of which are extreme relative to its neighbors, even
though the attributes may not be significantly different from the entire population. For example,
a new house in an old neighborhood of a growing metropolitan area is a spatial outlier based
on the nonspatial attribute house age.

Illustrative Examples and Application Domains

We use an example to illustrate the differences among global and spatial outlier detection
methods. In Fig. 22.1(a), the x-axis is the location of data points in one-dimensional space; the
y-axis is the attribute value for each data point. Global outlier detection methods ignore the
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FIG. 22.1. A data set for outlier detection.

spatial location of each data point and fit the distribution model to the values of the nonspatial
attribute. The outlier detected using this approach is the data point G, which has an extremely
high attribute value of 7.9, exceeding the threshold of 
 + 2 = 4.49+ 2 ∗ 1.61 = 7.71, as
shown in Fig. 22.1(b). This test assumes a normal distribution for attribute values. On the other
hand, S is a spatial outlier with an observed value significantly different from its neighbors
P and Q.

As another example we use a spatial database consisting of measurements from the
Minneapolis–St. Paul freeway traffic sensor network. The sensor network includes about 900
stations, each of which contains one to four loop detectors, depending on the number of lanes.
Sensors embedded in the freeways and interstate monitor the occupancy and volume of traffic
on the road. At regular intervals this information is sent to the Traffic Management Center for
operational purposes, for instance, ramp meter control, as well as for experiments and research
on traffic modeling.

In this application we are interested in discovering the location of stations with measure-
ments that are inconsistent with those of their spatial neighbors and the time periods when
those abnormalities arise. The outlier detection tasks are to (a) build a statistical model for a
spatial data set; (b) check whether a specific station is an outlier; and (c) check whether stations
on a route are outliers.

Tests for Detecting Spatial Outliers

Tests to detect spatial outliers separate spatial attributes from nonspatial attributes. Spatial
attributes are used to characterize location, neighborhood, and distance. Nonspatial attribute
dimensions are used to compare a spatially referenced object to its neighbors. Spatial statis-
tics literature provides two kinds of bipartite multidimensional tests, namely graphical tests
and quantitative tests. Graphical tests, which are based on the visualization of spatial data,
highlight spatial outliers. Example methods include variogram clouds and Moran scatterplots.
Quantitative methods provide a precise test to distinguish spatial outliers from the remainder
of data. Scatterplots (Luc, 1994) are a representative technique from the quantitative family.

A variogram cloud displays data points related by neighborhood relationships. For each pair
of locations the square root of the absolute difference between attribute values at the locations
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FIG. 22.2. Variogram cloud and Moran scatterplot to detect spatial outliers.

versus the Euclidean distance between the locations is plotted. In data sets exhibiting strong
spatial dependence the variance in the attribute differences increase with increasing distance
between locations. Locations that are near to one another, but with large attribute differences,
might indicate a spatial outlier even though the values at both locations may appear to be
reasonable when examining the data set nonspatially. Figure 22.2(a) shows a variogram cloud
for the example data set shown in Fig. 22.1(a). This plot shows that two pairs (P, S) and
(Q, S) on the left-hand side lie above the main group of pairs and are possibly related to
spatial outliers. The point S may be identified as a spatial outlier because it occurs in both
pairs (Q, S) and (P, S). However, graphical tests of spatial outlier detection are limited by the
lack of precise criteria to distinguish spatial outliers. In addition, a variogram cloud requires
nontrivial postprocessing of highlighted pairs to separate spatial outliers from their neighbors,
particularly when multiple outliers are present or density varies greatly.

A Moran scatterplot (Luc, 1995) is a plot of normalized attribute value (Z [ f (i)] = f (i)−
 f

 f
)

against the neighborhood average of normalized attribute values (W · Z ), where W is the row-
normalized (i.e.,

∑
j Wi j = 1) neighborhood matrix, (i.e., Wi j > 0 iff neighbor (i, j)). The

upper left and lower right quadrants of Fig. 22.2(b) indicate a spatial association of dissimilar
values: low values surrounded by high-value neighbors (e.g., points P and Q), and high
values surrounded by low values (e.g., point S). Thus, we can identify points (nodes) that are
surrounded by unusually high- or low-value neighbors. These points can be treated as spatial
outliers.

Definition. A Moranoutlier is a point located in the upper left and lower right quadrants
of a Moran scatterplot. This point can be identified by (Z [ f (i)])× (

∑
j (Wi j Z [ f ( j)])) < 0.

A scatterplot (Luc, 1994) shows attribute values on the x-axis and the average of the
attribute values in the neighborhood on the y-axis. A least square regression line is used
to identify spatial outliers. A scatter sloping upward to the right indicates a positive spatial
autocorrelation (adjacent values tend to be similar); a scatter sloping upward to the left indicates
a negative spatial autocorrelation. The residual is defined as the vertical distance (y-axis)
between a point P with location (X p, Yp) to the regression line Y = m X + b, that is, residual
	 = Yp − (m X p + b). Cases with standardized residuals, 	standard = 	−
	

	
, greater than 3.0 or
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FIG. 22.3. Scatterplot and spatial statistic Zs(x) to detect spatial outliers.

less than −3.0 are flagged as possible spatial outliers, where 
	 and 	 are the mean and
standard deviation of the distribution of the error term 	. In Fig. 22.3(a), a scatterplot shows
the attribute values plotted against the average of the attribute values in neighboring areas for
the data set in Fig. 22.1(a). The point S turns out to be the farthest from the regression line and
may be identified as a spatial outlier.

Definition. A Scatterplotoutlier is a point with significant standardized residual error
from the least square regression line in a scatterplot. Assuming errors are normally distributed,
then 	standard = | 	−
	

	
| > � is a common test. Nodes with standardized residuals 	standard = 	−
	

	

from regression line Y = m X + b and greater than � or less than −� are flagged as possible
spatial outliers. The 
	 and 	 are the mean and standard deviation of the distribution of the
error term 	.

A location (sensor) is compared with its neighborhood using the function S(x) = [ f (x)−
Ey∈N (x)( f (y))], where f (x) is the attribute value for a location x , N (x) is the set of neighbors
of x , and Ey∈N (x)( f (y)) is the average attribute value for the neighbors of x . The statistical
function S(x) denotes the difference of the attribute value of a sensor located at x and the
average attribute value of x ′s neighbors.

Spatial statistic S(x) is normally distributed if the attribute value f (x) is normally dis-
tributed. A popular test for detecting spatial outliers for normally distributed f (x) can be
described as follows: Spatial statistic Zs(x) = | S(x)−
s

s
| > �. For each location x with an at-

tribute value f (x), the S(x) is the difference between the attribute value at location x and the
average attribute value of x’s neighbors, 
s is the mean value of S(x), and s is the value of the
standard deviation of S(x) over all stations. The choice of � depends on a specified confidence
level. For example, a confidence level of 95% will lead to � ≈ 2.

Figure 22.3(b) shows the visualization of the spatial statistic Zs(x) method described earlier
and in example 1. The x-axis is the location of data points in one-dimensional space; the
y-axis is the value of spatial statistic Zs(x) for each data point. We can easily observe that point
S has a Zs(x) value exceeding 3 and will be detected as a spatial outlier. Note that the two
neighboring points P and Q of S have Zs(x) values close to −2 due to the presence of spatial
outliers in their neighborhoods. Example 1 has already shown that Zs(x) is a special case of an
S-outlier.
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FIG. 22.4. Spatial outliers in traffic volume data.

Solution Procedures

Given the components of the S-outlier definition, the objective is to design a computationally
efficient algorithm to detect S-outliers. We presented scalable algorithms for spatial outlier
detetection in [Shekhar, Lu, & Zhang (2001)], where we showed that almost all statistical tests
are “algebraic” aggregate functions over a neighborhood join. The spatial outlier detection
algorithm has two distinct tasks: The first deals with model building and the second involves a
comparison (test statistic) with spatial neighbors. During model building, algebraic aggregate
functions (e.g., mean and standard deviation) are computed in a single scan of a spatial-
join using a neighbor relationship. In the second step a neighborhood aggregate function is
computed by retrieving the neighboring nodes, and then a difference function is applied over the
neighborhood aggregates and algebraic aggregates. This study showed that the computational
cost of outlier detection algorithms are dominated by the disk page access time (i.e., the time
spent on accessing neighbors of each point). In this study we utilized three different data page
clustering schemes: the connectivity-clustered access method (CCAM; Shekhar & Liu, 1997),
Z-ordering (Orenstein & Merrett, 1984), and cell-tree (Gunther, 1989) and found that CCAM
produced the lowest number of data page accesses for outlier detection.

The effectiveness of the Zs(x) method on a Minneapolis–St. Paul traffic data set is illustrated
in the following example. Figure 22.4 shows one example of traffic flow outliers. Figures 22.4(a)
and (b) are the traffic volume maps for I-35W north bound and south bound, respectively, on
January 21, 1997. The x-axis is a 5-minute time slot for the whole day, and the y-axis is the
label of the stations installed on the highway, starting from 1 on the north end to 61 on the south
end. The abnormal white line at 2:45 p.m. and the white rectangle from 8:20 a.m. to 10:00 a.m.
on the x-axis and between stations 29 to 34 on the y-axis can be easily observed from both
(a) and (b). The white line at 2:45 p.m. is an instance of temporal outliers, whereas the white
rectangle is a spatial–temporal outlier. Both represent missing data. Moreover, station 9 in
Fig. 22.4(a) exhibits inconsistent traffic flow compared with its neighboring stations and was
detected as a spatial outlier. Station 9 may be a malfunctioning sensor.

SPATIAL COLOCATION RULES

Association rule finding (Hipp, Guntzer, & Nakaeizadeh, 2000) is an important data mining
technique that has helped retailers interested in finding items frequently bought together to
make store arrangements, plan catalogs, and promote products together. In market-basket
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data a transaction consists of a collection of item types purchased together by a customer.
Association rule mining algorithms (Agrawal & Srikant, 1994) assume that a finite set of
disjoint transactions are given as input to the algorithms. Algorithms such as the a priori
(Agrawal & Srikant, 1994) can efficiently find the frequent item sets from all the transactions,
and association rules can be found from these frequent item sets. Many spatial data sets consist
of instances of a collection of Boolean spatial features (e.g., drought, needle leaf vegetation).
Although Boolean spatial features can be thought of as item types, there may not be an explicit
finite set of transactions due to the continuity of underlying spaces. In this section we define
colocation rules, a generalization of association rules to spatial data sets.

Illustrative Application Domains

Many ecological data sets (Li, Cihlar, Moreau, Huang, & Lee, 1997; Nepstad et al., 1999)
consist of raster maps of the Earth at different times. Measurement values for a number of
variables (e.g., temperature, pressure, and precipitation) are collected for different locations
on Earth. Maps of these variables are available for different time periods ranging from 20 to
100 years. Some variables are measured using sensors, whereas others are computed using
model predictions.

A set of events, that is, Boolean spatial features, are defined on these spatial variables.
Example events include drought, flood, fire, and smoke. Ecologists are interested in a variety
of spatiotemporal patterns including colocation rules. Colocation patterns represent frequent
cooccurrences of a subset of Boolean spatial features. Examples of interesting colocation
patterns in ecology are shown in Table 22.1. Net primary production (NPP) is a key variable
for understanding the global carbon cycle and the ecological dynamics of the Earth.

The spatial patterns of ecosystem data sets include the following:

1. Local colocation patterns that represent relationships among events in the same grid
cell, ignoring the temporal aspects of the data. Examples from the ecosystem domain include
patterns P1 and P2 of Table 22.1. These patterns can be discovered using algorithms (Agrawal
& Srikant, 1994) for mining classical association rules.

2. Spatial colocation patterns that represent relationships among events happening in dif-
ferent and possibly nearby grid cells. Examples from the ecosystem domain include patterns
P3 and P4 of Table 22.1.

Additional varieties of colocation patterns may exist. Furthermore, the temporal nature of
ecosystem data gives rise to many other time related patterns. We focus on these colocation
patterns in the following sections.

TABLE 22.1
Examples of Interesting Spatiotemporal Ecological Patterns

Examples of Interesting
Pattern No. Variable A Variable B Patterns

P1 Cropland area Vegetation Higher cropland area alters NPP
P2 Precipitation drought index Vegetation Low rainfall events lead to

lower NPP
P3 Smoke aerosol index Precipitation Smoke aerosols alter the likeli-

hood of rainfall in a nearby
region

P4 Sea surface temperature Land surface climate and NPP Surface ocean heating affects
regional terrestrial climate
and NPP
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FIG. 22.5. Spatial data set to illustrate different colocation models.

Colocation Rule Approaches

Given the difficulty in creating explicit disjoint transactions from continuous spatial data,
this section defines several approaches to model colocation rules. We use Fig. 22.5 as an
example spatial data set to illustrate the different models. In this figure a uniform grid is
imposed on the underlying spatial framework. For each grid l, its neighbors are defined to be
the nine adjacent grids (including l). Spatial feature types are labeled beside their instances.
Figure 22.5(a) shows a reference feature-centric model. The instances of A are connected
with their neighboring instances of B and C by edges. Figure 22.5(b) shows a window-centric
model. Each 3× 3 window corresponds to a transaction. Figure 22.5(c) shows an event-centric
model. Neighboring instances are joined by edges. We define the following basic concepts to
facilitate the description of different models.

Definition 1. A colocation is a subset of boolean spatial features or spatial events.

Definition 2. A colocation rule is of the form C1 → C2 (p, cp) where C1 and C2 are
colocations, p is a number representing the prevalence measure, and cp is a number measuring
conditional probability.

The prevalence measure and the conditional probability measure are called interest measures
and are defined differently in different models.

The reference feature-centric model is relevant to application domains focusing on a spe-
cific Boolean spatial feature, for instance, cancer. Domain scientists are interested in finding
the colocations of other task-relevant features (e.g., asbestos, other substances) to the ref-
erence feature. This model enumerates neighborhoods to “materialize” a set of transactions
around instances of the reference spatial feature. A specific example is provided by the spatial
association rule (Koperski & Han, 1995).

For example, in Fig. 22.5(a), let the reference feature be A, the set of task-relevant features
be B and C , and the set of spatial predicates include one predicate named “close to.” Let us
define close to (a, b) to be true if and only if b is a’s neighbor. Then for each instance of spatial
feature A, a transaction that is a subset of relevant features {B, C} is defined. For example, for
the instance of A at (2,3), transaction {B, C} is defined because the instance of B at (1,4) (and
at [3,4]) and instance of C at (1,2) (and at [3,3]) are close to (2,3). The transactions defined
around instances of feature A are summarized in Table 22.2.

With “materialized” transactions the support and confidence of the traditional association
rule problem (Agrawal & Srikant, 1994) may be used as prevalence and conditional proba-
bility measures as summarized in Table 22.3. Because one out of two nonempty transactions
contains instances of both B and C and one out of two nonempty transactions contain C in
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TABLE 22.2
Reference Feature-Centric View: Transactions

Are Defined Around Instances of Feature A Relevant
to B and C in Figure 22.5(a)

Instance of A Transaction

(0,0) ø
(2,3) {B, C}
(3,1) {C}
(5,5) ø

Table 22.2, an association rule example is: is type (i, A) ∧ ∃ j is type ( j, B) ∧ close to ( j, i) →
∃k is type (k, C) ∧ close to (k, i) with 1

1
∗ 100% = 100% probability.

The window-centric model is relevant to applications like mining, surveying, and geology,
which focus on land parcels. A goal is to predict sets of spatial features likely to be discovered
in a land parcel given that some other features have been found there. The window-centric
model enumerates all possible windows as transactions. In a space discretized by a uniform
grid, windows of size k × k can be enumerated and materialized, ignoring the boundary effect.
Each transaction contains a subset of spatial features of which at least one instance occurs
in the corresponding window. The support and confidence of the traditional association rule
problem may again be used as prevalence and conditional probability measures as summarized
in Table 22.3. There are 16 3×3 windows corresponding to 16 transactions in Figure 22.5(b).
All of them contain A, and 15 of them contain both A and B. An example of an association
rule of this model is: an instance of type A in a window→ an instance of type B in this window
with 15

16
= 93.75% probability. A special case of the window-centric model relates to the case

when windows are spatially disjoint and form a partition of space. This case is relevant when
analyzing spatial data sets related to the units of political or administrative boundaries (e.g.,
country, state, zip code). In some sense this is a local model because we treat each arbitrary
partition as a transaction to derive colocation patterns without considering any patterns cross
partition boundaries. The window-centric model “materializes” transactions in a different way
from the reference feature-centric model.

The event-centric model is relevant to applications such as ecology in which there are
many types of Boolean spatial features. Ecologists are interested in finding subsets of spatial

TABLE 22.3
Interest Measures for Different Models

Transactions
Interest Measures for C1 → C2

Model Items Defined By Prevalence Conditional Probability

Local Boolean feature
types

Partitions of space Fraction of partitions
with C1 ∪ C2

Pr (C2 in a partition given
C1 in the partition)

Reference
feature-
centric

Predicates on
reference and
relevant
features

Instances of reference
feature C1 and C2

involved with

Fraction of instance
of reference feature
with C1 ∪ C2

Pr (C2 is true for an instance
of reference features given
C1 is true for that instance
of reference feature)

Window-
centric

Boolean feature
types

Possibly infinite set of
distinct overlapping
windows

Fraction of windows
with C1 ∪ C2

Pr (C2 in a window given C1

in that window)

Event
centric

Boolean feature
types

Neighborhoods of
instances of feature
types

Participation index of
C1 ∪ C2

Pr (C2 in a neighborhood of
C1)
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features likely to occur in a neighborhood around instances of given subsets of event types.
For example, let us determine the probability of finding at least one instance of feature type
B in the neighborhood of an instance of feature type A in Figure 22.5(c). There are four
instances of type A and only one of them has some instance(s) of type B in its nine-neighbor
adjacent neighborhoods. The conditional probability for the colocation rule is: spatial feature
A at location l→ spatial feature type B in 9-neighbor neighborhood is 25%.

Neighborhood is an important concept in the event-centric model. Given a reflexive and
symmetric neighbor relation R, we can define neighborhoods of a location l that satisfy the
definition of neighborhood in topology [Worboys, 1995] as seen in the following definitions:

Definition 3. A neighborhood of l is a set of locations L = {l1, . . . , lk} such that li is
a neighbor of l, that is, (l, li ) ∈ R(∀i ∈ 1, . . . , k).

We generalize the neighborhood definition to a collection of locations.

Definition 4. For a subset of locations L ′ if L ′ is a neighborhood of every location in
L = {l1, . . . , lk} then L ′ is a neighborhood of L .

In other words, if every l1 in L ′ is a neighbor of every l2 in L , then L ′ is a neighborhood
of L .

The definition of neighbor relation R is an input and is based on the semantics of applica-
tion domains. The neighbor relation R may be defined using topological relationships (e.g.,
connected, adjacent), metric relationships (e.g., Euclidean distance) or a combination (e.g.,
shortest path distance in a graph such as a road map). In general, there are infinite neighbor-
hoods over continuous space, and it may not be possible to materialize all of them. But we are
interested in only the locations where instances of spatial feature types (events) occur. Even
confined to these locations, enumerating all the neighborhoods incurs substantial computa-
tional cost because support based pruning cannot be carried out before the enumeration of all
the neighborhoods is completed and the total number of neighborhoods is obtained. Further-
more, this support based prevalence measure definition may not be meaningful because the
value of the prevalence may be extremely small due to the fact that many neighborhoods are
contained in bigger neighborhoods and counted multiple times. Thus, the participation index
is proposed to be a prevalence measure as defined below.

Definition 5. For a colocation C = { f1, . . . , fk} and a set of locations I = {i1, . . . , ik}
where ij is an instance of feature fj (∀ j ∈ 1, . . . , k) if I is a neighborhood of I itself then I is
an instance of C .

In other words, if elements of I are neighbors to each other, then I is an instance of C . For
example, {(3,1), (4,1)} is an instance of colocation {A, C} in Fig. 22.5(c) using a nine-neighbor
adjacent neighbor definition.

Definition 6. The participation ratio pr (C, fi ) for feature type fi of a colocation
C = { f1, f2, . . . , fk} is the fraction of instances of fi that participate in the colocation C . It
can be formally defined as

|distinct(� fi (all instances of colocation C))|
|instances of { fi }| where � is a projection operation.

For example, in Fig. 22.5(c), instances of colocation {A, B} are {(2,3), (1,4)} and {(2,3),
(3,4)}. Only one instance (2,3) of spatial feature A out of four participates in colocation {A, B}.
So pr ({A, B}, A) = 1

4
= .25.

Definition 7. The participation index of a colocation C = { f1, f2, . . . , fk} is∏k
i=1 pr (C, fi ).
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In Fig. 22.5(c), participation ratio pr({A, B}, A) of feature A in colocation {A, B} is .25 as
calculated above. Similarly pr ({A, B}, B) is 1.0. The participation index for colocation {A, B}
is .25×1.0= .25.

The conditional probability of a colocation rule C1 → C2 in the event-centric model is the
probability of finding C2 in a neighborhood of C1 or it can be formally defined as follows.

Definition 8. The conditional probability of a colocation rule C1 → C2 is
|distinct(�C1 (all instances of colocation C1∪C2))|

|instances of C1| where � is a projection operation.
For details of algorithms that mine colocation rules in the event centric model, refer to

Shekhar and Huang (2001).

Solution Procedures

Colocation mining is a complex task. It consists of two tasks, schema level pruning and instance
level pruning. At schema level pruning the apriori algorithm (Agrawal & Srikant, 1994) can be
used. However, instance level pruning involves neighborhood (i.e., colocation row instance)
enumeration, which is a computationally intense task. Shekhar and Huang (2001) developed
pure geometric, pure combinatorial, hybrid, and multiresolution algorithms for instance level
pruning. Experimental analysis shows that the pure geometric algorithm performs much bet-
ter than the pure combinatorial approach. The hybrid algorithm, which is a combination of
geometric and combinatorial methods, performed better than both of these approaches. On
the other hand, the multiresolution algorithm outperforms all these methods when the data is
“clumped.” The results also show that the colocation miner algorithm is complete and correct.

LOCATION PREDICTION

The prediction of events occurring at particular geographic locations is very important in
several application domains. Crime analysis, cellular networks, and natural disasters such as
fires, floods, droughts, vegetation diseases, and earthquakes are all examples of problems that
require location prediction. In this section we provide two spatial data mining techniques,
namely the SAR and MRF and analyze their performance in an example case, the prediction
of the location of bird nests in the Darr and Stubble wetlands in Ohio.

An Illustrative Application Domain

We now introduce an example to illustrate the different concepts in spatial data mining. We are
given data about two wetlands, named Darr and Stubble, on the shores of Lake Erie in Ohio to
predict the spatial distribution of a marsh-breeding bird, the red-winged blackbird (Agelaius
phoeniceus). The data was collected from April to June in two successive years, 1995 and
1996.

A uniform grid was imposed on the two wetlands, and different types of measurements
were recorded at each cell or pixel. In total, values of seven attributes were recorded at each
cell. Domain knowledge is crucial in deciding which attributes are important and which are
not. For example, vegetation durability was chosen over vegetation species because specialized
knowledge about the bird-nesting habits of the red-winged blackbird suggested that the choice
of nest location is more dependent on plant structure, plant resistance to wind, and wave action
than on the plant species.
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FIG. 22.6. (a) Learning data set: the geometry of the wetland and the loca-
tions of the nests; (b) the spatial distribution of vegetation durability over the
marshland.

Our goal is to build a model for predicting the location of bird nests in the wetlands. Typically
the model is built using a portion of the data, called the learning or training data, and then
tested on the remainder of the data, called the testing data. In the learning data all the attributes
are used to build the model, and in the testing data one value is hidden, in our case the location
of the nests.

We focus on three independent attributes, namely vegetation durability, distance to open
water, and water depth. The spatial distribution of vegetation durability and the actual nest
locations for the Darr wetland in 1995 are shown in Fig. 22.6. These maps illustrate the
following two important properties inherent in spatial data.

1. The values of vegetation durability and the actual nest locations that are referenced
by spatial location tend to vary gradually over space (values of distance to open water and
water depth are similar). Although this may seem obvious, classical data mining techniques
either explicitly or implicitly assume that the data is independently generated. For example,
the maps in Fig. 22.7 show the spatial distribution of attributes if they were independently
generated. Classical data mining techniques such as logistic regression (Ozesmi & Mitch,
1997) and neural networks (Ozesmi & Ozesmi, 1999) were applied to build spatial habitat
models. These models predict the bird nesting locations by considering the spatial interactions

FIG. 22.7. Spatial distribution satisfying random distribution assumptions of
classical regression.
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FIG. 22.8. (a) The actual locations of nests; (b) pixels with actual nests;
(c) location predicted by a model; (d) location predicted by another model.
Prediction (d) is spatially more accurate than (c).

among the dependent variables. Logistic regression was used because the dependent variable
is binary (nest/no-nest) and the logistic function “squashes” the real line onto the unit interval.
The values in the unit interval can then be interpreted as probabilities. The study concluded
that with the use of logistic regression, the nests could be classified at a rate 24% better than
random (Ozesmi & Ozesmi, 1999).

2. The spatial distributions of attributes sometimes have distinct local trends that contradict
the global trends. This is seen most vividly in Fig. 22.6(b), in which the spatial distribution of
vegetation durability is jagged in the western section of the wetland as compared with the overall
impression of uniformity across the wetland. This property is called spatial heterogeneity.

The fact that classical data mining techniques ignore spatial autocorrelation and spatial
heterogeneity in the model-building process is one reason these techniques do a poor job.
A second more subtle but equally important reason is related to the choice of the objective
function to measure classification accuracy. For a two-class problem the standard way to
measure classification accuracy is to calculate the percentage of correctly classified objects.
However, this measure may not be the most suitable in a spatial context. Spatial accuracy—
how far the predictions are from the actuals—is just as important in this application domain
due to the effects of the discretizations of a continuous wetland into discrete pixels, as shown in
Fig. 22.8. Figure 22.8(a) shows the actual locations of nests and 22.8(b) shows the pixels with
actual nests. Note the loss of information during the discretization of continuous space into
pixels. Many nest locations barely fall within the pixels labeled “A” and are quite close to other
blank pixels, which represent “no-nest.” Now consider two predictions shown in Fig. 22.8(c)
and 22.8(d). Domain scientists prefer prediction 22.8(d) over 22.8(c), because the predicted
nest locations are closer on average to some actual nest locations. The classification accuracy
measure cannot distinguish between 22.8(c) and 22.8(d), and a measure of spatial accuracy
is needed to capture this preference.

Problem Formulation

The location prediction problem is a generalization of the nest location prediction problem.
It captures the essential properties of similar problems from other domains including crime
prevention and environmental management. The problem is formally defined as follows.

Given:

� A spatial framework S consisting of sites {s1, . . . , sn} for an underlying geographic space
G.

� A collection X of explanatory functions fXk : S → Rk, k = 1, . . . , K . Rk is the range
of possible values for the explanatory functions. Let X = [1, X ], which also includes a
constant vector along with explanatory functions.
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� A dependent class variable fC : S → C = {c1, . . . , cM}
� A value for parameter �, relative importance of spatial accuracy

Find: Classification model: f̂C : R1 × . . . Rk → C .
Objective: Maximize similarity (mapsi∈S( f̂C ( fX1 , . . . , fXk )), map( fC )) = (1− �) classifi-

cation accuracy( f̂C , fC )+ (�)spatial accuracy( f̂C , fC ).
Constraints:

1. Geographic space S is a multidimensional Euclidean space.1

2. The values of the explanatory functions, fX1 , . . . , fXk and the dependent class variable,
fC , may not be independent with respect to the corresponding values of nearby spatial
sites (i.e., spatial autocorrelation exists).

3. The domain Rk of the explanatory functions is the one-dimensional domain of real
numbers.

4. The domain of dependent variable, C = {0, 1}.

The above formulation highlights two important aspects of location prediction. It explicitly
indicates that (a) the data samples may exhibit spatial autocorrelation and, (b) an objective
function (i.e., a map similarity measure) is a combination of classification accuracy and spatial
accuracy. The similarity between the dependent variable fC and the predicted variable f̂C

is a combination of the “traditional classification” accuracy and representation-dependent
“spatial classification” accuracy. The regularization term � controls the degree of importance
of spatial accuracy and is typically domain dependent. As � → 0, the map similarity measure
approaches the traditional classification accuracy measure. Intuitively, � captures the spatial
autocorrelation present in spatial data.

Modeling Spatial Dependencies Using the SAR
and MRF Models

Several previous studies (Jhung & Swain, 1996; Solberg, Taxt, & Jain, 1996) have shown that
the modeling of spatial dependency (often called context) during the classification process
improves overall classification accuracy. Spatial context can be defined by the relationships
between spatially adjacent pixels in a small neighborhood. The spatial relationship among loca-
tions in a spatial framework often is modeled via a contiguity matrix. A simple contiguity matrix
may represent a neighborhood relationship defined using adjacency, Euclidean distance, and so
forth. Example definitions of neighborhood using adjacency include a four-neighborhood and
an eight-neighborhood. Given a gridded spatial framework, a four-neighborhood assumes that
a pair of locations influence each other if they share an edge. An eight-neighborhood assumes
that a pair of locations influence each other if they share either an edge or a vertex.

Figure 22.9(a) shows a gridded spatial framework with four locations, A, B, C, and D.
A binary matrix representation of a four-neighborhood relationship is shown in Fig. 22.9(b).
The row-normalized representation of this matrix is called a contiguity matrix, as shown in
Fig. 22.9(c). Other contiguity matrices can be designed to model neighborhood relationship
based on distance. The essential idea is to specify the pairs of locations that influence each other
along with the relative intensity of interaction. More general models of spatial relationships
using cliques and hypergraphs are available in the literature (Warrender & Augusteijn, 1999).

1The entire surface of the Earth cannot be modeled as a Euclidean space but locally the approximation holds true.
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(a) Spatial Framework (b) Neighbor relationship (c) Contiguity Matrix

FIG. 22.9. A spatial framework and its four-neighborhood contiguity matrix.

Logistic SAR

Logistic SAR decomposes a classifier f̂C into two parts, namely spatial autoregression and lo-
gistic transformation. We first show how spatial dependencies are modeled using the framework
of logistic regression analysis. In the spatial autoregression model the spatial dependencies
of the error term, or the dependent variable, are directly modeled in the regression equation
(Anselin, 1988). If the dependent values yi are related to each other, then the regression equation
can be modified as

y = � Wy + X� + 	. (1)

Here W is the neighborhood relationship contiguity matrix and � is a parameter that reflects
the strength of the spatial dependencies between the elements of the dependent variable. After
the correction term � Wy is introduced, the components of the residual error vector 	 are then
assumed to be generated from independent and identical standard normal distributions. As
in the case of classical regression, the SAR equation has to be transformed via the logistic
function for binary dependent variables.

We refer to this equation as the SAR model. Notice that when � = 0, this equation collapses
to the classical regression model. The benefits of modeling spatial autocorrelation are many:
The residual error will have much lower spatial autocorrelation (i.e., systematic variation). With
the proper choice of W , the residual error should, at least theoretically, have no systematic
variation. If the spatial autocorrelation coefficient is statistically significant, then SAR will
quantify the presence of spatial autocorrelation. It will indicate the extent to which variations
in the dependent variable (y) are explained by the average of neighboring observation values.
Finally, the model will have a better fit (i.e., a higher R-squared statistic). We compare SAR
with linear regression for predicting nest location in a later section.

A mixed model extends the general linear model by allowing a more flexible specification
of the covariance matrix of 	. The SAR model can be extended to a mixed model that allows for
explanatory variables from neighboring observations (LeSage & Pace, 2001). The new model
(MSAR) is given by

y = �Wy + X� +WX� + 	. (2)

The marginal impact of the explanatory variables from the neighboring observations on the
dependent variable y can be encoded as a k ∗ 1 parameter vector � .

Solution Procedures

The estimates of � and � can be derived using maximum likelihood theory or Bayesian
statistics. We have carried out preliminary experiments using the spatial econometrics Matlab
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package,2 which implements a Bayesian approach using sampling-based Markov chain Monte
Carlo methods (LeSage, 1997). Without any optimization, likelihood-based estimation would
require O(n3) operations. Recently, Pace and Barry (1997a, 1997b) and LeSage and Pace
(2001) proposed several efficient techniques to solve SAR. The techniques studied include
divide and conquer, and sparse matrix algorithms. Improved performance is obtained by using
LU decompositions to compute the log-determinant over a grid of values for the parameter �
by restricting it to [0, 1].

MRF Based Bayesian Classifiers

MRF based Bayesian classifiers estimate classification model f̂C using MRF and Bayes’ rule.
A set of random variables the interdependency relationship of which is represented by an
undirected graph (i.e., a symmetric neighborhood matrix) is called an MRF (Li, 1995). The
Markov property specifies that a variable depends only on its neighbors and is independent
of all other variables. The location prediction problem can be modeled in this framework by
assuming that the class label, li = fC (si ), of different locations, si , constitutes an MRF. In other
words, random variable li is independent of l j if W (si , s j ) = 0.

The Bayesian rule can be used to predict li from feature value vector X and neighborhood
class label vector Li as follows:

Pr (li | X, Li ) = Pr (X | li , Li )Pr (li | Li )

Pr (X )
(3)

The solution procedure can estimate Pr (li | Li ) from the training data, where Li denotes
a set of labels in the neighborhood of si excluding the label at si , by examining the ratios
of the frequencies of class labels to the total number of locations in the spatial framework.
Pr (X | li , Li ) can be estimated using kernel functions from the observed values in the training
data set. For reliable estimates even larger training data sets are needed relative to those needed
for the Bayesian classifiers without spatial context, because we are estimating a more complex
distribution. An assumption on Pr (X | li , Li ) may be useful if the training data set available
is not large enough. A common assumption is the uniformity of influence from all neighbors
of a location. For computational efficiency it can be assumed that only local explanatory
data X (si ) and neighborhood label Li are relevant in predicting class label li = fC (si ). It is
common to assume that all interaction between neighbors is captured via the interaction in the
class label variable. Many domains also use specific parametric probability distribution forms,
leading to simpler solution procedures. In addition, it is frequently easier to work with a Gibbs
distribution specialized by the locally defined MRF through the Hammersley-Clifford theorem
(Besag, 1974).

Solution Procedures

Solution procedures for the MRF Bayesian classifier include stochastic relaxation (Geman
& Geman, 1984), iterated conditional modes (Besag, 1986), dynamic programming (Derin &
Elliott, 1987), highest confidence first (Chou, Cooper, Swain, Brown, & Wixson, 1993) and
graph cut (Boykov, Veksler, & Zabih, 1999). We follow the approach suggested in Boykov et al.
(1999), where it is shown that the maximum a posteriori estimate of a particular configuration
of an MRF can be obtained by solving a suitable min-cut multiway graph partitioning problem.
We illustrate the underlying concept with some examples.

2We would like to thank James Lesage (http://www.spatial-econometrics.com/) for making the Matlab toolbox
available on the Web.
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FIG. 22.10. MRF solution with graph-cut method.

Example 1. A classification problem with no spatial constraints. Even though MRFs
are inherently multidimensional, we will use a simple one-dimensional example to illustrate
the main points. Consider the graph G = (V, E) shown in Fig. 22.10(a). The node set V itself
consists of two disjoint sets, S and C . The members of S are {s1, s2, s3}, and the members of
C are {c1, c2}. Typically, the X (si )’s are the feature values at site si and the c′i s are the labels
such as nest or no-nest. There is an edge between each pair of members of the set S and each
pair of members of set C . Here we interpret the edge weights as probabilities. For example,
p1 = Pr (X (s1) = c1) = 0.7 and p2 = Pr (X (s1) = c2) = 0.3; p1 + p2 = 1.

Our goal is to provide a label for each location si in S using explanatory feature X (si ). This
is done by partitioning the graph into two disjoint sets (not S and C) by removing certain edges
such that:

1. There is a many-to-one mapping from the set S to C . Every element of S must be
mapped to one and only one element of C .

2. Multiple elements of C cannot belong to a single partition. Thus, there are no edges
between elements of C , and therefore, the number of partitions is equal to the cardinality
of C .

3. The sum of the weights of the edges removed (the cut-set) is the minimum of all possible
cut-sets.

In this example the cut-set is easily determined. For example, of the two edges con-
necting each element of S and an element of C , remove the edge with the smaller weight.
Figure 22.10(b) shows the graph with the cut-set removed. Thus, we have just shown that
when the weights of the edges are interpreted as probabilities, the min-cut graph partition
induces a maximum a posterior estimate for the pixel labels. We prefer to say that the min-
cut induces a Bayesian classification on the underlying pixel set. This is because we will use
Bayes’ theorem to calculate the edge weights of the graphs.

Example 2. Adding spatial constraints. In the previous example we did not use any
information about the spatial proximity of the pixels relative to each other. We do that now by
introducing additional edges in the graph structure.

Consider the graph shown in Fig. 22.10(c) in which we have added two extra edges (s1, s2)
and (s2, s3) with a weight �. In this example we have chosen � = 0.2.
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Now if we want to retain the same partitions of the graph as in example 1, then the cut-set
has two extra edges, namely (s1, s2) and (s2, s3). Thus, the sum of the weights of the edges in
the cut-set, WC1, is

WC1 = 0.3+ 0.4+ 0.45+ 2�

But now, depending on �, the cut-set weight may not be minimal. For example, if � = 0.2 then
the weight of the cut-set, WC2, consisting of the edges {(s1, c2), (s2, c1), (s3, c1), (s1, s2)} is

WC2 = 0.3+ 0.4+ 0.55+ 0.2

Thus, WC2 < WC1. In other words, if two neighboring pixels are assigned to different labels,
then the edge between the two neighbors is added to the cut-set. This shows that there is a
penalty associated with two neighboring nodes being assigned to different labels every time.
Thus, we can model spatial autocorrelation by adding edges between the pixel nodes of the
graph. We can also model spatial heterogeneity by assigning different weights, the �’s, to
the pixel edges. Figure 22.10(d) shows that a min-cut graph partitioning does not necessarily
induce a labeling where the labeling with maximum probabilities is retained. If two neighboring
pixels are assigned different labels, then the edge connecting the pixels is added to the cut-set.

Here we briefly provide theoretical and experimental comparisons; more details can be found
in Shekhar, Schrater, Vatsavai, Wu, and Chawla (2002). Although MRF and SAR classification
have different formulations, they share a common goal, estimating the posterior probability
distribution: p(li | X ). However, the posterior for the two models is computed differently with
different assumptions. For MRF the posterior is computed using Bayes’ rule. On the other hand,
in logistic regression the posterior distribution is directly fit to the data. One important difference
between logistic regression and MRF is that logistic regression assumes no dependence on
neighboring classes. Logistic regression and logistic SAR models belong to a more general
exponential family. The exponential family is given by Pr (u | v) = eA(�v )+B(u,�)+�T

v u , where u, v

are location and label, respectively. This exponential family includes many of the common
distributions such as Gaussian, binomial, Bernoulli, and Poisson as special cases. Experiments
were carried out on the Darr and Stubble wetlands to compare the classical regression, SAR,
and the MRF-based Bayesian classifiers. The results showed that the MRF models yield better
spatial and classification accuracies over SAR in the prediction of the locations of bird nets.
We also observed that SAR predications are extremely localized, missing actual nests over a
large part of the marsh lands.

CLUSTERING

Clustering is a process for discovering “groups,” or clusters, in a large database. Unlike clas-
sification, clustering involves no a priori information either on the number of clusters or what
the cluster labels are. Thus, there is no concept of training or test data in clustering. This is the
reason that clustering is also referred as unsupervised learning.

The clusters are formed on the basis of a “similarity” criterion, which is used to determine
the relationship between each pair of tuples in the database. Tuples that are similar are usually
grouped together, and then the group is labeled. For example, the pixels of satellite images
are often clustered on the basis of the spectral signature. This way a remotely sensed image
can be quickly segmented with minimal human intervention. Of course, a domain expert does
have to examine, verify, and possibly refine the clusters. A famous example of population
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segmentation occurred in the 1996 U.S. presidential election when political pundits identified
“soccer moms” as the swing electorate who were then assiduously courted by major political
parties. Clustering is also used to determine the “hot spots” in crime analysis and disease
tracking.

Clustering is a very well-known technique in statistics and the data mining role is to scale
a clustering algorithm to deal with the large data sets that are now becoming the norm rather
than the exception. The size of the database is a function of the number of records in the table
and also the number of attributes (the dimensionality) of each record. Besides the volume, the
type of data, whether it is numeric, binary, categorical, or ordinal, is an important determinant
in the choice of the algorithm employed.

It is convenient to frame the clustering problem in a multidimensional attribute space. Given
n data objects described in terms of m variables, each object can be represented as a point
in an m-dimensional space. Clustering then reduces to determining high-density groups of
points from a set of nonuniformly distributed points. The search for potential clusters within
the multidimensional space is then driven by a suitably chosen similarity criterion.

For example, the counties in the United States can be clustered on the basis of four at-
tributes: rate-of-unemployment, population, per-capita-income, and life-expectancy. Counties
with similar values for these attributes will be grouped or clustered together.

When dealing with attribute data that is referenced in physical space, the clustering problem
can have two interpretations. Consider the plot shown in Fig. 22.11, which shows the variation
of an attribute value (e.g., population density) as a function of location shown on the x-axis.
Now what are the clusters, and how do we interpret them? For example, if our goal is to
identify central cities and their zones of influence from a set of cities that dominate other cities
as measured by the variance of an attribute value across the landscape, then we are looking for
spatial clusters marked S1 and S2 in Fig. 22.11. On the other hand, if our goal is to identify

FIG. 22.11. Two interpretations of spatial clustering. If the goal is to identify
locations that dominate the surroundings (in terms of influence), then the clus-
ters are S1 and S2. If the goal is to identify areas of homogeneous values, the
clusters are A1 and A2.
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pockets in the landscape where an attribute (or attributes) is homogeneously expressed, then we
are looking for clusters marked A1 and A2. Although the second interpretation is essentially
nonspatial, the spatial aspects exist because of the spatial autocorrelation that may exist in the
attribute data. The clusters identified should be spatially homogeneous and not “speckled.”
These two interpretations of the clustering problem are formally defined as follows:

Definition 1. Given a set S = {s1, . . . , sn} of spatial objects (e.g., points) and a real-
valued, nonspatial attributes f evaluated on S (i.e., f : S → R), find two disjoint subsets of
S, C , and NC = S − C , where C = {s1, . . . , sk}, NC = {nc1, . . . , ncl}, and k < n. Objec-
tive minC⊂S

∑l
j=1 | f (nc j )−

∑k
i=1

f (ci )
(dist(nc j ,ci )

|2, where dist(a, b) is the Euclidean or some other
distance measure.

The constraints are as follows:

1. The data set conforms to the theory of central places, which postulates that the influence
of a central city decays as the square of the distance.

2. There is at most one nonspatial attribute.

Definition 2. Given (1) A set S = {s1, . . . , sn} of spatial objects (e.g., points) and
a set of real-valued, nonspatial attributes fi i = 1, . . . , I defined on S, (i.e., for each i , fk :
S → R); and (2) neighborhood structure E on S, find K subsets Ck ⊂ S, k = 1, . . . , K such
that minCk⊂S

∑
Ck ,si∈Ck ,s j∈Ck

dist(F(si ), F(s j ))+
∑

i, j nbddist(Ci , C j ) where (a) F is the cross-
product of the f ′i s, i = 1, . . . , n; (b) dist(a, b) is the Euclidean or some other distance measure,
and (c) nbddist(C, D) is the number of points in C and D that belong to E . Constraints |Ck | > 1
for all k = 1, . . . , K .

Categories of Clustering Algorithms

Cluster analysis is one of most often performed data analysis techniques in many fields. Because
this has resulted in a multitude of clustering algorithms, it is useful to categorize them into
groups. Based on the technique adopted to define clusters, the clustering algorithms can be
divided into four broad categories:

1. Hierarchical clustering methods, which start with all patterns as a single cluster and
successively perform splitting or merging until a stopping criterion is met. This results in a tree
of clusters called dendograms. The dendogram can be cut at different levels to yield desired
clusters. Hierarchical algorithms can further be divided into agglomerative and divisive meth-
ods. The hierarchical clustering algorithms include balanced iterative reducing and clustering
using hierarchies (BIRCH), clustering using representatives (CURE), and robust clustering
using links (ROCK).

2. Partitional clustering algorithms, which start with each pattern as a single cluster and
iteratively reallocate data points to each cluster until a stopping criterion is met. These methods
tend to find clusters of spherical shape. K-means and K-medoids are commonly used partitional
algorithms. Squared error is the most frequently used criterion function in partitional clustering.
The recent algorithms in this category include partitioning around medoids, clustering large
applications, clustering large applications based on randomized search, and EM.

3. Density based clustering algorithms, which try to find clusters based on the density
of data points in a region. These algorithms treat clusters as dense regions of objects in the
data space. The density based clustering algorithms include density based spatial clustering of
applications with noise and density based clustering.
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4. Grid based clustering algorithms, which first quantize the clustering space into a finite
number of cells and then perform the required operations on the quantized space. Cells that
contain more than a certain number of points are treated as dense. The dense cells are connected
to form the clusters. Grid based clustering algorithms are primarily developed for analyzing
large spatial data sets. The grid based clustering algorithms include the statistical information
grid based method (STING), STING+, WaveCluster, BANG-clustering, and clustering-in-
quest (CLIQUE).

Sometimes the distinction among these categories diminishes, and some algorithms can
even be classified into more than one group. For example, CLIQUE can be considered as both
a density based and grid based clustering method. More details on various clustering methods
can be found in a recent survey paper (Halkidi, Batistakis, & Vazirgiannis, 2001).

We now describe two well-known approaches to clustering, the K -medoid algorithm and
mixture analysis using the expectation-maximization (EM) algorithm. We will also briefly
discuss how the EM algorithm can be modified to account for the special nature of spatial data.

K-Medoid: An Algorithm for Clustering

We restrict our attention to points in the two-dimensional space R2, although the technique
can be readily generalized to a higher dimensional space. Given a set P of n data points,
P = {p1, p2, . . . , pn} in R2, the goal of K -medoid clustering is to partition the data points into
k clusters such that the following objective function is minimized:

J (M) = J (m1, . . . , mk) =
k∑

i=1

∑
p∈Ci

d(p, mi )

In J (C), mi is the representative point of a cluster Ci . If mi is restricted to be a member of
P , then it is called a medoid. On the other hand, if mi is the average of the cluster points and not
necessarily a member of P , then it is called the mean. Thus, the K -mean and the K -medoid
approaches are intimately related. Even though the K -mean algorithm is better known, we
focus on the K -medoid approach because the medoid, like the median, is less sensitive to
outliers.

The K -medoids characterize the K clusters, and each point in P belongs to its nearest
medoid. Because we have restricted the ambient space to be R2, the distance function d is the
usual Euclidean distance.

d(p, mi ) = ((p(x)− mi (x))2 + (p(y)− mi (y))2)
1
2 .

Thus, the K -medoid approach transforms the clustering problem into a search problem. The
search space X is the set of all k-subsets M of P (i.e., |M | = k), and the objective function is
J (M). X can be modeled as a graph, where the nodes of the graph are the elements of X . Two
nodes M1 and M2 are adjacent if |M1 ∩ M2| = k − 1 (i.e., they differ by one and only one data
point).

The K -medoid algorithm consists of the following steps:

1. Choose an arbitrary node Mo in X .
2. Iteratively move from current node Mt to an adjacent node Mt+1 such that J (Mt+1) <

J (Mt ). The move from current node to adjacent node consists of replacing a current
medoid m with a data point p ∈ P . Thus, Mt+1 = Mt ∪ {p} − {m}.

3. Stop when J (Mt+1) ≥ J (Mt ) for all adjacent nodes.
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TABLE 22.4
Four Options for Local Search in Clustering

Strategy to Move from Mt Guarantee
Local Search to Mt+1 = Mt ∪ {p} − {m} Local Optima

Global hill climbing (HC) Move to the best neighbor Yes
Randomized HC Move to best of No

sampled neighbors
Local HC Move to a new neighbor Yes

as soon as it is found
Distance-restricted HC Move to best neighbor No

within a specified distance

Step 2 is the heart of the algorithm. There are many options available to move from a node
to its adjacent node. Table 22.4 lists some of the options. The table includes the name of each
option as it is referred to in the literature, the strategy for moving, and whether the option
will guarantee a local optima. All the options are examples of local search because only the
adjacent nodes are explored.

Clustering, Mixture Analysis, and the EM Algorithm

One drawback of the K -medoid (or K -mean) approach is that it produces “hard” clusters; that
is, each point is uniquely assigned to one and only one cluster. This can be a serious limitation
because it is not known a priori what the actual clusters are. In the statistics literature the
clustering problem is often recast in terms of mixture models. In a mixture model the data is
assumed to be generated by a sequence of probability distributions in which each distribution
generates one cluster. The goal then is to identify the parameters of the probability distributions
and their weights in the overall mixture distribution. In a mixture model each instance of
the database belongs to all the clusters but with a different grade of membership, which is
quantified by the weights of the individual distributions in the mixture model. Thus, the mixture
model framework is more flexible than the K -medoid approach. Typically, each probability
distribution is represented as a normal distribution, and the challenge is to determine the mean,
variance, and weight of each distribution. The assumption of normality is not as restrictive as
it might appear because a statistics theorem guarantees that any probability distribution can be
expressed as a finite sum of normal distributions.

A Finite Mixture Example

Consider the gray-scale 4× 4 image shown in Fig. 22.12. Assume we want to partition
the set of pixels into two clusters, A and B, where each cluster is modeled as a Gaussian
distribution. The finite mixture problem is to calculate the parameters 
A, 
B, A, B, pA, pB .

For the moment, assume the cluster membership of each pixel is given as shown in
Fig. 22.12b. Then all the parameters can be easily calculated. For example,


A = 12+ 10+ 2+ 18+ 11+ 5+ 7+ 9+ 13

9
= 9.7

A = (12− 
1)2 + (10− 
1)2 + · · · + (13− 
1)2

8
= 4.7

pA = 9

16



542 SHEKHAR AND VATSAVAI

FIG. 22.12. (a) A gray-scale 4× 4 image. (b) The labels of the image generated
using the EM algorithm and (c) the labels generated for the same image using
the NEM algorithm. Notice the spatial smoothing attained by modifying the
objective function.

Similarly, 
B = 17.6, B = 4.1, and pA = 5
16

. Computing the probability of a given pixel
value belonging to a cluster is then a simple exercise using Bayes’ theorem. For example, given
a pixel value x , the probability that it belongs to cluster A is

P(A | x) = P(x | A)pA

P(x)

= P(x | A)pA

P(x | A)pA + P(x | B)pB

= N (x, 
A, A)pA

N (x, 
A, A)pA + N (x, 
B, B)pB

where

N (x, 
A, A) = 1√
(2�)A

exp
−(x−
A )2

22

In our case neither the cluster labels nor the the distribution parameters are known. All we
know is that there are two clusters and that each cluster is modeled as a Gaussian distribution.
At first this problem may appear to be unsolvable because there are too many unknowns: cluster
labels for each pixel and the distribution parameters of the cluster. Problems of this type can be
solved using the EM algorithm. The EM algorithm, like the K -medoid algorithm, is an iterative
algorithm that begins with the guess estimate of the distribution parameters. It then computes
the “expected values” of the data given the initial parameters. The new expected data values are
then used to calculate the maximum likelihood estimate for the distribution parameters. This
procedure is iterated until some convergence criterion is met. The EM algorithm guarantees that
the maximum likelihood estimate will improve after each iteration, although the convergence
can be slow. The steps of the EM algorithm follow:

1. Guess the initial model parameters: u0
A, �

0
A and p0

A and u0
B, �0

B and p0
B .

2. At each iteration j , calculate the probability that the data object x belongs to clusters
A and B:

P(A | x) = p j
A P j (x | A)

P j (x)
P(B | x) = p j

B P j (x | B)

P j (x)
.
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3. Update the mixture parameters on the basis of the new estimate:

p j+1
A = 1

n

∑
x P(A | x) p j+1

B = 1
n

∑
x P(B | x)


 j+1
A =

∑
x x P(A | x)∑
x P(A | x)


 j+1
B =

∑
x x P(B | x)∑
x P(B | x)

 j+1
A =

∑
x P(A | x)(x − 
 j+1

A )2∑
x P(A | x)

 j+1
B =

∑
x P(B | x)(x − 
 j+1

B )2∑
x P(B | x)

4. Compute the log estimate E j =
∑

x log(P j (x)). If for some fixed stopping criterion 	,
|E j − E j+1| ≤ 	, then stop; else set j = j + 1.

The NEM Algorithm

A careful reader may have noticed that the EM algorithm completely ignores the spatial
distribution of the pixel; it only works with the pixel values. Thus, if we rearrange the pixel
values shown in Fig. 22.12(b), the EM algorithm will still come up with the same cluster
labeling and the same values of the distribution parameters.3 Such a solution, as we know,
does not take into account the spatial autocorrelation property inherent in spatial data. As we
have mentioned before, the search space for spatially referenced data is a combination of a
conceptual attribute space and the physical (geographic) space. The spatial autocorrelation
property then implies that the clusters should vary gradually in the physical space.

To make the EM algorithm spatially sensitive, we first follow the recipe proposed by
Ambroise, Dang, and Govaert (1997).

Step 1. The EM algorithm for mixture models is equivalent to the optimization of the
following objective function:

D(c, 
k, k, pk) =
2∑

k=1

n∑
i=1

cik log(pk N (xi , 
k, k))−
2∑

k=1

n∑
i=1

cik log(cik)

where c = cik, i = 1, . . . , n and k = 1, . . . , K define a fuzzy classification representing the
grade of membership of data point xi into cluster k. The cik’s satisfy the constraints (0 < cik < 1,∑2

k=1 cik = 1,
∑n

i=1 cik > 0). Again we have two clusters k = 1, 2, and there are n data points.

Step 2. To account for spatial autocorrelation, we introduce a new term,

G(c) = 1

2

2∑
k=1

n∑
i=1

n∑
j=1

cikc jkwi j

where W = (wi j ) is the contiguity matrix as defined before.
The new “spatially weighted” objective function is

U (c, 
, ) = D(c, 
, )+ �G(c)

where � ≥ 0 is a parameter to control the spatial homogeneity of the data set.

3Actually, because of the randomness of the initial parameters, each run of the EM algorithm can result in a
different solution.
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FIG. 22.13. Using the NEM algorithm. (a) As expected, clustering without any
spatial information leads to poor results; (b) including spatial information (� =
1.0) leads to dramatic improvement of results; (c) overemphasizing spatial
information (� = 2.0) again leads to poor results.

Step 3. Except for the new parameter c, which is an n × 2 matrix, all the parameters
are calculated exactly as before. The formula for c′iks is

cm+1
ik = pm

k N (xi , 
k, k) exp
{
�
∑d=n

j=1 cm+1
jk wi j

}∑2
l=1 pm

l N (xi , 
m
l , m

l ) exp
{
�
∑n

j=1 cm+1
jl wi j

} .

At each iteration m, the c′ik can be solved using a fixed point iterative scheme.
We carried out experiments using the NEM algorithm on the bird data set. We assumed

two clusters corresponding to the presence/absence of nests. When � = 0, the NEM reduces
to the classical EM algorithm. We varied the � parameters, and the results are shown in
Fig. 22.13. The results show that including spatial information in the clustering algorithm
leads to a dramatic improvement in accuracy (Fig. 22.13(b) compared with Fig. 22.13(a), but
overemphasizing spatial information leads to “oversmoothing” and degradation in accuracy.

SUMMARY

In this chapter we presented techniques that are specifically designed to analyze large vol-
umes of spatial data to find spatial outliers, colocation association rules, location prediction,
and spatial clustering. We applied these techniques on traffic network sensors, wetlands, and
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synthetic data sets. We compared the SAR and MRF models using a common probabilistic
framework. Our study shows that the SAR model makes more restrictive assumptions about the
distribution of features and class shapes (or decision boundaries) than MRF. We also observed
an interesting relationship between classical models that do not consider spatial dependence
and modern approaches that explicitly model spatial context. The relationship between SAR
and MRF is analogous to the relationship between logistic regression and Bayesian classifiers.
The analysis of spatial outlier detection algorithms showed the need for good clustering of
data pages. The CCAM method yielded the best overall performance. We showed that the
colocation miner algorithm is complete and correct and performs better than the well know a
priori algorithm.
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