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INTRODUCTION

A key issue in data analysis methods either in a model design step or as part of the model
projection in real-time operations is the grouping of data items into clusters. First, the clustering
analysis is essentially an unsupervised process. Its objective is to group a given repository
of unclassified data items into meaningful clusters. In a sense clusters are data driven and
obtained solely from the data. Second, clustering may support an supervised process on the
basis of classes of preclassified data items. The objective is to classify newly encountered yet
unclassified data items. Typically, the given clusters (obtained by the unsupervised process

637



638 DJERABA AND FERNANDEZ

training) of data items are used to learn the descriptions of classes, which in turn are used to
classify new data items. As a result, data items within a cluster are more similar than data items
belonging to different clusters.

Any clustering method belongs to either partition or hierarchical clustering classes. A
partition clustering method produces a single partition of the data. A partition method is better
suited to data mining than a hierarchical clustering method because it is better at handling
large data sets for which the construction of a hierarchy is computationally expensive, and it
is insensitive to the order of input data items.

In spite of important efforts in partition clustering developments (Jain, Murty, & Flynn,
1999), a problem remains, and few partition clustering approaches deal with it seriously. It
is the automatic discovery of the number of clusters. What is the desired number, known by
k? Which is the best one? Is it often possible to have an idea of the desired number? When
considering clustering in large repositories of data items such as images, is it realistic for the
user, even if an expert, to specify the number of the desired clusters in an accurate way?

The goal of this chapter is to contribute answers to these questions by presenting a method
that automatically discovers the number of clusters (k). Therefore, the method computes k
automatically, rather than manually. We experimented with the method in image repositories.
Two keys are necessary and sufficient to open the door of the k-discovery solution. The first one
is the partition clustering method that supports multiple iterations according to multiple values
of k. The second is the clustering confidence measure. It combines together an intercluster
measure (global variance criterion ratio normalized; GVRCN) that considers the confidence
of the whole clusters, and an intraclusters measure (local variance criterion ratio; LVCR) that
considers the confidence of individual clusters. We will show that the combination of two levels
of measures presents an interesting result. Furthermore, the confidence of results depend not
only on the clustering algorithm and cluster confidence measures, but also on data item de-
scriptors. As data item descriptors, we tried Wavelet CDF (2,2)-Cohen-Daubechies-Feauveau
(2,2), and CDF (1,1)-Cohen-Daubechies-Feauveau (1, 1) (Cohen, Daubechies, & Feauveau,
1992), known, too, by Haar. The former presents better confidence of clustering results com-
pared with the latter, because it supports less noise. The choice of wavelet descriptors, as in
Sheikholeslami and Chatterjee Surojit (2000), is justified by the fact that wavelet descriptors
contribute to the detection of clusters of arbitrary frontiers; they are insensitive to the noise; and
using the multiresolution property of wavelet descriptors contributes to effectively identifying
frontier clusters arbitrarily at different degrees of detail.

We will not present in this chapter the different aspects of indexing and retrieval linked to
clustering or how to do semantic clustering. Our goal in this chapter is an experimental study
of relationships between content descriptions based on wavelets, k-automatic discovery, and
confidence measures of clusters.

We can summarize the scope of the chapter in the following points:

� An overview clustering of large repositories of data items
� Data items, to be clustered, are images
� The number of clusters, known by k, is automatically discovered
� The description of images is based on wavelet coefficients

Confidence measures of the clusters are composed of GVRCN and LVRC.
The chapter is composed of the following sections. The second section presents the related

works. The third section highlights our method; more particularly, it presents the k-discovery
and clustering methods. The fourth section presents the result experiments of the proposed
method.
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RELATED WORKS

During these last 30 years many techniques, including partition methods, have been proposed
to represent data, to measure proximity (similarity), and to group data items. The most popular
partition clustering methods are k-means (McQueen, 1967), k-medoids (Vinod, 1969), and
their variants, such as dynamic clustering (Diday, 1973). K-means methods create a random
clustering, compute the center of gravity of each cluster, and then assign each data item of the
data set to the cluster with the nearest center of gravity. This process is active until obtaining
a stable state of clusters. K-medoids are very similar to k-means, except that the centers of
gravity are data items of the data set. This characteristic avoids empty clusters. The k-medoids
process follows, generally, two steps. In the first step the process selects k data items randomly.
In the second step each data item of the data set is assigned, on the basis of similarity, to a
selected cluster, called medoid or gravity center. The two steps are repeated until the best
clustering is reached.

The different variants of k-medoids methods have been applied in several domains concerned
with data item exploration, decision-making, document retrieval, image segmentation, and
data item classification. We focus this presentation on three recent variants of k-medoids
methods (Kaufman & Rousseeuw, 1990), which may be considered as a representative sample
of partition clustering methods.

The first variant of k-medoids, is the partition around medoids (PAM) method. This method
tries to find the best medoids from the data set. This is done by evaluation of result swaping,
when a medoid is swapped with a data item. The method is robust and returns the best clustering
results. However, it is inefficient: Compute T Cih requires (ñk) operations (one per nonmedoid
item). There are k(ñk) pairs, k selected items—medoids—and (ñk) unselected items; for each
pair of data item we compute one T Cih. Therefore, the complexity for one iteration is O(k(ñk)2).
Moreover, we cannot estimate the number of iterations. Here, n = the number of items; k =
the number of clusters; xi = the i th item; CJ = the j th cluster; Cxi = the cluster of xi; Cijh =
the cost of swapping roles of xi (a medoid) and xh (a normal item) for xj. The total cost for
swapping role of xi and xh: T Cih =

∑
j Cijh.

The second variant of k-medoids, is called clustering large applications (CLARA). The
method is more suitable for large repositories of data items than the PAM method because it
is computationally quicker, the cardinality of the sample is less voluminous than the data set,
and its complexity is about O(k(40̃k)2 + k(ñk)) for each iteration. The method is applied to a
sample of a data repository rather than an entire data repository. Therefore, it is quicker than
PAM. However, the disadvantage of the method is the random selection of the sample, so the
confidence of clustering is not as good as for the PAM method.

The third variant of k-medoids, is a clustering large application based on randomized search
(CLARANS). The method presents better performance than the previous ones. The complexity
of the method is about O(ñk) by iteration. Experimental results (Raymond & Jiawei, 1985)
showed that for the same confidence of clustering, the method outperforms PAM, and for
the same run time, the method provides better clusters than CLARA. On the basis of these
efficiency and effectiveness characteristics, we considered this partition method as a basic level
of our solution to support multiple run executions discover the best values of k.

The best variants of k-medoids methods, such as CLARANS, suffer of two shortcom-
ings. The first is the automatic discovery of k. The second, which is shared by all clustering
approaches, is the degeneration of the method performances when the data descriptors are high
dimensional. The second disadvantage is not within the scope of the chapter; however, on basis
of the strong presence and importance of the high dimensionality in multimedia descriptors, it
is interesting to mention it. The high dimensionality of data descriptors does not simplify at all
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the complexity of the clustering problem. The performance of lots of clustering algorithms de-
crease quickly with increasing dimension. The problem of clustering of high-dimensional data
has been well investigated very recently, and clustering approaches such as X-tree (Berchtold,
Keim, & Kriegel, 1996), Birch (Zhang, Ramakrishnan, & Linvy, 1996), Sting (Wand, Yang,
& Muntz, 1997) and OptiGrid (Hinneburg & Keim, 1999) have been proposed to improve the
efficiency and the effectiveness of the clustering. For example, OptiGrid (Hinneburg & Keim,
1999) finds clusters in high-dimension spaces with noise by projecting the data onto each axis
and then partitioning the data using cutting planes at low-density points. The method shows
how projections on subspaces of the input space improve the effectiveness of the clustering
process. The method uses statistical measures to produce good projections and, hence, good
clustering results.

In this chapter, we highlight an experimental solution to the second shortcoming: automatic
discovery of k. In the state of the art, there are very few implemented and proven solutions.
Furthermore, to our knowledge there are no solutions “k-automatic discovery” that have been
tested in image data sets. Therefore, we limit our presentation to one of the least tested ap-
proaches of the state of the art. The approach discovers k automatically in the context of
spatial data mining (Raymond & Jiawei, 1985). The first difference between the approach
and our method is the domain of application. Our domain of application is the content-based
indexing of large image databases; however, the domain of application of the state of the
art approach is spatial data mining. This difference means that there are different objectives,
different data item descriptors, and different confidence measures. We particularly empha-
size the confidence measure. Our method is to propose a solution that considers confidence
measures that are more accurate for content-based indexing of large image databases than
the approach proposed for spatial data mining. Our solution is inspired, partly, by metrics dis-
cussed in Milligan and Cooper (1985) for hierarchical clustering, extended and tested for image
databases.

The state of the art approach, called spatial data mining based on clustering algorithms
(Raymond & Jiawei, 1994) tries to find k, where k is the most suitable number of clusters for
the input data sets. The approach adopts the heuristics of computing the silhouette coefficients
developed in Kaufman and Rousseeuw (1990) and Dubes (1987). The silhouette of an object
Oj is a value varying between −1 and 1, which indicates how much Oj belongs to the cluster
in which Oj is classified. The closer the value is to 1, the higher the degree Oj belongs to its
cluster. The silhouette value of a cluster is the average silhouette of all data items in the cluster.
Based on experiments, Kaufman and Rousseeuw (1990) proposes the following interpretation
of the silhouette: 71% ≤ cluster silhouette ≤ 1 means it is a strong cluster; 51% ≤ cluster
silhouette ≤ 70% means it is a reasonable cluster, 26% ≤ cluster silhouette ≤ 50% means it
is a weak or artificial cluster; less than 25% means no cluster was found. The silhouette value
for k is the mean silhouette values of the k clusters. If the value of k is too small, the reason
may be that the clusters are grouped together incorrectly. If the k value is too large, then some
clusters may be artificially split. The most suitable k is the one with the highest silhouette
value. The experiments of Kaufman and Rousseeuw showed that in spatial data mining, using
the highest silhouette coefficient might not lead to intuitive results. For example, some clusters
may not have reasonable information (e.g., silhouette value <50%). Therefore, they introduce
the following heuristics:

1. Find the value k with the highest silhouette value.
2. When all the k clusters have silhouette values >51%, than final k = k, and stop.

Otherwise, remove the data items in those clusters with silhouette values below 50%,
if the total number of data items removed so far is less than 25%.



27. MINING IMAGE DATA 641

3. The data items removed are considered noise. Go back to step 1 for a new data set
without noise.

4. When in step 3, the amount of noise to be removed exceeds the threshold, then setting
final k value is set to 1, indicating in effect that no clustering is reasonable.

The usefulness of these heuristics has been highlighted in specific applications of spatial data
mining. However, it is not realistic to generalize the applications of heuristics to any application
domain. In our experiments on image data sets, considering 50% of the silhouette value is not
realistic. Many images are close together with silhouette values less than 20%. That is why
the heuristics used in this approach are not applied with the same ratios. A more fundamental
difference concerns silhouette computing itself. The approach presented in the state of the art
considers the silhouette of the clustering equal to the average of cluster silhouettes. A cluster
silhouette is the average of the data item silhouettes of the considered cluster. This manner of
deducing the silhouette of clusters is similar to LVRC, as used in our approach. However, our
experiments showed that the highest values of the silhouette do not mean the best clustering.
What is missing is the silhouette variance between clusters. The lowest silhouette variance
between clusters has been considered in our method; we called it the global variance ratio
criterion (GVRC). Therefore, the best value of k corresponds to the biggest silhouette with the
lowest silhouette variance. In the following section we present an example in which the highest
value of the silhouette (for k = 8) does not mean the best clustering; however, the lowest value
of the GVRC with the highest silhouette corresponds the best clustering (k = 13). The GVRC
also has been tested and compared with several measures in Milligan and Cooper (1985). Our
experiments may be considered as a form of validation of the Milligan and Cooper (1985)
experiments in image repositories.

METHOD

How to Discover the Number of Clusters: k

A critical question in the partition clustering method is the number of clusters (k). In the
majority of real-world experimental methods, the number of cluster k is manually estimated.
The estimation needs a minimum knowledge of both data repositories and applications, and
this requires the study of data. Bad values of k can lead to very bad clustering. Therefore,
automatic computation of k is one of the most difficult problems in cluster analysis.

To deal with this problem, we consider a method based on the confidence measures of
the clustering. To compute the confidence of the clustering, we consider together two levels
of measures: the global level and the local level. GVRC, inspired of Calinski and Harabasz
(1974), underlines the global level, and LVRC, inspired by Kaufman and Rousseeuw (1990).
GVRC has never been used in partition clustering. It computes the confidence of the whole
cluster, and LVRC computes the confidence of individual clusters, known also as the silhouette.
Therefore, we combine the two levels of measures to improve the accuracy the computation
of the clustering confidence.

Our choices of GVRC and LVRC confidence measures are based on the following ar-
guments. Previous experiments in Milligan and Cooper (1985) in the context of hierar-
chical clustering, examined 30 measures to find the best number of clusters. They applied
all of the measures to test data set and computed how many times an index gave the
right k. GVRC presented the best results in all cases, and GVRCN normalized the GVRC
measure (GVRCN value is between 0 and 1). A legitimate question may be: How is this
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FIG. 27.1. Two clustering with k= 4 and k= 3.

measure (GVRC) good for partition methods? If GVRC is a good measure for hierarchical
methods, is GVRC also good for partition methods? Are there any direct dependencies be-
tween data sets (in our case, image descriptors) and the confidence of clustering measures?
What are the relationships between the initial medoids and the measures of clustering confi-
dence?

It is too hard to answer all these questions at once without theory improvements and ex-
haustive real-world experiments. Therefore, our objective approach is not to answer all these
important questions accurately, but to contribute to these answers by presenting the results of a
real-world experiment. We extend a measure of clustering confidence by considering the best
one presented in the literature (Milligan & Cooper, 1985). Then, we examined this measure in
our repository data sets.

We combine the two levels of measures to make an accurate computation of clustering
confidence. The combination of two levels of measures is an interesting facet of our method. It
avoids a clustering state in which the max value of average the confidence of clusters does not
mean the best confidence of clustering. For example, in Fig. 27.1, even if k = 4 the average
confidence (0.7) of clustering is greater than the average confidence for k = 3 (0.61); however,
for k = 3 the local confidence of clusters is better. All local confidence of clusters, when
k = 3, are greater than 60%. And, for k = 4, three clusters have local confidence greater than
90% and one cluster less than 20%. If we consider k = 4, then we should ignore the fourth
cluster, for which the local confidence is equal to 10%. It is considered as a noisy class. The
data items of the fourth cluster are considered noise and then ignored, as in Raymond and
Jiawei (1985). That is why we consider k = 3, because the variance is lowest, and the average
confidence is among the highest, the local qualities are greater than 60%, and there are no noisy
classes. On the basis of global and local measures, we consider k = 3 as the best number of
clusters.

The method is improved by identifying the best cluster qualities with the lowest variance.
In certain approaches, such as Raymond and Jiawei (1985), for different values of k, if the
confidence of individual clusters is less than 50% and the cardinal of these clusters is less
than 25%, then the data items are considered noise. So they are removed, and the approach
recalculates the global and local qualities for the remaining data items. These data items are
noise. Our experiments showed that fixing such a ratio (50 and 25%, etc.) is not suitable
for evaluating cluster confidence. We often obtain good clustering, very similar to image
references, with confidence values less than 20%.
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GVRC is described by the following formula.

VRC (k) =
trace (B)

k−1
trace (W )

n−k

where n is the cardinality of the data set, k is the number of clusters, trace (B)/(k − 1) is the
dispersion (variance) between clusters, and trace (W )/n − k is the dispersion within clusters.
The expanded formula is:

GVRC (k) = n − k

k − 1

(
n∑

i=1

‖xi − x̄‖2

)
−
(

k∑
l=1

( ∑
x j∈Cl

‖x j − x̄l‖2

))
k∑

l=1

( ∑
x j∈Cl

‖x j − x̄l‖2

)
The best clustering coincides with the maximum of GVRC. To normalize the GVRC value

(0 ≤ GVRCN ≤ 1), we compute GVRCN, where GVRC max = GVRC(k ′), and ∀k, 0 < k ≤
k max, k �= k ′, GVRC(k) < GVRC(k ′). K max is the maximum of the clusters considered.
K max ≤ the cardinal of the data items.

GVRCN(k) = GVRC(k)

GVRC max

LVRC measures the confidence of clusterj (C j ). The formula is:

LVRC(c j ) =

cardinality(cj)∑
i=1

lvrcxi

cardinality(c j )
, with lvrcxi =

bxi − axi

max(axi ,bxi )

LVRC measures the probability of xi to belong to the cluster Cxi, where axi is the average
dissimilarity of object xi to all other objects of the cluster Cxi, and bxi is the average dissimilarity
of object xi to all objects of the closest cluster C ′

xi (neighbor of object xi). Note that the neighbor
cluster is rather a second-best choice for object xi. When cluster Cxi contains only one object
xi, the sxi is set to zero (LVRCxi = 0).

In our experiments we considered descriptor size: 2048 float, wavelet type: CDF (2, 2). To
speed up the clustering process, we specified that 4 ≤ k ≤ 15, because we know in advance
that the best value of k turns around 10. After activating the clustering method that discovers
the best value of k, we obtain the following results:

� k = 8, LVRC= 16%, 1−GVRCN= 55%, Medoids= {flag05, dawndusk00, belfry04,
waterfall05, waterfall08, animals08, boat03, usa07}

� k = 10, LVRC= 3%, 1− GVRCN= 60%, Medoids= {flag07, dawndusk09, belfry04,
waterfall05, waterfall08, animals08, montagne08, boat03, flower08, animals07}

� k = 13, LVRC = 10%, 1− GVRCN = 90%, Medoids = {flag05, dawndusk00,
belfry04, animals07, waterfall05, animals06, flower08, boat01, montagne08, water-
fall07, waterfall08, usa06, avion07}

� k = 14, LVRC = 9%, GVRCN = 85%, Medoids = {flag05, dawndusk09, belfry04,
animals06, waterfall05, animals08, flower08, boat03, belfry02, waterfall09, waterfall08,
usa07, belfry03, flower05}

If we consider k = 13, we notice that the LVCR of any cluster is greater than 8% (e.g.,
Table 27.1). However, for k = 8, certain LVCRs of clusters are greater than 10% and others



644 DJERABA AND FERNANDEZ

TABLE 27.1
K = 2 Clusters: (LVRC: 0.228815, GVRCN: 0.15)

LVRC Medoid Data Items

1 0.126265 usa05 usa01 usa02 usa04 Usa06 usa07 Usa08 belfry00 belfry01 belfry02 belfry03
2 0.331365 flag05 flag00 flag01 flag02 Flag03 flag04 Flag06 flag07 flag08 flag09

are less than 5%, so the variance of cluster qualities for k = 8 is greater than the variance of
cluster qualities for k = 13. So GVRCN(k = 13) < GVRCN(k = 8). For k = 10, clustering
confidence is weak (3%). So the best value of k discovered automatically does not mean the
best value of k manually referenced. However, considering k = 13 with LVRC = 9%, we
obtain the best value of recall and accuracy. That is why in our approach we consider the k
values with the greatest values of LVCR and with the lowest values of the variances. Final
confidence = (LVRC+ (1−GVRCN))/2. In our example, confidence(k = 13) = (10%+
90%)/2 = 50%. Confidence (k = 8) = (16% + 55%)/2 = 35%. When we look carefully at
the clustering result for k = 13, we notice that there are two modeoids “animals” (animals06
and animals08), two medoids “waterfall” (warterfall09, waterfall08), and two medoids
“belfry” (belfry02, belfry03). So the clusters obtained automatically are more detailed than
image references (clusters obtained manually). The resolutions considered to discriminate
images are too high. From the user’s point of view there are no contradictions. If we used
LVRC exclusively, as in the state of the art approaches (Raymond & Jiawei, 1985), we
would consider k = 8 as the best confidence value, which is not the best clustering result. In
our example, “flowers” and “mountains” have not been discriminated, because there are no
medoids that represent flowers and mountains.

K-Automatic Discovery Algorithm

The algorithm is run several times with different k values, and the best configuration of k
obtained from all runs is used as the output clustering.

We consider the sequence variable sorted clustering initialized to an empty sequence (< >).
sorted clustering contains a sorted, on the basis of confidencei, sequence of elements in the
form of <confidencei ,ki >, where ki is the cluster number at i iteration, and confidencei is
the GVRC and all local variance ratio criterion associated to ki clusters. sorted clustering =
< , . . . . , <confidencei−1,ki−1>, <confidencei ,ki >>, where confidencei=<GVRC(k), <LVRC(c1),
LVRC(c2), . . . . , LVRC(cki )>>.

The algorithm follows five steps:

� The first step initializes the maximum number of k authorized (max k), by default
max k = n/2. n is the length of the data item repositories.

� The second step applies the clustering algorithm at each iteration ki (for k = 1 to max k),
computes GVRC(k), and for each k value computes LVRC(c j ), for j = 1, . . . , k. confidencei =
<GVRC(k), <LVRC(c1), LVRC(c2) , . . . . , LVRC(ck)>>

� The third step normalizes the GVRC by computing the GVRCN. GVRC max =
max GVRC(k) where GVRC max corresponds to the best clustering

� The fourth step considers only k clustering for which GVRCN(k) =GVRC(k)/
GVRC max is the minimum value and LVRC(k) is the maximum. So,

k∑
i=1

LVRC(Ci )

k
+ (1− GVRCN(k))
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is the maximum, and ∀ j, j ∈ [1, k], LVRC(ck) ≥1%. The results are sorted in correct
sorted clustering. If the final correct sorted clustering is not empty, therefore, we have at least
one solution and the algorithm is stopped. If not, the current step is followed by the fifth step.

� The fifth step looks for false or weak clusters (LVRC <1%). All false or weak data
items of these false or weak clusters are moved to a specific cluster called “noisy cluster.” If
the cardinality of the noisy cluster is less than 10%, then we compute the k-discovery without
considering the false or weak data items. However, if the cardinal of the noisy cluster is greater
than 10%, then we consider that there is too much noise and the data item features of the initial
repositories should be reconsidered before again applying the algorithm. We deduce that the
data item descriptors are not suited to clustering analysis.

K-discovery()
{
Set max k //By default max k = n/2
sorted clustering← < > /* empty sequence */
sorted clustering contains a sequence of sorted qualities of
clustering and associated k.

sorted clustering = <. . . ., <confidencei−1,ki−1>,<confidencei,ki>>,
where confidencei−1 < confidencei−1. <confidencei, ki>= <GVRC(ki),
ki>

// The clustering confidence is often the best when the value
is high.

for k=1 to max k do
Apply chosen clustering algorithm.

current← GVRC(k),<LVRC(c1), LVRC(c2), . . . ., LVRC(ck)>
/* GVRC(k) = confidence of actual clustering */
sorted clustering ← insert <k, current> in best clustering, by
considering sorted sequence of sorted clustering.
end for

GVRC max ← max confidence (sorted clustering)/*GVRC max =
best clustering */

correct sorted clustering← < >
for k = 1 to max k do

if VRCN(k) = VRC(k)

VRC max
≥ 1% and ∀ j, j ∈ [1, k], LRC(ck) ≥ 1

then/* Ck is a correct cluster */
correct sorted clustering← insert <k, confidencek> in
correct sorted clustering>

end if
end for
if correct sorted clustering = <>
then
{
for i=1 to cardinal(correct sorted clustering) do
{
moving false or weak data items of Cij for which LRC(cik j ) < 1% to
Noisy cluster

if cardinal(Noisy cluster) < 10% then k-discovery() without
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considering the noisy data items in Noisy Class
}
Return correct sorted clustering.
}

Clustering Algorithm

The clustering algorithm is a variant of k-medoids, inspired by Ray and Jiawei (1994). The
particularity of the algorithm is the replacement of sampling by heuristics. Sampling consists
of finding better clustering by changing one medoid. But finding the best pair (medoid, item)
to swap is very costly (O(k(n̄k)2)). That is why heuristics have been introduced in [Ray 94]
to improve the confidence of the swap (medoid, data item). To speed up the choice of a pair
(medoid, data item), the algorithm sets a maximum number of pairs to test (num pairs), then
choose randomly a pair and compares the dissimilarity (the comparison is done by evaluating
TCth). If this dissimilarity is greater than the actual dissimilarity, the algorithm continues
choosing pairs until the number of pairs chosen reaches the fixed maximum. The medoids
found are very dependant on the k first medoids selected. So the approach selects k other item
and restarts num tries times (num tries is fixed by user). The best clustering is kept after the
num tries tries.

Clustering()
{
Initialize num tries and num pairs
min cost← big number
for k=1 to num tries do
current← k randomly selected items in the entire data set.
l← 1
repeat
xi← a randomly selected item in current
xh← a randomly selected item in {entire data set current}.
if TCih <0 then
current← currentxi+xh

else
j← j+1

end if
until j ≤ num pairs
if min cost < cost(current) then
best← current.

end if
end for
Return best.
}

EXPERIMENTAL RESULTS

We conducted experiments in large image data sets to analyze the performance of the
k-automatic discovery method. However, before presenting the performance analysis, we out-
line the data sets and the metrics used to evaluate the performance.
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FIG. 27.2. Sample of a data set composed of 21 images.

Data Sets

We conducted 40 experiments on large image data sets covering a range of categories including
panorama, scenery, flowers, and so on. The data sets came from collections compiled by IMSI
Soft Company, which specializes in image libraries. These image data sets vary from 21 and
100,000 images of different resolutions. For example, the data set composed of 21 images
is presented in Fig. 27.2. All images are cataloged into broad categories and each image
carries an associated description. In this case the manual partition of image data sets into
relevant clusters was feasible. The preclassification of images in semantic categories such as
panorama and scenery helped our manual partition process. For all images we predetermined
by hand a set of relevant clusters that constitutes a partition of image data sets. However, we
may obtain several manual partitions that depend on our interpretation of image content. For
example, in the sample of images in Fig. 27.3, manual clustering returns two “semantically
correct” partitions. The first one (Table 27.2) is composed of two clusters (image references).
It contains, respectively, U.S. symbols and flags. The second one (Table 27.3) is composed of
five clusters (image references). For example, Cluster 1 (line 1 of Table 27.3) is composed of
flag images= {flag00, flag01, flag02, Flag03, Flag04, flag05, flag06, flag07, Flag08, flag09}.
It contains, respectively, flags, Statues of Liberty, Whites Houses, big belfries, and thin belfries.
In Table 27.3 we consider essentially the visual proximity between images that is, cluster 1 =
flag set, cluster 2 = Statue of Liberty set, cluster 3 =White House set, cluster 4 = big belfry
set, and cluster 5= thin belfry set. Of course, we can group all the belfries together, but because
a person must cluster this data set without considering the semantic content of the data, when
we consider just the visual proximity of data, the algorithm is not sure to group all belfries
together. We can see that Belfry02 and belfry03 are very similar, and near belfry01. The flags
usa01 usa02 and usa4 are also very similar. That is why they belong to the same clusters.

To summarize our approach, we can say that two clusterings are highlighted: manual and
automatic clustering. Manual clustering generates several “correct” partitions. The clusters
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FIG. 27.3. Wavelet coefficients of experiment 4.

TABLE 27.2
First Manual Clustering of the Data Set Composed of 21 Images

Cluster 1 usa01 usa02 usa04 usa05 usa06 usa07 usa08 belfry00 belfry01 belfry02 belfry03
Cluster 2 flag00 flag01 flag02 flag03 flag04 flag05 flag06 flag07 flag08 flag09

TABLE 27.3
Second Manual Clustering of the Data Set Composed of 21 Images

Cluster 1 flag00 flag01 flag02 flag03 flag04 flag05 flag06 flag07 flag08 flag09
Cluster 2 usa01 usa02 usa04
Cluster 3 usa05 usa06 usa07 usa08
Cluster 4 belfry00
Cluster 5 belfry01 belfry02 belfry03

obtained manually (image references) are compared with clusters obtained automatically on
the basis of the following evaluation method.

Data Item Representation

Data items are represented by wavelet descriptors, and their proximity measures are based on
Euclidean distance (for simplification). Image descriptors for indexing may be based on color
histograms, anglogram, Fourier coefficients (frequency representation), and so on. The advan-
tages of wavelet descriptors, compared with the previous descriptors are the representation of
images with different resolutions, keeping in touch with the spatial and frequency information
of the images.

The legitimate question is: how is the content of images represented by wavelet descrip-
tors? Images are naturally represented by a two-dimensional spatial signal: abscissa (x) and
ordinate (y). Although wavelet analysis could be generalized into a two-dimensional spa-
tial signal, the computation involved would be time-consuming. Therefore, we consider the
image signal as a one-dimensional linear signal. To maximize information details in the
descriptors, we use four series of detail coefficients by scanning images in four different
directions.
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FIG. 27.4. Different cases of cluster matching.

With these directions we can extract horizontal, vertical, and diagonal remarkable frequency
changes (i.e., horizontal, vertical, and diagonal contours). In addition, these different directions
make the description of the image more accurate.

To speed up the clustering, we reduce the size of the descriptor vector. We choose a vector
length equal to 2n , with n = 9, 10. To reduce the feature vector to a smaller size, we apply the
wavelet transform many times. In addition, we consider two reductions.

In the first reduction we loop on the lifting scheme; the input signal is the output signal of
the previous iteration. When the signal is small enough (512, 1024, 2048), we store the wavelet
coefficients as a feature vector.

In the second reduction the detail coefficients not saved in Fig. 27.4 contain information.
How can we evaluate the lost information? In fact, in this approach we calculate all the detail
coefficients and compute the average of each vector. Then, we reduce the vector with the higher
average value. The reduction is the same as for the first method.

The higher the prediction degree of a wavelet, the more significant are the details of
descriptors. Therefore, we experimented with Wavelet CDF (1,1): Haar and Wavelet CDF
(2,2): Cohen-Daubechies-Feauveau (2,2). For Wavelet CDF (1,1): Haar, detail coefficients (or
wavelet coefficients): dj1,l = s j,2l+1 − s j,2l ; coarser signal: s j1,l = (s j,2l + s j,2l+1)/2. For Wavelet
CDF (2,2): Cohen-Daubechies-Feauveau (2,2), detail coefficients (or wavelet coefficients):
dj1,l = s j,2l+1 − (s j,2l + s j,2l+2)/2, coarser signal: s j1,l = s j,2l + (dj1,l1 + dj1,l)/4. We choose to
reduce the size of the feature vector to 512, 1024, and 2048.

Evaluation Method

The clustering is evaluated by comparing automatic and manual clustering (image refer-
ences). Manual clustering is expected. The evaluation method, inspired by Koschke and
Eisenbarth (2000), considers the following input parameters: initial data set: I ; refer-
ence clusters Ri,∪Ri = I, Ri is obtained manually; candidate clusters Ci that are obtained
automatically by the method presented in the previous section, ∪Ci = I . It also considers
the following output measures: overlap(C, R) = [(|C ∩ R|)/(|C ∪ R|)]; affinity relationship
≈ p, X ≈ pY if and only if overlap(X, Y ) ≥ p; partial subset relationship ⊆p, X ⊆p Y if and
only if [(|X ∩ Y |)/(|X |)] ≥ p. P measures the degree of overlapping between two sets. A
significant value of P means significant overlapping between two sets. And conversely a weak
value of p means a weak overlapping between two sets.
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The evaluation method compares the reference clusters with candidate clusters. So, for
each couple of clusters (Ri, Cj), we obtain good matches: Ri ≈p Cj; this matching is denoted
1 ∼ 1. Or, acceptable matches: Ri ⊆p Cj or Cj ⊆p Ri and not Ri ≈p Cj . If Ri ⊆p C j then the
candidate cluster Cj is too detailed. This case is denoted n ∼ 1. Conversely, if C j ⊆p Ri , then
the candidate cluster has too few details. This case is denoted 1 ∼ n. There may also be false
positive matches. Candidate clusters that neither match a reference nor are matched by any
reference are called false positives. Inversely, they are true negatives when they are not even
partially detected.

In Fig. 27.1 we have:

� Good matches = {(C1, R1), (C4, R4)}, − {n ∼ 1} = {(R2, C2)}, −{1 ∼ n} =
{(C3, R2), (C2, R4), (C6, R5), (C6, R6), (C7, R6)}

� False positive = {C5}
� True negative = {R3}

The ideal evaluation scheme is composed exclusively of good matches. In this case, ∀ a
cluster C, ∃ a reference R for which C≈p R, and ∀ a reference R, ∃ a cluster C for which C≈p

R, with p = 1.0. However, a more realistic evaluation scheme considers a vector composed of
the number of false positives, true negatives, the average accuracies of 1≈p1, 1≈p n, n≈p 1
matches, and overall recall rate, with p = 70%.

For two clusters, the accuracy between A and B, denoted accuracy(A, B) = overlap
(A, B), and for two sets of clusters: accuracy({A1, A2, . . . , Aa}, {B1, B2, . . . , Bb}) =
overlap(∪a

i=1 Ai ,∪b
i=1 Bi ). So, for a class M of matches (M considers clusters in which we

have: 1≈p 1, 1≈p n or n≈p 1):

accuracy(M) =

∑
(a,b)∈M

accuracy (a, b)

card (M)

Overall recall rate:

recall =

∑
(a,b)∈GOOD

accuracy(a, b)+ ∑
(a, b)∈O K

accuracy (a, b)

card (GOOD)+ card (OK )+ card (true negative)

where card is the cardinality of a set. In other words, it corresponds to the number of data
items in the set.

Results and Analysis

We considered 40 experiments with wavelet CDF (1, 1), wavelet CDF (2, 2), monochrome,
RGB colors with descriptor size equal to 512 and 2048 elements, and data sets of respectively
21, 100, 1,000, 10,000 and 100,000 images. We obtained the results shown in Table 27.1.

In the column color, RGB means “red, green, blue,” so these are color images. N/B means
“black and white” images. To illustrate the meaning of an experiment, we detail experiment 4
(see Table 27.4).

The descriptor size is 2048, wavelet type is CDF (2, 2) (Cohen et al., 1992), color information
is RGB, and the cardinality of the data set is equal to 21 images. In Fig. 27.2 we present a
visual representation of wavelet image descriptors of the data set presented in the Fig. 27.1.
We can see using these visual images how multiresolution representation based on wavelets
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TABLE 27.4
Experiments

Experiment Size of Descriptor Wavelet Type Color Data Sets

1 2048 CDF(1,1) N/B 21 images
2 2048 CDF(1,1) RGB 21 images
3 2048 CDF(2,2) N/B 21 images
4 2048 CDF(2,2) RGB 21 images
5 512 CDF(1,1) N/B 21 images
6 512 CDF(1,1) RGB 21 images
7 512 CDF(2,2) N/B 21 images
8 512 CDF(2,2) RGB 21 images
9 2048 CDF(1,1) N/B 100 images

10 2048 CDF(1,1) RGB 100 images
11 2048 CDF(2,2) N/B 100 images
12 2048 CDF(2,2) RGB 100 images
13 512 CDF(1,1) N/B 100 images
14 512 CDF(1,1) RGB 100 images
15 512 CDF(2,2) N/B 100 images
16 512 CDF(2,2) RGB 100 images
17 2048 CDF(1,1) N/B 1000 images
18 2048 CDF(1,1) RGB 1000 images
19 2048 CDF(2,2) N/B 1000 images
20 2048 CDF(2,2) RGB 1000 images
21 512 CDF(1,1) N/B 1000 images
22 512 CDF(1,1) RGB 1000 images
23 512 CDF(2,2) N/B 1000 images
24 512 CDF(2,2) RGB 1000 images
25 2048 CDF(1,1) N/B 10000 images
26 2048 CDF(1,1) RGB 10000 images
27 2048 CDF(2,2) N/B 10000 images
28 2048 CDF(2,2) RGB 10000 images
29 512 CDF(1,1) N/B 10000 images
30 512 CDF(1,1) RGB 10000 images
31 512 CDF(2,2) N/B 10000 images
32 512 CDF(2,2) RGB 10000 images
33 2048 CDF(1,1) N/B 100000 images
34 2048 CDF(1,1) RGB 100000 images
35 2048 CDF(2,2) N/B 100000 images
36 2048 CDF(2,2) RGB 100000 images
37 512 CDF(1,1) N/B 100000 images
38 512 CDF(1,1) RGB 100000 images
39 512 CDF(2,2) N/B 100000 images
40 512 CDF(2,2) RGB 100000 images

discriminates the outline of the image. The wavelet descriptor is a suitable signature of images,
particularly when the images support variations of textures and colors.

As mentioned previously, the data set may be manually classified in two or five clusters. So
we may have two or five image references. Then we activate the clustering method, which is
the focus of this chapter, to find the best values of k. To limit the computing time, we introduce
the born [2, 8]. This born means that 8≥ k ≥ 2. So, k have to be between 2 and 8. Tables 27.5–
27.10 show the LVRC and GLVRC values for each cluster.

The best value of k is 2 with LVRC = 22.88%, GVRCN = 15% and with 2 (good+
acceptable) matches with image references. More generally, we notice that for all experiments
the best value of k is 2 (see Tables 27.11 and 27.12).
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TABLE 27.5
K = 3 Clusters: (LVRC: 0.160459, GVRCN: 0.35)

Silhouette
Coefficient Medoid Data Items

0.163170 usa05 Usa01 usa02 usa04 usa06 usa07 usa08 belfry00 belfry01 belfry02
0.318206 flag05 flag00 Flag01 flag02 Flag03 flag04 flag06 flag07 flag08 flag09
0.000000 Belfry03

TABLE 27.6
Four Clusters: (LVRC: 0.100644, GVRCN = 0.38)

Silhouette
Coefficient Medoid Data Items

1 0.162024 usa05 usa01 usa02 usa04 Usa06 usa07 usa08 belfry00 belfry01 belfry02
2 0.209901 flag05 flag00 flag02 flag03 flag07
3 0.000000 belfry03
4 0.030651 flag08 flag01 flag04 flag06 flag09

TABLE 27.7
Five Clusters: (LVRC: 0.087042, GVRCN = 0.05)

Silhouette
Coefficient Medoid Data Items

1 0.194658 usa05 usa01 Usa02 usa04 Usa06 usa07 usa08 belfry00 belfry01
2 0.209901 flag05 flag00 Flag02 flag03 Flag07
3 0.000000 belfry03
4 0.030651 flag08 flag01 Flag04 flag06 Flag09
5 0.000000 belfry02

TABLE 27.8
Six Clusters: (LVRC: 0.079843, GVRCN = 0.43)

Silhouette
Coefficient Medoid Data Items

1 0.194658 usa05 usa01 usa02 usa04 Usa06 usa07 usa08 belfry01
2 0.209901 flag05 flag00 flag02 flag03 flag07
3 0.000000 belfry03
4 0.030651 flag08 flag01 flag04 flag06 flag09
5 0.000000 Belfry02
6 0.000000 Belfry00

TABLE 27.9
Seven Clusters: (LVRC: 0.112124, GVRCN = 0.51)

Silhouette
Coefficient Medoid Data Items

1 −0.008364 usa05 usa01 usa02 usa04 Usa06 belfry01
2 0.209901 flag05 flag00 flag02 flag03 flag07
3 0.000000 belfry03
4 0.030651 flag08 flag01 flag04 flag06 flag09
5 0.000000 belfry02
6 0.000000 belfry00
7 0.552677 usa8 usa7
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TABLE 27.10
Eight Clusters: (LVRC: 0.099835, GVRCN = 0.7)

Silhouette
Coefficient Medoid Data Items

1 0.021699 usa05 usa01 usa02 usa04 usa06
2 0.209901 flag05 flag00 flag02 flag03 flag07
3 0.000000 belfry03
4 0.030651 flag08 flag01 flag04 flag06 flag09
5 0.000000 belfry02
6 0.000000 belfry00
7 0.536432 usa8 usa7
8 0.000000 belfry01

TABLE 27.11
Matches with Two References

2 1,000000 0 1 0.181818 0 0 0.727273
1 1,000000 0 1 0.55 0 0 0.7
2 1,000000 0 1 0.181818 0 0 0.727273
2 1,000000 0 0 0 0 1.0
2 1,000000 0 1 0.181818 0 0 0.727273
2 0.908333 0 1 0.181818 0 0 0.666162
2 1.0 0 0 0 0 1.0
2 1.0 0 0 0 0 1.0

TABLE 27.12
Matches with Five References

1 1 1 0.888889 1 0.666667 0 0 0.851852
1 1 1 0.571429 3 0.422222 0 0 0.567619
1 1 1 0.777778 1 0.5 0 0 0.759259
1 1 1 1 0 0 0 1
1 1 1 0.888889 1 0.666667 0 0 0.851852
1 0.9 1 0.8 1 0.666667 0 0 0.788889
1 1 1 1 0 0 0 1
1 1 1 1 0 0 0 1

We compare here the experiments 1–8 on the basis of overall recall rate with two image
references and five image references respectively. So experiments 4, 7, and 8 return cluster
results very close to those of manual clustering. The overcall rate is near 1. The first conclusion
is that the CDF (2,2) wavelet returns better results than CDF (1,1). This is due to the fact that
CDF (2,2) attenuates the noise of images. Only real and hard changes in the color of the pictures
are noticed. For example, a CDF (2,2) wavelet is not perturbed by a sky color gradation. When
comparing experiments on the basis of good matches and acceptable matches to see which
automatic clustering best matches our manual clustering, we obtain the results presented in
the Fig. 27.5. All experiments return two (acceptable+good) matches. In this case there is no
1 ∼ n matche (because there is no clustering less detailed than a clustering with two clusters).

Experiments 4, 7, and 8 all give the same results: two clusters. But if they return results
comparable with our five-clusters clustering, that is because the manual clusters are totally
included in another cluster. So our manual clustering is just more precise. The evaluation
method looks for misplaced objects. That is why experiments 4, 7, and 8 return good results.
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FIG. 27.5. Experiments 1–8.

FIG. 27.6. Experiments 1–40.

Figure 27.6 illustrates the evolution of accuracies and overall recall rate for the 40 experi-
ments. We notice the light degradation of accuracies and overall recall rate for very large image
data sets. However, the measure 1 ∼ n presents stable performance. This may be explained by
the fact that the clusters obtained automatically are included in image references.

SUMMARY

This chapter focuses on k-discovery in the context of a partition method in voluminous data
items. Partitions organize data item repositories (usually represented by vectors of values) into
clusters based on similarity. More particularly, this chapter presents a method that automati-
cally discovers the number of clusters (k). We tested the method on image repositories. Our
strategy is based on the confidence measures composed of intercluster confidence (GVRCN)
that considers the confidence of the whole cluster, and intracluster confidences (LVRC) that
considers the confidence of individual cluster. We showed that the two levels of confidences
present interesting results. Results of experiments showed that the value of k obtained auto-
matically is generally the better one, if we consider the confidence measure computed on the
basis of GVRCN and LVRC. So the value of k corresponds to clustering results that have in the
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first step, the best GVRCN, and in the second step the best LVRC. Many current approaches
consider only LVRC known by silhouette. In these cases the best values of k did not mean the
best clusters, when compared with image references (manual clusters).

Many efforts should be focused to speed up the k-discovery process for very large data
items. Our experiments showed that when considering very large data items, the algorithm of
k-discovery remains time-consuming.

The experiments showed, too, that the type of wavelet coefficients considered—wavelet
CFD (2,2)—have more influence on the final results than the levels of resolution (512 or
2048 wavelet coefficients) or color/gray parameters. So the clustering process in which image
descriptors are based (wavelet CFD [2,2]) returns results that are better than wavelet CFD
(1,1), independently of level or resolutions or color/gray parameters.

The overall experiment results showed that the confidence measures of clusters are close
to image references (clusters obtained manually). In these cases is it sufficient to ensure that
wavelet descriptors and the k-discovery method are well suitable to cluster semantically im-
ages? This question is not easy to answer. However, we can say that wavelet descriptors are
suitable to discriminate images by considering levels of resolutions; however, it is not clear at
all whether there is a causal link between levels of resolutions and semantic content of clusters.
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