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INTRODUCTION

Data mining and knowledge discovery seek to turn the vast amounts of data available in digital
format into useful knowledge. Classic data mining concentrates on structured data stored in
relational databases or in flat files. However, it is now clear that only a small portion of the
available information is in a structured format. It is estimated that up to 80% of the data available
in digital format is nonstructured data. Most notably, much of information is available in textual
form with little or no formatting. Hence, the growing interest in text mining, which is the area
within data mining that focuses on data mining from textual sources.

The first issue to address when performing text mining is to determine the underlying in-
formation on which the data mining operations are applied. Our approach to text mining is
based on extracting meaningful concepts that annotate the documents. A typical text mining
system begins with collections of raw documents without any labels or tags. Initially, doc-
uments are automatically labeled by categories and terms or entities extracted directly from
the documents. Next, the concepts and additional higher-level entities (that are organized in
a hierarchical taxonomy) are used to support a range of Knowledge Discovery in Databases
(KDD) operations on the documents. The frequency of co-occurrence of concepts can provide
the foundation for a wide range of KDD operations on collections of textual documents, such
as finding sets of documents with concept distributions that differ significantly from those of
the full collection, other related collections, or collections from other points in time.

A straightforward approach is to use the entire set of words in the documents as inputs to the
data mining algorithms. However, as was shown by Rajman and Besançon (1997), the results
of the mining process in this approach are often rediscoveries of compound nouns (such as
that “Wall” and “Street” or that “Ronald” and “Reagan” often co-occur), or of patterns that are
at too low a level to be significant (such as that “shares” and “securities” co-occur).

A second approach (Feldman, Aumann, Amir, Klösgen, & Zilberstein, 1997; Feldman &
Dagan, 1995; Feldman & Hirsh, 1997; Feldman, Rosenfeld, Stoppi, Liberzon, & Schler, 2000)
is to use tags associated with the documents and to perform the data mining operations on the
tags. However, to be effective this requires:

� Manual tagging, which is unfeasible for large collections; or
� Automated tagging using any one of the many automated categorization algorithms.

This approach suffers from two drawbacks. First, the number of distinct categories that
such algorithms can effectively handle is relatively small, thus limiting the broadness of the
mining process. More important, the process of automated categorization requires defining the
categories a priori, thus defeating the purpose of discovery within the actual text.

A third approach is text mining via information extraction (Applet et al., 1993a, 1993b;
Cowie & Lehnert, 1996; Lin, 1995; Riloff & Lehnert, 1994; Tipster, 1993), whereby we first
perform information extraction on each document to find events, facts, and entities that are
likely to have meaning in the given domain, and then to perform the data mining operations on
the extracted information. A possible “event” may be that a company has entered a joint venture
or has executed a management change. The extracted information provides much more concise
and precise data for the mining process than in a word-based approach and tends to represent
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more meaningful concepts and relationships in the document’s domain. On the other hand, in
contrast to the tagging approach, the information-extraction method allows for mining of the
actual information present within the text rather than the limited set of tags associated to the
documents. Using the information extraction process, the number of different relevant entities,
events, and facts on which the data mining is performed is unbounded—typically thousands or
even millions, far beyond the number of tags that any automated tagging system could handle.

Although on a basic level one can rely on generic proper name recognition that is mostly
domain-independent, the power of this text mining approach is most apparent when coupled
with extraction specific to the domain of interest. Thus, for example, when mining a collection
of financial news articles, we would want to extract pertinent information on companies, in-
dustries, and technologies—information such as mergers, acquisitions, management positions,
and so forth.

We start by describing the typical architecture of a text mining system. We then describe
the various techniques for document preprocessing. Next we discuss document categorization
and term extraction and move to information extraction methodologies. We then describe
how to generate and utilize a taxonomy based on the output of the preprocessing phase. The
automatically created taxonomy is the basis for all the analytic text mining operations. We
continue by describing the analytic level of a typical text mining system including various
types of visualizations. We then outline the primary hurdles when implementing a text mining
system. A summary concludes this chapter.

ARCHITECTURE OF TEXT MINING SYSTEMS

A text mining system is composed of three major components:

1. Information feeders: A component to enable the connection between various textual
collections and the tagging modules. This component connects to any Web site, streamed
source (such a news feed), internal document collections, and any other types of textual
collections.

2. Intelligent tagging: A component responsible for reading the text and distilling (tagging)
the relevant information. This component can perform any type of tagging on the
documents such as statistical tagging (categorization and term extraction), semantic
tagging (information extraction), and structural tagging (extraction from the visual
layout of documents).

3. Business intelligence suite: A component responsible for consolidating the information
from disparate sources, allowing for simultaneous analysis of the entire information
landscape.

In addition, the output of the tagging component can be fed into external systems such as
corporate databases, workflow systems, or file systems. The tagging system is connected to the
business intelligence suite or to the external systems either by producing rich XML documents
or by using an API (application programming interface) that can connect directly to the internal
data structures of the tagging process.

An example of such an XML document is shown in Fig. 21.1. We can see several examples
of annotation of entities (like Dynegy Inc as an instance of a company, or Roger Hamilton as an
instance of a person) and relationships such as the CreditRating relationship, which correlates
a rating, a trend, the rating company, and the rated company; and the PersonPositionCompany
relationship, which correlates a person a position and a company.
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FIG. 21.1. XML annotation of an input document.

In Fig. 21.2 we can see the schematic diagram of a typical text mining system as was
described. A more detailed description of the intelligent tagging component is shown in
Fig. 21.3. Each of the taggers is using a separate training module that is based on anno-
tated examples. A more detailed discussion of the training modules will be presented in the
following sections. The training module for the structural tagging is producing document sig-
natures that are then saved and mapped against new documents. The training module for the

FIG. 21.2. Architecture of text mining systems.
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FIG. 21.3. Detailed description of the intelligent tagging component.

statistical tagging is producing classifiers for each of the categories, and the training mod-
ule for the semantic training is producing information extraction rules based on annotated
documents.

STATISTICAL TAGGING

Statistical tagging is based on the existence of a large collection of documents and usually relies
on the presence of a training collection that is pretagged. The two main families of techniques
within this approach are text categorization algorithms and term extraction algorithms. The
next two subsections provide an overview of these families of algorithms.

Text Categorization

Text categorization (Cohen, 1992; Cohen & Singer, 1996; Dumais, Platt, Heckermann, &
Sahami, 1998; Lewis, 1995; Lewis & Hayes, 1994; Lewis & Ringuette, 1994; Lewis, Schapire,
Callan, and Papka, 1996; Sebastiani, 2002) is the activity of labeling natural language texts
with thematic categories from a predefined set of categories. There are two main approaches to
the categorization problem. The first is the knowledge engineering approach, in which the user
is defining manually a set of rules encoding expert knowledge how to classify documents under
given categories. The other approach is the machine learning approach (Sebastiani, 2002), in
which a general inductive process automatically builds an automatic text classifier by learning
from a set of preclassified documents.

An example of knowledge engineering approach is the CONSTRUE (Hayes, 1992; Hayes
& Weinstein, 1990) system built by the Carnegie group for Reuters. A typical rule in the
CONSTRUE system:
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if DNF (disjunction of conjunctive clauses) formula then category
Example:

If ((wheat & farm) or
(wheat & commodity) or
(bushels & export) or
(wheat & tonnes) or
(wheat & winter & ¬ soft))
then Wheat
else ¬ Wheat

The main drawback of this approach is the knowledge acquisition bottleneck. The rules
must be manually defined by a knowledge engineer interviewing a domain expert. If the set of
categories is modified, then these two professionals must intervene again. Hayes and Weinstein
(1990) reported a 90% breakeven between precision and recall on a small subset of the Reuters
test collection (723 documents). However, it took a tremendous effort to develop the system
(several person-years), and the test set was not significant to validate the results. It is not clear
that these superb results will scale up when a bigger system needs to be developed.

The machine-learning based approach is based on the existence of a training set of document
that are pretagged using the predefined set of categories. A diagram of a typical ML based
categorization system is shown in Fig. 21.4. There are two main methods for performing
machine-learning based categorization. One method is to perform “hard” (fully automated)
classification, in which for each pair of category and document we assign a truth value (either
TRUE if the document belongs to the category or FALSE otherwise). The other approach
is to perform a ranking (semiautomated) based classification. In this approach rather than
returning a truth value the classifier return a categorization status value (CSV), that is, a
number between 0 and 1 that represents the evidence for the fact that the document belongs to the
category. Documents are then ranked according to their CSV value. Specific text categorization
algorithms are discussed later.

ML TC Algorithm

FIG. 21.4. Diagram of a typical machine-language based categorization
system.
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Definitions:

D={d1, d2, . . . . , dn}: the training document collection
C ={c1, c2, . . . . , ck}: the set of possible categories to be assigned to the documents
T ={t1, t2, . . . . , tm}: the set of terms appearing in the documents
wi j : the weight of the j th term of the i th document
CSVi (dj ) : a number between 0 and 1 that represents the certainty that a category ci should

be assigned to document dj

Dis(Di , D j ) : the distance between document Di and D j ; this number represents the simi-
larity between the documents

Probabilistic Classifiers. Probabilistic classifiers view CSVi (dj ) in terms of
P(ci | dj ), that is, the probability that a document represented by a vector �dj =〈w1 j , . . . , wmj〉
of (binary or weighted) terms belongs to ci , and compute this probability by an application of
Bayes’ theorem

P(ci | �dj ) = P(ci )P( �dj | ci )

P( �dj )
.

To compute P(dj ) and P(dj | Ci ), we need to make the assumption that any two coordinates
of the document vector, when viewed as random variables, are statistically independent of each
other; this independence assumption is encoded by the equation

P( �dj | ci ) =
|T |∏
k=1

p(wk j | ci ).

Example-Based Classifiers. Example-based classifiers do not build an explicit,
declarative representation of the category ci , but rely on the category labels attached to the
training documents similar to the test document. These methods have thus been called lazy
learners, because they defer the decision on how to generalize beyond the training data until each
new query instance is encountered. The most prominent example of example-based classifier
is K NN (K nearest neighbor).

For deciding whether dj ∈ ci , K NN looks at whether the k training documents most similar
to dj also are in ci ; if the answer is positive for a large enough proportion of them, a positive
decision is made, and a negative decision is taken otherwise. A distance-weighted version
of K NN is a variation of K NN such that we weight the contribution of each neighbor by
its similarity with the test document. Classifying dj by means of K NN thus comes down to
computing

CSVi (dj ) =
∑

dz∈T rk (d j )

Dis(dj , dz) · Ci (dz).

One interesting problem is how to pick the best value for k. Larkey and Croft (1996) use
k= 20, whereas Yang and Chute (1994) and Yang and Liu (1999) found 30≤ k ≤ 45 to yield
the best effectiveness. Various experiments have shown that increasing the value of k does not
significantly degrade the performance.

Propositional Rules Learners. There is a family of algorithms that try to learn
the propositional definition of the category. One of the prominent examples of this family
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of algorithms is Ripper (Cohen, 1992; Cohen & Singer, 1996). Ripper learns rules that are
disjunctions of conjunctions. Here is an example of two rules that define the category “Ireland”.

Ireland← ira ∈ document, killed ∈ document.
Ireland← ira ∈ document, belfast ∈ document.

Ripper builds a rule set by adding new rules till all positive exemplars are covered. Conditions
are added to the rule until no negative exemplars are covered. Initially, examples were repre-
sented as feature vectors. Because the matrix was so sparse, each document was represented
as a set. Ripper can also use negative features (i.e., w /∈ S).

One of the attractive features of Ripper is its ability to bias the performance toward higher
precision or higher recall. This is done via the use of a special parameters call the Loss ratio.
This is the ratio of the cost of a false negative to the cost of false positive. High loss ratio will
increase recall and decrease precision.

Support Vector Machines. The support vector machine (SVM) algorithm was
proven to be very fast and effective for text classification problems (Dumais et al., 1998;
Joachims, 1998). SVMs were introduced by Vapnik in his work on structural risk minimization
(Vapnik, 1979, 1995). A linear SVM is a hyperplane that separates with the maximum margin
a set of positive examples from a set of negative examples. The margin is the distance from
the hyperplane to the nearest example from the positive and negative sets. The diagram shown
in Fig. 21.5 is an example of a two-dimensional problem that is linearly separable.

Clustering as a Preprocess Step for Categorization. Document clus-
tering algorithms can be used in a preprocessing phase and enable finding the main themes in
the documents without any need for corpus annotation. The fact that clustering is an instance of
unsupervised learning makes it very suitable for the exploration phase of a text mining project.
In addition, clustering algorithms were used in the link analysis phase to cluster together re-
lated entities. This approach proved to be very useful in identifying groups of related objects
and in identifying their internal organization.

Comparison Between Text Categorization and Information Ex-
traction. In contrast to the information extraction approach, in which the entities that tag
the document are based on actual terms extracted from the document, text categorization tags

FIG. 21.5. Diagram of a two-dimensional linear SVM.
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the document with concepts that do not need to be mentioned in the document itself. The main
advantages of using a categorization approach are that it is less time consuming to prepare
the training corpus, and there is no need to manually craft rules. On the other hand, one to
five tags would be assigned to any given document. That would usually capture just some of
the main topics of the document and certainly miss most of the important entities mentioned
inside the document. In contrast, a document tagged by an information extraction system
will have around 20 to 50 tags (for a two-to-three-page document). In a nutshell, information
extraction was found to provide a much better infrastructure for text mining than was text
categorization.

A Visual Interface to Document Classification. In Fig. 21.6 is a visual
front end that enables the user to create classifiers for various categories and then test them on
other document collections. In Fig. 21.6 we created 10 classifiers for categories such as “British
banks,” “CRM software,” or “baseball.” We then tested all classifiers on a test collection of
476, and focused on the performance of the baseball classifier on the test set. The system ranks
all documents in a decreasing order certainty that baseball should be assigned to the document.
The user can then set the threshold for the category to any of the scores of the ranked documents.
This threshold will be used in the operation mode of the system for attaching the baseball tag
to newly arriving documents. In this particular example the best threshold was 0.829, which
provides a precision of 97% and recall of 98%.

Term Extraction

The term extraction module is responsible for labeling each document with a set of terms
extracted from the document. An example of the output of the term extraction module is given
in Fig. 21.7. The excerpt is taken from an article published by Reuters Financial on May 12,
1996. Terms in this excerpt that were identified and designated as interesting by the term
extraction module are underlined.

The overall architecture of the term extraction module is illustrated in Fig. 21.8. There are
three main stages in this module: linguistic preprocessing, term generation, and term filtering.

The documents are loaded into the system through a special reader. The reader uses a
configuration file that informs it of the meaning of the different tags annotating the documents.
In such a way, we are able to handle a large variety of formats. The Text Processing Language
(TPL) reader packages the information into a Standardized General Markup Language file.

The next step is the linguistic preprocessing that includes tokenization, part-of-speech tag-
ging and lemmatzations (i.e., a linguistically more founded version of stemming; see Hull,
1996). The objective of the part-of-speech tagging is to automatically associate morpho-
syntactic categories such as noun, verb, adjective, and so forth, to the words in the document.
Some systems use a rule based approach similar to the one presented in Brill (1995), which
is known to yield satisfying results (96% accuracy) provided that a large lexicon (containing
tags and lemmas) and some manually hand-tagged data is available for training.

SEMANTIC TAGGING

Rule based information extraction techniques rely on the fact that the information to be extracted
from documents can be specified in such a way that a relatively small number of extraction
rules are needed. The knowledge-intensive information extraction approach requires trained
developers and is very laborious; however, some attractive features of this approach are the
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FIG. 21.7. An example of the output of the term extraction process.

specificity of the extracted information and the precision and recall with which information
can be extracted. The architecture of a typical information extraction system is shown in
Fig. 21.9. We start our discussion of information extraction with a description of the Declarative
Information Analysis Language (DIAL) information extraction language (Feldman et al., 2001,
2002).

DIAL

In this subsection we describe DIAL. DIAL is designed specifically for writing IE (information
extraction) rules. The complete syntax of DIAL is beyond the scope of this chapter. Here we
describe the basic elements of the language.

Basic Elements. The basic elements of the language are syntactic and seman-
tic elements of the text and sequences and patterns thereof. The language can identify the
following elements:

� Predefined strings such as “merger”
� Word class element: a phrase from a predefined set of phrases that share a common

semantic meaning—for example, WC-Countries, a list of countries.

FIG. 21.8. Architecture of the term extraction module.
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FIG. 21.9. Architecture of an information extraction system.

� Scanner feature (basic characteristic of a token), for example,@Capital or@HtmlTag
� Compound feature: a phrase comprising several basic features. Thus, Match
(@Capital & WCCountries), for example, will match a phrase that both belongs
to the word class WCCountries and starts with a capital letter.

� Part-of-speech tag—for example, noun or adjective
� Recursive predicate call—for example, Company (C)

Constraints. Constraints carry out on-the-fly Boolean checks for specific attributes.
These can be applied to fragments of the original text or to results obtained during processing
extraction process.

The marker for a constraint is the word verify, followed by parentheses containing a
specific function, which governs what it is checking for. For example:

verify ( StartNotInPredicate ( c , @PersonName ) )

ensures that no prefix of the string assigned to variable c is a match for the predicate
PersonName.

IE Rule Bases. The rule base can be viewed as a logic program. Thus, a rule base, �,
is a conjunction of definite clauses Ci : Hi ← Bi where Ci is a clause tag, Hi (called the head) is
a literal, and Bi ={Bi1 Bi2 . . . .}= Pi ∪ Ni (called the body) is a set of literals, where Pi ={pi j}
is a set of pattern matching elements and Ni ={ni j} is a set of constraints operating on Pi . The
clause Ci : Hi ← Bi represents the assertion that Hi is implied by the conjunction of the literals
in Pi while satisfying all the constraints in Ni .

An example of a DIAL rule is the following, which is 1 of 10 rules to identify a merger
between two companies:

FMergerCCM(C1, C2) :-
Company(Comp1) OptCompanyDetails "and" skip(Company(x),
SkipFail, 10) Company(Comp2) OptCompanyDetails
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skip(WCMergerVerbs, SkipFailComp, 20) WCMergerVerbs
skip(WCMerger, SkipFail, 20) WCMerger
verify(WholeNotInPredicate(Comp1, @PersonName))
verify(WholeNotInPredicate(Comp2, @PersonName))
@% @!
{ C1 = Comp1; C2 = Comp2 };

The rule looks for a company name (carried out by the predicate Company, which returns
the parameter Comp1) followed by an optional phrase describing the company, and then the
word and. The system then skips up to 10 tokens (within the same sentence, and while not
encountering any phrase prescribed by the predicate SkipFail) until it finds another com-
pany, followed by an optional company description clause. The system then skips up to 20
tokens until it finds a phrase of the word class WCMergerVerbs. (This may be something
like “approved,” “announced,” etc.). Finally, the system skips up to 10 tokens scanning for a
phrase of the word class WCMerger. In addition, the rule contains two constraints ensuring
that the company names are not names of people.

Each rulebook can contain any number of rules that are used to extract knowledge from
documents in a certain domain. Here are a few examples of rulebooks that were developed in
DIAL:

� Financial rulebook: containing 11,500 rules, can identify more than 50 different entity
types including company names; people names; organizations; universities; products; posi-
tions; locations (cities, countries, states, and addresses); dates, and amounts. In addition, it can
identify more than 120 different event types such as: mergers (including a fine-grained dis-
tinction between known merger, new merger, rumored merger, planned merger, and cancelled
merger); acquisitions (with a similar distinction between acquisition types); joint ventures;
takeovers; business relationships; investment relationships; customer–supplier relationships;
new product introductions; analyst recommendations for stocks and bonds, associations be-
tween companies and people; associations between companies and technologies; associations
between companies and products; and many others.

� Business intelligence rulebook: contains 7,000 rules, can identify thirty different entity
types, including company names, people, positions, prices, and products. In addition, it can
identify more than eighty events, including joint ventures; business relationships; mergers and
acquisitions; customer–supplier relationships; rival relationship; layoffs; strategic reorganiza-
tions; investments; new management; IPO plans; senior appointments; product-related events
(product features); awards; and so forth.

� Intellectual property rulebook: contains 100 rules and can identify 30 different types of
entities in patent files, including inventor, assignee, examiner, and a set of noun-phrase classes
based on the context in which they appear.

� A protein relationship rulebook: enabling the extraction of relationships between protein
pathways from articles featured in Medline. This rulebook contains 500 rules and can iden-
tify 30 different types of entities, including proteins and 10 different relationships including
phosphorylation.

Development of IE Rules

Developing an IE module for a new domain can be very tedious and time-consuming. To speed
up the process, the developer needs an environment with a range of productivity tools. The
focus of this section is on these editing and debugging tools. In addition, the environment should
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FIG. 21.10. Defining patterns by using visual pattern editors.

provide tools for checking the quality of the rulebook by examining its output on documents
streams.

Visual Rule Authoring. To increase the productivity of the application developers,
it is prudent to consider using rule editors and visual tools. The template editor enables the user
to select a text fragment from any document and build a new pattern based on that. The user
can generalize any part of the text fragments by selecting the part and replacing it with one of
the predefined building blocks. The building blocks can be either primitives such as company
name, person name, product, location and so forth, or a reference to predefined lexicons. Most
of the pattern matching elements discussed previously can be defined using the visual pattern
editor.

As an example, in Fig. 21.10, the pattern that was extracted from the sentence “Kam-
far, also known as Amer Taiybkamfar, was reported to have lived in Florida for the last 18
months” is shown. The pattern generalizes the sentence to extract a relationship that corre-
lates a person with a city or state. It was found that the users are much more comfortable
working at this abstraction level than using a formal language to define the grammar of the
patterns.

Debugging Tools. The DIAL environment includes a variety of tools for monitoring
the integrity and performance of the rule base during its development. The tools available reflect
the many types of problems that may arise, ranging from simple syntax errors that prevent the
code’s compilation (e.g., omitting a vital punctuation mark or misspelling the name of a
predicate or word class) to inefficiencies in the rules themselves that lead to inaccuracies in
the results (e.g., Bank of England as a company), or events that are missed altogether. The user
can then make modifications to the rule and rerun the code to ensure that the problem has been
fixed or the accuracy improved.

Central to all these operations is the interpreter, which can act on the code line-by-line
without precompilation. This is used to check the code for syntactical integrity before it is used
for any information extraction. The offending line is highlighted, usually with an accompanying
comment in the output pane, allowing the user to zoom in on the problem (see Fig. 21.11).

Once the code has passed the compilation test, it is tried out on a number of sample texts.
The following debugging tools are available:
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FIG. 21.11. ClearLab’s built-in interpreter pinpoints syntax errors that prevent
compilation.

� Reviewing event tables for rapid spotting of erroneous events. These can then be double-
clicked to highlight the text fragment in the source text that caused the problem. This is usually
enough to alert the user to the nature of the special case that caused the erroneous output and
to make adjustments to the rule to prevent such occurrences in future.

� Right-clicking events. This allows the user to go directly to the relevant predicate behind
the event—and specifically to the culprit definition in the code—and amend it as necessary.

� Tracer. This is used to monitor the incidence of recall errors—events that should have
been caught but were not. A relevant rule is applied to the specific text in question. The success
or failure of each component of the rule is then clearly shown in a report, featuring green
check marks (success), red crosses (failure), and blue question marks (unchecked section), as
in Fig. 21.12. Appropriate action can then be taken as necessary to improve the relevant rule(s).

� Event diff. This utility that allows you to assess the comparative effectiveness of incre-
mental changes to the rules by comparing the list of events extracted using the new and the old
versions. Typically, this is done soon or immediately after changing or adding any number of
predicates.

� Profiler. This tool analyzes the rule file’s performance, how long each predicate took to
process a given document collection, and which in particular need tweaking, revising, or even
complete removal to streamline the IE process. Its report is created as part of the compilation
process, and thus the tool typically is applied at the end of the development process.

� Low-level debugging tool. It is similar to the tracer in that it tests the code against a sample
text of the user’s choosing (Fig. 21.13B). But it is more comprehensive because it examines
the processing by the entire rule file up to a breakpoint of their choosing (A). All aspects of



FIG. 21.12. The low-level debugger tool built into the environment allows the
whole or part of the rulebook (up to a user-defined breakpoint, A) to run on
any sample text (B), and all aspects of the results to be examined (D, E, F).

FIG. 21.13. The tracer tool allows specific predicates to be tested for effec-
tiveness on sample texts that are pasted or typed into the relevant section.
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FIG. 21.14. The pattern locator tool.

the process may be examined subsequently, from the full list of predicates and functions in
the rule file (C), to the word classes and other resources actually loaded, the active windows,
and variables (E, F). Stepinto, Stepover, and Stepout tools (G) allow one to examine each rule
call-by-call individually within the same stack frame or outside it.

� Pattern locator tool. This enables the user to enter a DIAL pattern and locates all instances
of the pattern in a document collection. It then enables generalizing a selected subset of those
instances. Portions assigned to variables in the pattern are shown in red and blue. The full
instance of the patterns is underlined (see Fig. 21.14).

Contrasting Rule Engineering with Automatic Rule Learning. In
contrast to the rule based approach, in which most of the effort is focused on writing rules,
other systems use a machine learning approach in which IE rules are automatically learned
based on an annotated corpus (Lehnert et al., 1991; Riloff & Lehnert, 1994; Soderland, Fisher,
Aseltine, & Lehnert, 1995). Most of the effort in this case would then be devoted to annotating
the corpus with entities and relationships. Although experience has shown that the accuracy
of entity extraction rules was quite on par with the handcrafted rules, this was not the case for
automatically learned relations extraction rules. From our experience, we managed to get by
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FIG. 21.15. The main auditing display.

FIG. 21.16. Auditing a Person Position Company event.
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using handcrafted rules producing a breakeven score of around 92% (for event and fact extrac-
tion). Machine learning based approaches were able to achieve only around 70% breakeven.

Auditing Environment

The auditing environment enables the user to view all events extracted from the document
collection and easily fix erroneous events. The errors may be of several types: The event is
completely wrong, and in that case we will delete it altogether; the event is correct, but some
of the fields are incorrect, in which case we fix the erroneous fields; or the event is accurate
(and all fields are accurate as well). In this case we may update the taxonomy or the thesaurus
with new entities that may have been discovered in this event.

In Fig. 21.15 we can see the main screen of the auditing environment. The top pane shows
all the events that were found in the collection. The lower pane shows the text fragment from
which the event was extracted along with the fields that comprise the event.

In Fig. 21.16 we can see how to audit a specific PersonPositionCompany event. The tool
allows the user to see the text fragment from which the event was extracted in context. In
addition, it enables the user to change any of the individual fields that comprise the event. If
the field value is already in the taxonomy (under the right category) then a check mark appears
next to the field, otherwise, an X will appear. When the user clicks on any of the fields, he or
she gets a screen that makes it possible to add the entry to the taxonomy and thesarus or to
change the value for the given field. Such a screen is shown in Fig. 21.17. The user gets the
value of “president and CEO” for the position field for the event PersonPositionCompany. The
system shows similar values from the same category (president, in this case), and the user has
the option to add this as a new value of position in the taxonomy or to select another value.

FIG. 21.17. Updating the taxonomy and the thesaurus with new entities.
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STRUCTURAL TAGGING

Most text-processing systems simplify the structure of the documents they process. The visual
form and layout of the documents is ignored and only the text itself is processed, usually as
linear sequences or even bags of words. This allows the algorithms to be simpler and cleaner
at the cost of possible loss of valuable information. In this section we show an approach that
ignores the content of words while focusing on their superficial features, such as size and
position on the page. Such an approach is not a rival but a complement to the conventional text
extraction systems and can also function as a preprocessor or a converter.

We implemented this approach in a system called PES (PDF extraction system). PES accepts
its input in the form of Acrobat PDF documents. A document page in PDF format is repre-
sented by a collection of primitive objects, which can be characters, simple graphic shapes,
or embedded objects. Each primitive has properties, such as font size and type for characters,
and position on the page, given as coordinates of the object’s bounding rectangle. We are
interested in an automatic process that accepts a formatted document as input and returns a
predefined set of elements of the document, each assigned to a corresponding field, for ex-
ample, “AUTHOR= . . . , TITLE= . . . .” The set of field names and which parts get assigned
to them is problem-dependent and may be different for different types of documents. Thus,
we seek a system that learns how to extract the proper document elements based on examples
provided by a domain expert. In PES, described in this chapter, a domain expert annotates a
set of documents, marking the fields to be extracted. Each annotated document functions as a
template, against which new documents can be matched.

At the heart of the extraction system we have the following problem:

Given:

1. Document A (a template)
2. Set of primitives in A (annotated fields), denoted PA

3. Document B (a query document)

Find:

1. The degree of similarity between documents A and B
2. The set of primitives in B that corresponds to PA

The first step in the process of finding the primitives of B that correspond to PA, is to find
similarities between the original document A and the new document B. The simplest way to
match two documents is coordinate-wise: Return as answer all objects of the query document
that fit into the bounding rectangle of the marked subset in the template. The disadvantages
of such an approach are obvious. If the same field has different visual sizes, for example, a
document title containing different number of words and text lines, or if the field is shifted a
bit, the system will not identify the correct match. Nevertheless, the coordinates form a good
basis for more refined heuristics, as the same fields tend to reside in more or less the same
place across documents. However, the correspondence must be established between objects,
not coordinates. In addition, the correspondence must be between higher-level groups and not
only between primitive objects.

The PDF document representation does not contain any information about text lines, para-
graphs, columns, tables, and other meaningful groups of primitives. The format is designed
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FIG. 21.18. Architecture of the PES.

for human reading, where the human mind does the necessary grouping unconsciously. For an
information extraction system to take advantage of the visual clues available in the PDF format,
the system must perform perceptual grouping as the first stage of processing a document. The
approach we take is to take the physical/visual representation of the document and transform it
into a complex abstract representation consisting of nested objects and relationships between
them. We call this step perceptual grouping. Once perceptual grouping has been performed,
the resulting structure is independent of the specific document type. This approach allows us
to provide a general procedure applicable to diverse formats and rapidly adaptable to new
formats.

Once the document structures are generated, these structures can be used to extract infor-
mation. A representative set of documents is annotated by a domain expert, with parts of the
documents’ structures being assigned to certain fields. These documents serve as templates to
be matched against the new documents. In the process of structural mapping, a correspondence
is created between two document structures, mapping the objects in a template document to
the objects in the nonannotated query document.

PES contains several components: annotator, grouper, mapper, and extractor. Annotator
is a GUI tool that allows the user to mark fields in a PDF document and store their names
and positions in a separate file. Grouper takes a PDF document as input, does the grouping,
and saves the document structure. Mapper’s input is a template (document structure+fields
data) and a document structure for a query document. The template is mapped onto the
query document, and the elements assigned to the various fields are produced as output,
together with the overall quality of the mapping. Extractor takes a document structure and
the selected elements and outputs the elements’ text. The architecture of PES is shown in
Fig. 21.18.

TAXONOMY CONSTRUCTION

One of the crucial issues in performing text mining is the need for term taxonomy. A term
taxonomy also enables the production of high-level association rules, which are similar to
general association rules (Srikant & Agrawal, 1995). These rules capture relationships between
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FIG. 21.19. Taxonomy editor.

groups of terms rather than between individual terms. A taxonomy is also important in other
text mining algorithms such as maximal association rules and frequent maximal sets (Feldman
et al., 1997).

A taxonomy also enables the user to specify mining tasks in a concise way. For instance,
when trying to generate association rules, rather then looking for all possible rules the user can
specify interest only in the relationships of companies in the context of business alliances. To
do so, we need two nodes in the term taxonomy marked “business alliances” and “companies.”
The first node contains all terms related to alliance such as “joint venture,” “strategic alliance,”
“combined initiative” and so forth, whereas the second node is the parent of all company names
in our system.

Building term taxonomy is a time-consuming task. Hence, there is a need to provide a set of
tools for semiautomatic construction of such taxonomy. One such tool is the taxonomy editor
shown in Fig. 21.19. This tool enables the user to read a set of terms or an external taxonomy
and use them to update the system’s term taxonomy. The user can drag entire subtrees in the
taxonomies or specify a set of terms via regular expressions. In Fig. 21.19 we can see the terms
found when specifying the pattern *petroleum*. The initial set of terms is the set of all terms
extracted from a collection of 64,000 Reuters documents from 1995–1996 (shown in the left
tree), the terms matching the query are shown in the middle tree, and the right tree is the target
taxonomy. The user can utilize the entries in the middle tree to create a new node in the target
taxonomy (such as “petroleum companies”).

The taxonomy editor also includes a semiautomatic tool for taxonomy editing called the
taxonomy editor refiner (TER). TER compares generated frequent sets against the term taxon-
omy. When most of the terms of a frequent set are determined to be siblings in the taxonomy
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FIG. 21.20. Specifying a filter to display only association rules with “Compa-
nies” to the left of the rule and “Alliance Topics” to the right.

hierarchy, the tool suggests adding the remaining terms as siblings as well. For example, if
our taxonomy currently contains 15 companies under “tobacco companies” and the system
generates a frequent set containing many tobacco companies, one of which does not appear
in the taxonomy, the TER will suggest adding this additional company to the taxonomy as a
tobacco company. The TER also has a term clustering module, again suggesting that terms
clustered together be placed as siblings in the taxonomy.

In the example presented in Fig. 21.20 the user is interested in business alliances between
companies. The user therefore specifies a filter for the association rules generation algorithm,
requesting only association rules with companies on the left hand side of the rule and business
alliance topics on the right hand side. Fig. 21.20 shows the filter definition window.

Using the Reuters document corpus described previously, the system generated 12,000 fre-
quent sets that comply with the restriction specified by the filter (with a support threshold of
five documents and confidence threshold of 0.1). These frequent sets generated 575 associa-
tions. A further analysis removed rules that were subsumed by other rules, resulting in a total
of 569 rules. A sample of these rules is presented in Fig. 21.21. The numbers presented at the
end of each rule are the rule’s support and confidence.

The example in Fig. 21.21 illustrates the advantages of performing text mining at the term
level. Terms such as “joint venture” would be totally lost at the word level. Company names,
such as “santa fe pacific corp” and “bank of boston corp,” would not have been identified
either. Another important issue is the construction of a useful taxonomy such as the one used
in Fig. 21.21. Such a taxonomy cannot be defined at the word level because many logical
objects and concepts are, in fact, multiword terms.

In addition to analysis tasks, we have in the system a set of tools for exploring the document
collections based on the created taxonomy. In Fig. 21.22 we can see such an interactive
distribution-browsing tool. We started by computing the distribution of all alliance-related
topics. The most frequent topic was “join-venture,” for which we then computed the company
distribution. IBM was the company that cooccurred the most with “joint-venture.” We then
chose to compute the company distribution of MCI (in the context of “joint venture”); Sprint
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FIG. 21.21. A sample of the association rules that comply with the constraints
specified in the rule filter shown in Fig. 21.20.

FIG. 21.22. Interactive exploration of term distributions.
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was the company with the highest frequency. We then chose to compute the people distribution
of News Corp. in the context of “joint venture” and “MCI Communication Corp.”

IMPLEMENTATION ISSUES OF TEXT MINING

In this section we outline several of the practical problems that one would typically face when
trying to develop a text mining system. We describe the problems and review some of the
common solutions to these problems.

Soft Matching

Soft matching is the problem of matching synonyms that refer to the same entity. As is often the
case, different authors may use different phrases when referring to the same entity. Sometimes,
even the same author may refer to the entity in different ways. In addition, in some cases the
multiple names of the same entity are due to errors and variation in spelling. In this section we
refer just to proper name reference to entities; the problem of pronouns will be discussed later
in the anaphora resolution section.

Examples. We list here several common scenarios that cause the text mining system
to have multiple names for the same entity.

1. Punctuation variations: WalMart versus Wal-mart or Wal Mart, Microsoft Corp. versus.
Microsoft Corp

2. Spelling mistakes: Microsoft versus Micorsoft
3. Use of abbreviations: GM for General Motors, IBM for International Business

Machines
4. Formal name versus Informal name: Microsoft versus Microsoft Corp. or Microsoft

Corporation
5. “Nicknames”: Big Blue for IBM

This problem of soft matching (Tejada, Knoblock, & Minton, 2001) is applicable to many
types of proper names such as those of companies, organizations, countries, cities (Big Apple
for NYC), people, product names, and so forth.

Solutions. The most widely used technique for correcting spelling mistakes is using a
soundex algorithm. This algorithm can match words that have a similar phonetic pronunciation.
The problems of abbreviations and nicknames can be solved by using a lookup table that will
contain for each entity all known abbreviations and nicknames. The problems of punctuation
variations and variation in the formality of the entity names can be solved by coding name
conversion rules. An example of such a conversion rule is X Corporation or X Corp. are
mapped to X. Note that the application of such broad rules across documents can be dangerous
at times and link together names that do not refer to the same entity (for example, there might
be Highland Partners, Highland Corporation, and Highland Inc., each referring to a different
entity). In many systems a more conservative approach is used and only names that appear
within the same documents are candidates for becoming synonyms.
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Temporal Resolution

When extracting events and facts from the documents we want to associate them with the date
and time in which they occurred. This time-stamp will be used for temporal analysis of the
document collection (see the later section about Trend Graphs).

There are two main families of date and time formats: absolute format and relative format.
Examples of absolute date formats are 10/5/2002, or January 5, 2001. Examples of relative
date formats are 3 days ago, yesterday, last month, a year ago, and so forth.

To “time-stamp” any event mentioned inside a document we need to perform the following
two-step procedure:

1. Determine the absolute data of the document: This can be done either by analyzing
the document and extracting the date of the document, or if no date can be extracted
directly from within the document, use the date the document was created.

2. Identify the relative phrase that describes when the event took place and, based on the
absolute date of the document, compute the absolute date of the event.

Some of the challenges in identifying the absolute date of the document are related to the
large variety of possible date formats (American date, European date, short notation, long
notation, abbreviations, etc.). Most of those problems can be solved by coding date conversion
rules that convert all dates to one canonic form. Some temporal phrases that are fuzzy in nature
pose an even more difficult problem because it is hard to resolve them into a specific date.
Examples are “at a later date,” “in the very near future,” and others. The solution in this case
is to utilize fuzzy logic, and rather than providing a sharp date, to provide a fuzzy set that
represents a fuzzy date.

Anaphora Resolution

One of the main challenges in developing comprehensive text mining systems is anaphora
resolution, or the ability to resolve coreferences (Frantzi, 1997; Hobbs 1986; Hobbs, Stickel,
Appelt, & Martin, 1993; Ingria & Stallard, 1989; Lappin & McCord, 1990). Consider, for
example, the following text fragment from the Chicago Tribune:

Mohamed Atta, a suspected leader of the hijackers, had spent time in Belle Glade, Fla.,
where a crop-dusting business is located. Atta and other Middle Eastern men came to
South Florida Crop Care nearly every weekend for two months.

Will Lee, the firm’s general manager, said the men asked repeated questions about
the crop-dusting business. He said the questions seemed “odd,” but he didn’t find the
men suspicious until after the Sept. 11 attack.

It is fairly easy to conclude that “Atta” refers to Mohammad Atta; it is a little more difficult
to conclude that “he” refers to Will Lee. However, it is much more difficult to infer that “men”
refers to Mohammad Atta and his friends, because this coreference appears in a different
paragraph and does not include any direct reference to Atta. In general, it was found that
resolving proper names and aliases (such as GM for General Motors) was fairly easy; resolving
pronominals such as “he,” “she,” and “we” was harder; and resolving definite noun phrases
such as “the ruthless man” was the most difficult and the most error prone. The approach taken
is a knowledge based approach in which for each referring phrase all accessible antecedents are
collected. The accessible antecedents are computed based on the type of the referring phrase.
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For proper names all previous entities serve as candidates. For pronouns, entities that appear
within the previous sentences of the current paragraph are used. For definite noun phrases
all entities that appear within the current paragraph and the preceding paragraph are used.
One exception to this heuristic is that for entities of the form “the X” (where X was one of
company, organization, corporation, etc.) the scope was extended to the whole preceding text.
To select the right antecedent from the set of all possible candidates, the candidates that are
incompatible with the referring phrase are eliminated (either due to gender, type, or plurality).
From the filtered set the final candidate is selected according to the following heuristics (in
order of importance):

1. Prefer the candidate that appears earlier in the current sentence
2. Prefer the candidate that appears earlier in the previous sentence
3. Prefer the candidate that appears later within other sentences (prioritized in descending

order of their position in the document)

To compute the effectiveness of these anaphora resolution heuristics for the example from
the Chicago Tribune, the number of pairs (of referring expression and antecedent) that correctly
matched was computed. It was found that in 82% of cases the right match for the referring
expression was performed.

To Parse or Not to Parse?

Based on actual empirical evaluation, it was found that it is enough to focus just on the core
constituents and use shallow parsing augmented by “smart skips.” These skips enable the
information extraction engine to skip irrelevant parts and focus just on the important phrases
of each sentence. Other researchers have attempted to use full parsing as a component in their
information systems and have concluded that it was not worthwhile to invest the extra effort.
Specifically, full parsing was included in the SRI TACITUS system (implemented for Message
Understanding Conference [MUC]-3) (Hobbs et al., 1992, 1993) and the NYU PROTEUS
system (implemented for MUC-6) (Grishman, 1996). Neither of these systems gained any
improvement in accuracy due to the full parsing employed. The main problem with using full
parsing is that, due to the combinatorial explosion of possible parses, it is very slow and very
error prone.

Database Connectivity

Without database connectivity a text mining application is isolated. The application developer
must consider database interfaces both for bringing data into the text mining application and
for outputting and storing the extracted information.

Input. During the development of many text mining applications, it was noticed that often
the analyst would like to use background information about entities, which is not available
in the documents. This background information enables the analyst to perform filtering and
clustering and to automatically color entities in various colors. For instance, when dealing with
relationships between companies, an analyst would often like to use the Standard Industrial
Code (SIC) assigned to companies. The SIC enables the analyst to focus, for instance, on
relationships between software companies and hardware companies. The relationships are
extracted from the documents, but often the actual SIC is not mentioned in the documents. To
enable the usage of such background information, a direct connection to an external database
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is needed. A database gateway that can connect to external relational databases was developed.
This gateway can create virtual nodes in the taxonomy based on properties stored in the
database. As an example, all the information from Hoovers was stored in a database and a
utility enabled defining groups of companies on the fly based on their various properties.
Such a group might be all companies with headquarters in New York City, the industry code
“Financial Services—Investment Firms,” and more than 1,000 employees. This utility allows
one to create flexible taxonomies that are based on live data residing in relational databases
and apply them to entities extracted from any stream of documents.

Output. The ability to output the extracted features from mining text into a database
is important for practical text mining applications. Text mining applications typically need to
perform various kinds of postmining analysis on the features extracted. Database output of
features significantly aids this process.

API. The text mining application typically would mine volumes of text (for example,
tens of thousands of news articles per day), and it is essential to store the text mining results in
a relational database in a seamless manner. The text mining application must provide an API
to perform this function.

VISUALIZATIONS AND ANALYTICS
FOR TEXT MINING

When developing a text mining system, one of the crucial needs is the ability to browse
through the document collection and be able to “visualize” the various elements within the
collection. This type of interactive exploration enables one to identify new types of entities and
relationships that can be extracted and better explore the results of the information extraction
phase.

We provide an example by using a visualization tool called ClearResearch (Aumann et al.,
1999; Feldman et al., 2001, 2002). This visualization tool enables the user to visualize rela-
tionships between entities that were extracted from the documents. The system enables the
user to view collocations between entities or a semantic map that will show entities that are
related by any of a user-definable set of relationships.

We first give some basic definitions and notations.

Definitions and Notations

Let T be a taxonomy. T is represented as a DAG (directed acyclic graph), with the terms at
the leaves. For a given node v ∈ T, we denote by Terms (v) the terms that are decedents of v.

Let D be a collection of documents. For terms e1 and e2 we denote supD (e1, e) the number
of documents in D that indicate a relationship between e1 and e2. The nature of the indication
can be defined individually according to the context. In the current implementation we say that
a document indicates a relationship if both terms appear in the document in the same sentence.
This has proved to be a strong indicator. Similarly, for a collection D and terms e1, e2 and c,
we denote by supD (e1, e2, c) the number of documents that indicate a relationship between
e1 and e2 in the context of c (e.g., relationship between the UK and Ireland in the context of
peace talks). Again, the nature of indication may be determined in many ways. In the current
implementation we require that they all appear in the same sentence.
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FIG. 21.23. Category connection map. The graph presents the connection
between “companies” and “technologies.” The information is based on 5,413
news articles obtained from Marketwatch.com. The user chose to highlight
the “internet security” connections.

Category Connection Maps

Category connection maps (Aumann et al., 1999) provide a means for concise visual repre-
sentation of connections between different categories, for example, between companies and
technologies, countries and people, or drugs and diseases. To define a category connection
map, the user chooses any number of categories from the taxonomy. The system finds all the
connections between the terms in the different categories. To visualize the output, all the terms
in the chosen categories are depicted on a circle, with each category placed on a separate
part on the circle. A line is depicted between terms of different categories that are related. A
color coding scheme represents stronger links with darker colors. An example of a category
connection map is presented in Fig. 21.23. Here, the map is for the categories “companies”
and “technologies.” The underlying data set consists of 5,413 news articles downloaded from
Marketwatch.com.

Formally, given a set C ={v1, v2, . . . , vk} of taxonomy nodes and a document collection
D, the category connection map is the weighted G defined as follows. The nodes of the graph
are the set V= terms (v1) ∪ terms (v2) ∪ · · · ∪ terms (vk). Nodes u, w ∈ V are connected by
an edge if u and w are from different categories and supD (u, w) > 0. The weight of the edge
(u, w) is supD (u, w).

An important point to notice regarding category connection maps is that the map presents in
a single picture information from the entire collection of documents. In the specific example of
Fig. 21.23, there is no single document that has the relationship between all the companies and
the technologies. Rather, the graph depicts aggregate knowledge from hundreds of documents.
Thus, the user is provided with a bird’s-eye summary view of data from across the collection.

Category connection maps are dynamic in several ways. First, the user can choose any node
in the graph, and the links from this node are highlighted. In the example in Fig. 21.23, the
user chose “Internet Security,” and all the edges emerging from this node are highlighted. In
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addition, a double-click on any of the edges brings the list of documents that support the given
relationship, together with the most relevant sentence in each document. Thus, in a way the
system is the opposite of search engines. Search engines point to documents, in the hope that
the user will be able to find the necessary information. Category connection maps present the
user with the information itself, which can then be backed by a list of documents.

Relationship Maps

Relationship maps provide a visual means for concise representation of the relationship be-
tween many terms in a given context. To define a relationship map the user defines:

� A taxonomy category (e.g., “companies”), which determines the nodes of the circle
graph (e.g., companies)

� An optional context node (e.g., “joint venture”), which will determine the type of con-
nection to be found among the graph nodes

Formally, for a set of taxonomy nodes vs, and a context node C, the relationship map is a
weighted graph on the node set V= terms (vs). For each pair u, w ∈ V there is an edge between
u and w, if there exists a context term c∈C, such that supD (u, w, c) > 0. In this case the weight
of the edge is �c∈C supD (u, w, c). If no context node is defined, then the connection can be
in any context. Formally, in this case the root of the taxonomy is considered as the context.

A relationship map for “companies” in the context of “joint venture” is depicted in Fig. 21.24.
In this case the graph is clustered, as described below. The graph is based on 5,413 news
documents downloaded from Marketwatch.com. The graph gives the user a summary of the

FIG. 21.24. Relationship map. The graph presents the connections between
companies in the context of “joint venture.” Clusters are depicted separately.
The information is based on 5,413 news articles.
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FIG. 21.25. A relationship map among all companies connected by any kind
of acquisition relationship.

entire collection in one visualization. The user can appreciate the overall structure of the
connections between companies in this context even before reading a single document.

A different type of visualization of relationships is shown in Fig. 21.25, which shows
relationships between companies that are related by some type of acquisition relationship
(planned, historic, or actual acquisition).

A spring graph is a two-dimensional graph in which the distance between two elements
should reflect the strength of the relationships between the elements. The stronger the re-
lationship the closer the two elements should be. An example of a spring graph is shown
in Fig. 21.26. The graph represents the relationships between the people in a document

FIG. 21.26. Spring graph that shows the relationship between people around
the 9/11 event (source: Yahoo News).
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FIG. 21.27. Spring graph that shows the cooccurrence relationship between
gene phrases (in the context of various cancer types). (Source: Medline.)

collection containing 2,210 news articles focusing on the 9/11 events. We can see that Osama
bin Laden is at the center connected to many of the other key players related to the tragic
events.

Another example of a spring graph is shown in Fig. 21.27. This figure depicts the co-
occurrence (within the same sentence) relationships between gene phrases in the context of
any type of cancer. The document collection is 50,000 Medline articles.

Clustering. For relationship map we use clustering to identify clusters of nodes that
are strongly interrelated in the given context. In the example of Fig. 21.24, the system identified
six separate clusters. The edges between members of each cluster are depicted in a separate
small relationship map, adjacent to the center graph. The center graph shows connections
between terms of different clusters and those with terms that are not in any cluster. We now
describe the algorithm for determining the clusters.

Note that the clustering problem here is different from the classic clustering problem. In the
classic problem we are given points in some space and seek to find clusters of points that are
close to each other. Here, we are given a graph in which we are seeking to find dense subgraphs
of the graph. Thus, a different type of clustering algorithm is necessary.

The algorithm is composed of two main steps. In the first step we assign weights to
edges in the graph. The weight of an edge reflects the strength of the connection between
the vertices. Edges incident to vertices in the same cluster should be associated with high
weights.

In the next step we identify sets of vertices that are dense subgraphs. This step uses the
weights assigned to the edges in the previous step.

We first describe the weight assignment method. To evaluate the strength of a link between
a pair of vertices u and v, we consider the following two criteria.

Let u be a vertex in the graph. We use the notation �(u) to represent the neighborhood of u.
The cluster weight of (u, v) is affected by the similarity of �(u) and �(v). We assume that
vertices within the same clusters have many common neighbors.

Existence of many common neighbors is not a sufficient condition, because in dense graphs
any two vertices may have some common neighbors. Thus, we emphasize the neighbors that
are close to u and v in the sense of cluster weight. Suppose x ∈�(u) ∩ �(u); if the cluster
weights of (x, u) and (x, v) are high, there is a good chance that x belongs to the same cluster
as u and v.
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FIG. 21.28. Cluster details (details of one of the clusters from Fig. 21.24).

We can now define an update operation on an edge (u, v) that takes into account both
criteria:

w(u, v) =
∑

x∈�(u)∩�(v)

w(x, u)+
∑

x∈�(u)∩�(v)

w(x, v)

The algorithm starts with initializing all weights to be equal, w(u, v)=1 for all u, v. Next,
the update operation is applied to all edges iteratively. After a small number of iterations (set to
five in the current implementation) it stops and outputs the values associated with each edge.
We call this the cluster weight of the edge.

The cluster weight has the following characteristic. Consider two vertices u and v within
the same dense subgraph. The edges within this subgraph mutually affect each other. Thus,
the iterations drive cluster weight w(u, v) up. If, however, u and v do not belong to the dense
subgraph, the majority of edges affecting w(u, v) will have lower weights, resulting in a low
cluster weight assigned to (u, v).

After computing the weights, the second step of the algorithm finds the clusters. We define
a new graph with the same set of vertices. In the new graph we consider only a small subset of
the original edges, the weights of which were the highest. In our experiments we took the top
10% of the edges. Because now almost all of the edges are likely to connect vertices within the
same dense subgraph, we thus separate the vertices into clusters by computing the connected
components of the new graph and considering each component as a cluster.

Fig. 21.24 shows a circle context graph with six clusters. The clusters are depicted around
the center graph. Each cluster is depicted in a different color. Nodes that are not in any cluster
are colored gray. Note that the nodes of a cluster appear both in the central circle and in the
separate cluster graph. Edges within the cluster are depicted in the separate cluster graph.
Edges between clusters are depicted in the central circle. Fig. 21.28 shows the details of one
of the clusters (the cluster on the right). This cluster represents a group of companies with a
strong interrelationship in the context of joint venture.

Interactive Features. The graphs are interactive. A double-click on any line seg-
ment brings up the list of documents that support the connection, together with the relevant
sentence within each document. Fig. 21.29 shows this list of documents supporting the edge
connecting “road runner” and “Microsoft” in Fig. 21.28. The system highlights the main terms
relevant for the query. In this case these are “road runner,” “Microsoft,” and the context “joint
venture.” Another double-click on any document in the document list brings up the full text of
the document. The most relevant sentence from each document is presented, and the relevant
terms are highlighted.



FIG. 21.29. Document list (the list of documents supporting the connection
between “road runner” and “microsoft” in Fig. 21.28).

FIG. 21.30. Trend maps. Connections between pharmaceutical companies.
Based on 64,000 Reuters news articles from 1998.
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FIG. 21.31. Document lists for the two peaks of the graph in Fig. 21.30. The
top list is for the first peak, the bottom list for the second.
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Thus, with the context connection graphs the user first gets the global picture of all connec-
tions in a given context, then can zoom-in on any of the clusters or drill-down to the supporting
documents. This allows for an effective and efficient discovery process.

Trend Graphs

Trend graphs are designed to allow the user to view changes in relationships over time, thus
identifying trends and patterns. The basis for the definition of trend graphs is that of context
connection graphs. Given a context connection graph, the associated trend graph is a dynamic
graph that enables one to see the connections within each time period. Fig. 21.30 depicts a
trend graph for the connection between pharmaceutical companies (no context). The circle
in the upper right corner is the only cluster in the graph. The main graph is in the lower left
corner. This graph is based on 64,000 news articles of Reuters from 1998.

Note the slider and the dates on the top part of the screen. The dates indicate that the
edges shown in the current picture represent only connections based on articles published
between 2.10.98 and 3.10.98. Moving the slider changes the time period, thus showing
how the connections change over time. In addition, the length of the time interval can be
changed.

Clicking on any single edge shows the trend for that pair. In the example in Fig. 21.30 the
trend for the “smithkline beecham plc” and “glaxo wellcome plc” is shown. Notice the two
peaks in the graph, one in January 1998 and one a month later in February 1998. Fig. 21.31
gives the list of articles supporting each peak. A quick look at these lists shows that the first
peak is related to a merger announced between the two companies. The second peak is when
the merger was called off! Thus, the graph helps to discover instantly the key elements of
dynamics of the relationship between the two companies.

SUMMARY

Due to the abundance of available textual data, there is a growing need for efficient tools for
text mining. Unlike structured data, in which the data mining algorithms can be performed
directly on the underlying data, textual data requires some preprocessing before the data mining
algorithm can be successfully applied. Information extraction has proved to be an efficient
method for this first preprocessing phase. Text mining based on information extraction attempts
to hit a midpoint, reaping some benefits from each of the extremes while avoiding many of
their pitfalls. On the one hand, there is no need for human effort in labeling documents, and
we are not constrained to a smaller set of labels that lose much of the information present
in the documents. Thus, the system has the ability to work on new collections without any
preparation, as well as the ability to merge several distinct collections into one (even though
they might have been tagged according to different guidelines that would prohibit their merger
in a tagged-based system). On the other hand, the number of meaningless results is greatly
reduced, and the execution time of the mining algorithms is also reduced relative to pure
word-based approaches. Text mining using information extraction thus hits a useful middle
ground in the quest for tools for understanding the information present in the large amount of
data that is only available in textual form. The powerful combination of precise analysis of the
documents and a set of visualization tools enables the user to easily navigate and utilize very
large document collections.
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