University of M'sila, Faculty of Mathematics & Computer Science (CS), Department of CS.

Course: Diagnosis Methods for Master1 (AI)

Year: 2020-2021

Duration: 1:30

Final Exam Solution

Q1. (5 points, one point for each definition)

Define the following concepts: Diagnosis, Artificial Intelligence (AI), Fault isolation, SADT, ANN.

Diagnosis: is the identification of the probable cause of the failure (s) using logical reasoning based on a set of information from an inspection, control or a test.

Artificial Intelligence (AI): is well-defined as a stream of science and engineering.

Fault isolation: find the root cause, by isolating the system component(s) whose operation mode is not nominal.

SADT: Structured Analysis and Design Technique is a structured analysis modelling language, which uses two types of diagrams: *activity* models and *data* models.

ANN: Artificial Neural Network is a massively parallel, distributed processor made up of simple processing units (artificial neurons).

Q2. (6 points, one point for each correct choice)

Select one choice from the following:

- 1. SADT means:
 - a. Structured Analysis and Design Term
 - b. Systematic Analysis and Design Technique
 - c.) Structured Analysis and Design Technique
 - d. None of the mentioned
- 2. A permanent interruption of a system's ability to perform a require function under specified operating conditions:
 - a. Malfunction
 - b. Fault
 - c. Neuron
 - d.) Failure
- 3. Learn the connection weights from a set of training examples:
 - a. Activation functions
 - (b.) Learning Algorithms
 - c. Fault trees
 - d. All of the mentioned
- 4. Approaches that use an analytic or physical model of the system:
 - a. ANN

- b. External fault
- c. Networking
- d. SADT
- 5. A lazy learning algorithm since the processing of the training examples is postponed until making predictions:
 - a. KNN
 - b. SADT
 - c. ANN
 - d. Fault tree
- 6. The diagnostic system must respond quickly to detect and diagnose process failures. This is called:
 - a. Separability
 - b. Robustness
 - c. Adaptability
 - (d.) None of the mentioned

Q3. (4 points, 0.5 point for each component and 0.5 point for the general design)

Construct a fault tree for the following system. The light is off if one of the components fails.

The Fault Tree:

Q4. (5 points)

You have the following 4 training examples:

Feature X1	Feature X2	Class
7	7	Bad
7	4	Bad
3	4	Good
1	4	Good

Use K Nearest Neighbors KNN algorithm to classify the new example with feature X1=3 and feature X2=7.

The Euclidean distances between the new example (3, 7) and the training examples are given:

Feature X1	Feature X2	Euclidean distances	Class
7	7	4	Bad
7	4	5	Bad
3	4	3	Good
1	4	3.6	Good

Assume K=3, answer the following questions:

- What is the best (optimal) value of k?(1 points) The optimal value of k is the square root of N, where N is the total number of samples. K=√N=2.