Université Mohamed Boudiaf M'sila Faculté de Mathématiques et d'informatiques Département de Mathématiques Troisième année licence mathématiques LMD (Semestre 05)

Module: mesure et intégration Responsable: SAADI Abderachid

Soit X un ensemble non vide, $\mathcal{P}(X)$ représente l'ensemble des parties de X.

1 Préliminaires

Définition 1. La fonction indicatrice χ_A de la fonction A est la fonction de X dans $\{0,1\}$, définit comme suivant:

 $\forall x \in X : \chi_A(x) = \begin{cases} 1 : x \in A \\ 0 : x \notin A \end{cases}$

Exercice 1. Représenter graphiquement $\sum_{n>0} \chi_{[n,+\infty[}$.

Définition 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite des éléments de $\overline{\mathbb{R}}$. On définit la limite supérieure $\overline{\lim} u_n$ et la limite inférieure $\underline{\lim} u_n$ de la suite $(u_n)_{n\in\mathbb{N}}$ comme suivant:

$$\overline{\lim} \, u_n = \lim_{p \to +\infty} \sup_{n \ge p} u_n = \inf_{p \in \mathbb{N}} \sup_{n \ge p} u_n \qquad \qquad \underline{\lim} \, u_n = \lim_{p \to +\infty} \inf_{n \ge p} u_n = \sup_{p \in \mathbb{N}} \inf_{n \ge p} u_n$$

On a: $\underline{\lim} u_n \leq \overline{\lim} u_n$.

Exercice 2. Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle définie par: $u_n = 2 + \frac{(-1)^n}{n}$, $n \in \mathbb{N}^*$. Trouver: $\overline{\lim} u_n$, $\underline{\lim} u_n$.

2 Tribus

Soit \mathcal{A} une collection non vide des parties de X.

Définition 3. On dit que A est une tribu $(\sigma-$ algèbre) sur X si et seulement si:

- i) $\emptyset \in \mathcal{A}$,
- ii) Pour toute $A \in \mathcal{A}$, on a $A^c \in \mathcal{A}$.
- iii) Pour toute famille dénombrable $\{A_i\}_{i\in I}$ de \mathcal{A} , on $a:\bigcup_{i\in I}A_i\in\mathcal{A}$.

Définition 4. Toute couple (X, A), ou A est une tribu sur X, est appelée espace mesurable. Les éléments de A sont appelés des ensembles mesurables.

Remarque 1. Soit C une collection des parties de X. Alors, il existe une tribu minimale A(C), contient C. Cette tribu est appelée la tribu engendrée par C.

Exercice 3. Soit $X = \{a, b, c, d\}$, et soit $C = \{\emptyset, \{a\}, \{c, d\}, \{b, c, d\}, X\}$. Quels sont les éléments de A(C), la tribu engendrée par C?

Définition 5. Soit (X, τ) un espace topologique. On appelle tribu borélienne sur X par rapport à τ , et on le note par $\mathcal{B}_{\tau}(X)$ la tribu engendrée par τ .

Les éléments de celle tribu sont appelé les ensembles boréliens.

Remarque 2. On désigne par $\mathcal{B}_{\mathbb{R}}$ la tribu borélienne engendrée par la topologie usuelle de \mathbb{R} .

Exercice 4. Soit $X = \{a, b, c, d\}$, muni de la topologie $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}\{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$.

- (i) Trouver la tribu Borélienne $\mathcal{B}_{\tau}(X)$ basée sur la topologie τ .
- (ii) Existe il des sous ensembles de X n'appartient pas à $\mathcal{B}(X)$.

Exercice 5. Démontrer que les ensembles suivants sont des boréliens de \mathbb{R}^2 :

- i) La diagonale $\Delta = \{(x, x), x \in \mathbb{R}\}.$
- ii) $E = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1, x \notin \mathbb{Q}\}.$

3 Mesure

Définition 6. Soit (X, \mathcal{A}) un espace mesurable, et soit la fonction $\mu : \mathcal{A} \to \overline{\mathbb{R}}$. On dit que μ et une mesure positive si et seulement si:

- i) $\forall A \in \mathcal{A} : \mu(A) \geq 0$,
- ii) $\mu(\emptyset) = 0$,
- iii) pour toute suite $\{A_n\}_{n=1}^{\infty}$ des éléments disjoints deux à deux de \mathcal{A} , on a: $\mu\left(\bigcup_{n=1}^{\infty}A_n\right)=\sum_{n=1}^{\infty}\mu(A_n)$. (cette propriété est appelée la propriété de σ additivité).

 (X, \mathcal{A}, μ) est appelée un espace mesuré.

Remarque 3. Soit (X, A, μ) un espace mesuré.

- i) Si $\mu(A) < \infty$, on dit que μ est une mesure finie.
- ii) Si $\mu(X) = 1$, on dit que μ est une mesure de probabilités.
- ii) S'il existe une recouvrement dénombrable $\{A_n\}_{n\in\mathbb{N}}$ des éléments de \mathcal{A} tel que $\mu(A_n)$ fini pour tout $n\in\mathbb{N}$, on dit que μ est une mesure σ fini.

Exercice 6. On se donne un espace mesurable (X, A), et on note par δ_x la mesure de Dirac au point $x \in X$. Soit $x_1, x_2, \ldots x_N$ des élément distincts de X, et $p_1, p_2, \ldots p_N$ des nombres réels positifs. On note:

$$\mu : \mathcal{A} \to [0, +\infty]$$

$$A \to \sum_{i=1}^{N} p_i \delta_{x_i}(A)$$

Montrer que μ est une mesure sur X.

4 Fonctions mesurables

Soit X,Y deux ensembles non vides, \mathcal{A} une tribu sur X,\mathcal{B} une tribu sur Y, et $f:X\to Y$ une application.

Définition 7. Soit \mathcal{G} une partie de $\mathcal{P}(X)$. L'image réciproque de \mathcal{G} par l'application f est l'ensemble suivant:

$$f^{-1}(\mathcal{G}) = \{ A \in \mathcal{P}(X), \exists B \in \mathcal{G} : A = f^{-1}(B) \}.$$

Proposition 1. Soit \mathcal{B} une tribu sur Y. Alors, $\mathcal{A} = f^{-1}(\mathcal{B})$, est une tribu sur X, dite la tribu de l'image réciproque de \mathcal{B} par l'application f.

Définition 8. On dit que $f:(X, A) \to (Y, B)$ est mesurable si et seulement si $f^{-1}(B) \subset A$. On désigne par $\mathcal{M}((X, A), (Y, B))$ l'ensemble des applications mesurables de (X, A) dans Y, B).

Définition 9. On munit (X, \mathcal{A}) d'une mesure positive μ . On dit que deux fonctions f et g de (X, \mathcal{A}) dans (Y, \mathcal{B}) sont μ - équivalentes si $f \equiv g$ presque par tout, et on écrit $f = g \pmod{\mu}$ ou $f = g \mu - ppt$

Exercice 7. Décrire les fonctions mesurables de (X, A) dans \mathbb{R} ou $A = \{\emptyset, X\}$.

Théorème 1. Soit f une application de (X, A) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Alors: les assertions suivantes sont équivalentes:

- 1. $f \in \mathcal{L}(X, \mathcal{A})$,
- 2. $\forall a \in \mathbb{R} : f^{-1}([-\infty, a[) \in \mathcal{A},$
- 3. $\forall a \in \mathbb{R} : f^{-1}([-\infty, a]) \in \mathcal{A},$
- 4. $\forall a \in \mathbb{R} : f^{-1}([a, +\infty]) \in \mathcal{A},$
- 5. $\forall a \in \mathbb{R} : f^{-1}([a, +\infty]) \in \mathcal{A}$.

Corollaire 1. La fonction indicatrice d'une partie mesurable est une fonction mesurable.

Exercice 8. On munit \mathbb{R} de la tribu borélienne $\mathcal{B}_{\mathbb{R}}$. Soit k > 0, et T_k la fonction définit par:

$$\forall t \in \mathbb{R} : T_k(x) = \frac{1}{2}(|t+k| - |t-k|).$$

- 1. Représenter graphiquement T_k .
- 2. T_k est elle fonction mesurable?
- 3. Soit (X, A) un espace mesurable, et f une fonction mesurable de (X, A) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. Montrer que la fonction $T_k \circ f$ est une fonction mesurable

5 Types de convergence

On munit (X, \mathcal{A}) d'une mesure positive μ , et soit $\{f_n\}$ une suite des fonctions de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$. Notons par d(a, A) la distance usuelle entre $a \in \mathbb{R}$ et l'ensemble $A \subset \mathbb{R}$

Définition 10. On dit que la suite $\{f_n\}$ converge $\mu - ppt$ simplement, s'il existe $N \subset X$, $\mu - négligeable$ telle que f_n converge simplement vers f dans N^c .

Définition 11. On dit que la suite $\{f_n\}$ converge μ – ppt uniformément, s'il existe $N \subset X$, μ – négligeable telle que f_n converge uniformément vers f dans N^c .

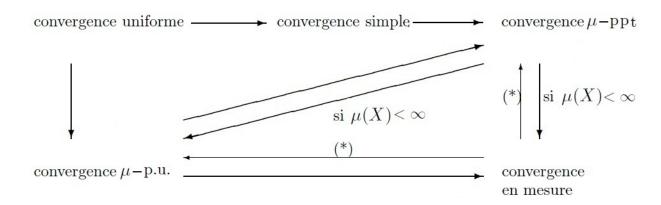
Définition 12. On dit que la suite $\{f_n\}$ est convergente par la mesure μ , et on écrit $f_n \xrightarrow{\mu} f$ si et seulement si

$$\forall \varepsilon > 0 : \lim_{n \to +\infty} \mu(\{x \in X : |f_n(x) - f(x)| \ge \varepsilon\}) = 0$$

Définition 13. On dit que la suite $\{f_n\}$ converge vers f presque uniformément (et on écrit $f_n \longrightarrow f \mu - p.u.$) si pour tout $\varepsilon > 0$, il existe une partie mesurable A_{ε} telle que $\mu(A_{\varepsilon}) < \varepsilon$, et $\{f_n\}$ converge uniformément vers f sur A_{ε}^c .

La figure ci-dessu est extraire de

C. Bourdarias: Intégration et application. Université Chambry Annecy de savoie, 2000.



(*): pour une suite extraite

Exercice 9. : Etudier la convergence par mesure de la suite $(f_n)_n$ a la fonction nulle, ou

$$f_n(x) = \frac{2x}{1 + n^2 x^2}, \ \forall x \ge 0$$

6 Fonctions intégrables

On munit $\overline{\mathbb{R}}$ de la tribu borélienne, et soit (X, \mathcal{A}, μ) un espace mesuré. Toutes les fonctions sont des fonctions de X dans \mathbb{R} .

Définition 14. On dit qu'une fonction f de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ est une fonction simple (étagée) si l'ensemble f(X) est une ensemble fini.

Définition 15. Soit φ une fonction simple, positive, définie sur X comme suivant:

$$\varphi = \sum_{i=1}^{n} a_i \chi_{A_i}$$

où $\{A_i\}_{i=1}^n \subset \mathcal{A}$ est une partition de X, et $\{a_i\}_{i=1}^n$ est une suite réelle. L'intégrale de la fonction φ sur l'ensemble X par rapport à la mesure μ est le nombre positif achevé:

$$\int_{X} \varphi d\mu = \sum_{i=1}^{n} a_{i} \mu(A_{i}) \tag{1}$$

Remarque 4. Sachant que $0.\infty = 0$, on a $\int_X \varphi d\mu = 0$ si $\varphi = 0$ ppt sur X.

Définition 16. Soit f une fonction positive, mesurable, définie sur X, et soit \mathcal{F}_f l'ensemble des fonctions simples φ , satisfaites: $0 \le \varphi \le f$. L'intégrale de la fonction f sur l'ensemble X par rapport à la mesure μ est le nombre positif achevé:

$$\int_{X} f d\mu = \sup \left\{ \int_{X} \varphi d\mu, \varphi \in \mathcal{F}_{f} \right\}. \tag{2}$$

Définition 17. Soit f une fonction mesurable sur X, on pose: $\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$ (si il est définit).

Définition 18. Soit f une fonction mesurable sur X. On dit que f est Lebesgue intégrable si f est mesurable et $\int_X |f| d\mu < +\infty$. On désigne par $\mathcal{L}^1(X,\mu)$ l'espace des fonctions Lebesgue intégrables sur (X,\mathcal{A},μ) .

Exercice 10. Soit $p \in]0, +\infty[$. On munit \mathbb{R} de la mesure de Lebesgue λ , et soit f la fonction définit par:

$$\forall x \in \mathbb{R} : f(x) = |x|^{-p} \cdot \chi_{]-1,1[}.$$

Calculer $\int_{\mathbb{R}} f d\lambda$.

7 Théorèmes de convergence

Théorème 2. [convergence monotone de Beppo Levi] : Soit $\{f_n\}_{n=1}^{\infty}$ une suite croissante des fonctions mesurables, positives, bornées μ - ppt sur X. Alors, $\lim_{n\to+\infty} f_n(x) = f(x)$ existe partout, positive, mesurable, et on a:

$$\int_{X} f d\mu = \lim_{n \to +\infty} \int_{X} f_n d\mu = \sup_{n} \int_{X} f_n d\mu$$

Théorème 3. [Lemme de Fatou]: Soit $\{f_n\}_{n=1}^{\infty}$ une suite des fonctions mesurables sur X. Supposons qu'il existe une fonction intégrable g telle que $g \leq f_n$, pour tout n. Alors:

$$\int_{X} \underline{\lim} \, f_n d\mu \le \underline{\lim} \int_{X} f_n d\mu$$

Théorème 4. [Convergence dominée de Lebesgue] : Soit $\{f_n\}_{n=1}^{\infty}$ une suite des fonctions intégrables sur X. Supposons que:

- 1. $\{f_n\}_{n=1}^{\infty}$ converge μ ppt vers une fonction f.
- 2. Il existe une fonction intégrable g telle que $|f_n| \leq g \mu$ ppt pour tout n.

Alors: f est intégrable et $f_n \stackrel{L^1(X,\mu)}{\longrightarrow} f$ (ce qui donne $\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$).

Théorème 5. [continuité sous signe d'intégrale: Soit f(x,t) une fonction définie sur $X \times]a,b[$. Supposons que la fonction f(.,t) est mesurable pour tout $t \in]a,b[$, et on pose:

$$G(t) = \int_X f(x, t) d\mu(x).$$

Soit $t_0 \in]a, b[$, on suppose que:

- 1. La fonction f(x,t) est continue au point t_0 , et μ ppt sur X.
- 2. Il existe une fonction intégrable g telle que pour tout t au voisinage de t_0 on a: $F(x,t) \leq g(x) \mu ppt \ sur \ X$.

Alors, la fonction G est continue au point t_0).

Théorème 6. [dérivabilité sous signe d'intégrale] : Soit F(x,t) une fonction définie sur $X \times]a,b[$. Supposons que la fonction F(.,t) est intégrable pour tout $t \in]a,b[$, et on pose:

$$G(t) = \int_X F(x, t) d\mu(x).$$

Soit $t_0 \in]a, b[$, on suppose que:

- 1. $\frac{\partial F}{\partial t}(x, t_0)$ existe μ ppt sur X.
- 2. Il existe une fonction intégrable g telle que pour tout t au voisinage de t_0 on a: $\frac{F(x,t) F(x,t_0)}{t t_0} \le g(x) \mu ppt \ sur \ X$.

Alors: $\frac{\partial F}{\partial t}(x, t_0)$ existe est intégrable et on a:

$$\left\{\frac{dG}{dt}\right\}_{t=t_0} = \int_X \frac{\partial F}{\partial t}(x,t_0) d\mu(x)$$

Exercice 11. Soit la suite des fonctions $\{f_n\}_{n=1}^{\infty}$, définie sur \mathbb{R}^+ comme suivant: $f_n(x) = e^{-x^n}$.

- 1. Montrer que la suite $\{f_n\}_{n=1}^{\infty}$, converge vers une fonction f.
- 2. Est -ce- qu'on peut appliquer théorème de Beppo Levi au suite $\{f_n\}_{n=1}^{\infty}$, sur I=[0,1].
- 3. Calculer $\lim_{n \to +\infty} \int_I f_n$.
- 4. Est -ce- qu'on peut appliquer théorème de Beppo Levi au suite $\{f_n\}_{n=1}^{\infty}$, sur $J=]1,+\infty[$.
- 5. Est -ce- qu'on peut appliquer théorème de Lebesgue au suite $\{f_n\}_{n=1}^{\infty}$, sur \mathbb{R}^+ .
- 6. Calculer $\lim_{n\to+\infty} \int_{\mathbb{R}^+} f_n$.

Exercice 12. Soit $\{f_n\}_{n=1}^{\infty}$ la suite des fonctions définie sur I = [0,1] comme suivante: $f_n(x) = 2nxe^{-nx^2}$.

- 1. Montrer que $\{f_n\}_{n=1}^{\infty}$ est converge simplement vers une fonction f que l'on déterminera.
- 2. Est -ce- que ette convergence est uniforme?
- 3. Montrer que $\lim_{n\to+\infty} \int_I f_n dx \neq \int_I f dx$.
- 4. Peut-on appliquer le lemme de Fatou à cette suite?
- 5. Peut-on appliquer le théorème de convergence dominée de Lebesgue à cette suite?

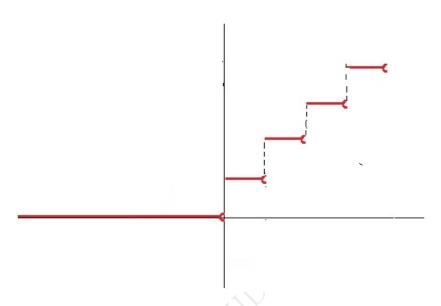
8 Solutions des exercices

Solution 1. Soit $n \in \mathbb{N}$ et soit $x \in \mathbb{R}$. On a: $\chi_{[n,+\infty[}(x) = \begin{cases} 0 : x < n \\ 1 : x > n \end{cases}$.

Donc: $\forall x < 0 : \chi_{[n,+\infty[}(x) = 0, i.e \ \forall x < 0 : \sum_{n > 0} \chi_{[n,+\infty[}(x) = 0.$

Maintenant soit $x \ge 0$, on sais que x < [x] + 1. Donc: $\forall n \ge [x] + 1 : \chi_{[n,+\infty[}(x) = 0,$

$$i.e \ \forall x \ge 0 : \sum_{n \ge 0} \chi_{[n, +\infty[}(x)) = \sum_{n=0}^{[x]} 1 = 1 + [x].$$



Solution 2. On sais que

$$\overline{\lim} u_n = \lim_{p \to +\infty} \sup_{n > p} u_n = \inf_{p \in \mathbb{N}} \sup_{n > p} u_n$$

$$\underline{\lim} u_n = \lim_{p \to +\infty} \inf_{n \ge p} u_n = \sup_{n \in \mathbb{N}} \inf_{n \ge p} u_n$$

Soit $(v_p), (w_p)_n$ deux suites réelles telles que:

$$v_p = \sup_{n \ge p} u_n$$
 $w_p = \inf_{n \ge p} u_n$.

Alors:

Alors:
$$v_{2k} = \sup\{2 + \frac{1}{2k}, 2 - \frac{1}{2k+1}, \cdots\} = 2 + \frac{1}{2k},$$
 $v_{2k+1} = \sup\{2 - \frac{1}{2k+1}, 2 + \frac{1}{2k+2}, \cdots\} = 2 + \frac{1}{2k+2},$
 $w_{2k} = \inf\{2 + \frac{1}{2k}, 2 - \frac{1}{2k+1}, \cdots\} = 2 - \frac{1}{2k+1},$
 $w_{2k+1} = \inf\{2 - \frac{1}{2k+1}, 2 + \frac{1}{2k+2}, \cdots\} = 2 - \frac{1}{2k+1}.$

Page 2.

Donc:

$$\overline{\lim} u_n = \lim_{p \to +\infty} v_p = 2 \qquad \underline{\lim} u_n = \lim_{p \to +\infty} w_p = 2$$

Solution 3. $X = \{a, b, c, d\}, C = \{\emptyset, \{a\}, \{c, d\}, \{b, c, d\}, X\}.$ Soient $A, B \in \mathcal{C}$, alors:

- * $A^c, B^c \in \{\emptyset, \{a\}, \{a,b\} \{b,c,d\}, X\}.$
- * $A \cup B \in \{\emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, X\}.$
- * $A \cap B \in \{\emptyset, \{a\}, \{c, d\}, \{b, c, d\}, X\}.$
- * $A^c \cup B^c \in \{\emptyset, \{a\}, \{a, b\}, \{b, c, d\}, X\}.$
- * $A^c \cap B^c \in \{\emptyset, \{a\}, \{b\}, X\}.$
- * $A^c \cup B \in \{\emptyset, \{a\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, X\}.$
- * $A^c \cap B \in \{\emptyset, \{a\}, \{b\}, \{c, d\}, \{b, c, d\}, X\}.$

Alors: $\mathcal{A}(\mathcal{C}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}, \{c,d\}, \{a,c,d\}, \{b,c,d\}, X\}.$

Solution 4. $X = \{a, b, c, d\}$, muni de la topologie $\tau = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$.

- (i) Si $a \in \tau$ alors $A^c \in F = \{\emptyset, \{d\}, \{a, d\}, \{b, d\}, \{c, d\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, X\}$. En remarquant que $\tau \cup F = \mathcal{P}(X)$. Donc: $\mathcal{B}_{\tau}(X) = \mathcal{P}(X)$.
- (ii) Puisque $\mathcal{B}_{\tau}(X) = \mathcal{P}(X)$, il n'existe pas des sous ensembles de X n'appartient pas à $\mathcal{B}_{\tau}(X)$.

Solution 5. Montrons que les ensembles suivants sont des boréliens de \mathbb{R}^2 :

- i) La diagonale $\Delta = \{(x, x), x \in \mathbb{R}\}.$ Soit la fonction f de \mathbb{R}^2 dans \mathbb{R} , définie par f(x, y) = x - y. f est continue, $\Delta = f^{-1}(\{0\})$, i.e image réciproque d'un fermé. Donc: Δ est fermé, donc borélien.
- ii) $E = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1, x \notin \mathbb{Q}\}.$ Soit la fonction g de \mathbb{R}^2 dans \mathbb{R} , définie par $g(x,y) = x^2 + y^2.$ f est continue, $E = g^{-1}(\{1\}) \cap (\mathbb{Q}^c \times \mathbb{R}),$ i.e image réciproque d'un $g^{-1}(\{1\})$ fermé, donc borélien. $\mathbb{Q} = \bigcup_{r \in \mathbb{Q}} \{r\}$, union dénombrable des fermés, donc borélien. Alors; $\mathbb{Q}^c \times \mathbb{R}$ est borélien. Donc, $E = g^{-1}(\{1\}) \cap (\mathbb{Q}^c \times \mathbb{R})$ est borélien.

Solution 6. (X, A) espace mesurable, δ_x la mesure de Dirac au point $x \in X$, $x_1, x_2, \ldots x_N$ des élément distincts de X, et $p_1, p_2, \ldots p_N$ des nombres réels positifs.

$$\mu : \mathcal{A} \to [0, +\infty]$$

$$A \to \sum_{i=1}^{N} p_i \delta_{x_i}(A)$$

- i) Il este clair que μ est positive.
- ii) On $a \ \forall i : \delta_{x_i}(\emptyset) = 0, \ donc \ \mu(\emptyset) = 0.$
- iii) Soit $(A_n)_{n=1}^{+\infty}$ une suite des éléments disjoints de \mathcal{A} , alors $\mu(A_n)\sum_{i=1}^N p_i \delta_{x_i}(A_n)$.

Soit $i_0 \in 1, 2, \dots, N, n_0 \in \mathbb{N}$. Si $x_{i_0} \in A_{n_0}$ alors $x_{i_0} \notin A_n$, pour tout $n \neq n_0$.

Donc:
$$\mu(A_n) = \sum_{i=1}^{N} p_i$$
. Alors:

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} p_i \delta_{x_i}(A) = \sum_{n=1}^{\infty} \sum_{i=1, x_i \in A_n}^{N} p_i$$
$$= \sum_{n=1}^{\infty} \mu(A_n) = \sum_{n=1}^{\infty} \mu(A_n)$$

(En remarquant qu'il existe une infinité des éléments de $(A_n)_{n=1}^{+\infty}$ tels que $\mu(A_n) = 0$ puisque $\{x_1, x_2, \dots x_N\}$ est fini).

Alors: μ est une mesure sur X.

Solution 7. $\mathcal{A} = \{\emptyset, X\}, f \text{ fonction de } (X, \mathcal{A}) \text{ dans } (\mathbb{R}, \mathcal{B}_{\mathbb{R}}).$

f est mesurable si et seulement si $\forall B \in \mathcal{B}_{\mathbb{R}} : f^{-1}(B) = X$ ou $f^{-1}(B) = \emptyset$.

Si f est une fonction constante telle que $f = a \in \mathbb{R}$ on a $f^{-1}(a) = X$ et a est borilien. Donc: les fonction constants sont mesurables.

Supposons maintenant que f n'est pas mesurable, et soit $b \in \mathbb{R}$ tel que $a \in Imf$. Alors $f^{-1}(b) \neq \emptyset$ puisque f n'est pas constante, il existe $x \in X$ tel que $f(x) \neq b$. Donc: $f^{-1}(b) \neq X$.

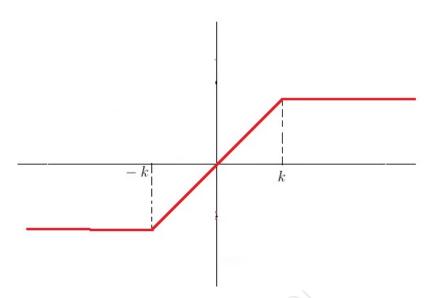
 $Alors, f \ n'est \ pas \ mesurable.$

Les fonctions mesurables sont seulement les fonctions constantes.

Solution 8. $\mathcal{B}_{\mathbb{R}}$ la tribu borélienne, (X, \mathcal{A}) un espace mesurable, k > 0, et T_k la fonction définit par:

$$\forall t \in \mathbb{R} : T_k(x) = \frac{1}{2}(|t + k| - |t - k|).$$

1. Représentation graphique de T_k .



- 2. T_k est continue, donc mesurable.
- 3. Puisque f est mesurable de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, et T_k est mesurable de $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, alors: la fonction $T_k \circ f$ est une fonction mesurable de (X, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$.

Solution 9. $f_n(x) = \frac{2x}{1 + n^2 x^2}, (x \ge 0).$

Soit $\varepsilon > 0$, posons $A_{\varepsilon} = \{x \in X : |f_n(x) - f(x)| \ge \varepsilon\}$. Soit $x \in A_{\varepsilon}$, alors: $\frac{2x}{1 + n^2 r^2} \ge \varepsilon$.

Donc, $n^2 \varepsilon x^2 - 2x + \varepsilon \le 0$, $\Delta' = 1 - n^2 x^2$. Pour n assez grand (i.en $> \frac{1}{\varepsilon}$) on a $A_{\varepsilon} = \emptyset$, i.e $\lambda(A_{\varepsilon}) = 0 \xrightarrow{n \to +\infty} 0$.

Donc: $(f_n)_n$ converge par mesure à la fonction nulle.

Solution 10. $p \in]0, +\infty[, \forall x \in \mathbb{R} : f(x) = |x|^{-p}.\chi_{]-1,1[}.$

$$\int_{\mathbb{R}} f d\lambda = \int_{-1}^{1} |x|^{-p} dx = 2 \int_{0}^{1} x^{-p} dx. \text{ Alors:}$$

$$\int_{\mathbb{R}} f d\lambda = \begin{cases} \frac{2}{1-p} &: p \in]0,1[,\\ +\infty &: p \in [1,+\infty[$$

Solution 11. $f_n(x) = e^{-x^n}, x \ge 0.$

1. $x \in I = [0, 1]$

$$\{f_n\}_{n=1}^{\infty}, \ converge \ vers \ la \ fonction \ f, \ définie \ par: \ f(x) = \begin{cases} 1 & : \ 0 \le x < 1 \\ \frac{1}{2} & : \ x = 1, \\ 0 & : \ x > 1. \end{cases}$$

2. Soit $n \in \mathbb{N}$, on a: $\frac{f_{n+1}(x)}{f_n(x)} = \exp(x^n - x^{n+1})$.

Puisque $x^n - x^{n+1} \ge 0$, on a: $\frac{f_{n+1}(x)}{f_n(x)} \le 1$. Donc: la suite $\{f_n\}_{n=1}^{\infty}$ est décroissante.

On peut alors appliquer théorème de Beppo Levi au suite $\{f_n\}_{n=1}^{\infty}$, sur I = [0,1].

3. On a:

i)
$$f_n \longrightarrow 0, ppt \ sur \ I$$
,

ii)
$$f_n \leq 1, \forall x \in I$$
,

iii)
$$\int_I 1 = 1 < +\infty$$
, i.e $1 \in L^1(I)$.

d'après théorème de convergence dominée de Lebesgue:

$$\lim_{n \to +\infty} \int_{I} f_n = \int_{I} 1 = 1.$$

4. $J =]1, +\infty[$.

Soit
$$n \in \mathbb{N}$$
, on a: $\frac{f_{n+1}(x)}{f_n(x)} = \exp(x^{n+1} - x^n) \ge 1$.

 $\{f_n\}_{n=1}^{\infty}$ est positive, décroissante, mesurable. Donc: on peut appliquer théorème de Beppo Levi au suite $\{f_n\}_{n=1}^{\infty}$, sur J.

5. On a:

i)
$$f_n \longrightarrow f, ppt \ sur \ \mathbb{R}^+,$$

ii)
$$f_n \le g$$
, ou $g(x) = \begin{cases} 1 & : 0 \le x \le 1 \\ e^{-x} & : x > 1. \end{cases}$,

iii)
$$\int_{\mathbb{R}^+} g = 1 + \frac{1}{e} < +\infty, i.e \ g \in L^1(\mathbb{R}^+).$$

On peut alors appliquer théorème de Lebesgue au suite $\{f_n\}_{n=1}^{\infty}$, sur \mathbb{R}^+ .

6.
$$\lim_{n \to +\infty} \int_{\mathbb{R}^+} f_n = \int_{\mathbb{R}^+} f = \int_0^1 dx = 1.$$

Solution 12. $I = [0, 1], f_n(x) = 2nxe^{-nx^2}$.

1.
$$\{f_n\}_{n=1}^{\infty}$$
 converge simplement vers $f=0$.

2. On a:
$$\sup |f_n - f| = \sqrt{2n} \exp \left(-\frac{1}{2}\right) \xrightarrow{n \to +\infty} +\infty$$
. Donc: la convergence n'est pas uniforme.

3.
$$\lim_{n \to +\infty} \int_I f_n dx = \lim_{n \to +\infty} (1 - e^{-n^2}) = 1 \neq 0 = \int_I f dx$$
.

4.
$$\{f_n\}_{n=1}^{\infty}$$
 est une suite des fonctions mesurables telle que $f_n \geq g = 0$.
Donc: on appliquer le lemme de Fatou à la suite $\{f_n\}_{n=1}^{\infty}$.

5.
$$\sup |f_n| \longrightarrow +\infty$$
, on ne peut pas trouver une fonction intégrable g telle que $f_n \leq g$. Donc: on ne peut pas appliquer le théorème de convergence dominée de Lebesgue à cette suite $\{f_n\}_{n=1}^{\infty}$.

10