TP N°3: Dosage acido -basique

Manipulation N°3

Dosage (Titrage) acido -basique

Dosage colorimétrique d'un acide fort par une base forte

Dosage d'un acide fort par une base forte :

Avant toute manipulation regarder les pictogrammes et les consignes de sécurité de chaque produit chimique en discuter avec le professeur afin de prendre toutes les mesures de protection.

1- Introduction:

Dans la vie courante, nous utilisons régulièrement des solutions acides ou basiques : détartrant, vinaigre, jus de citron, ammoniaque, soude, etc.

Un acide est fort si sa réaction avec l'eau peut être considérée comme totale et qu'il ne subsiste alors en solution que sa base conjuguée.

La réaction de cet acide fort AH s'écrit alors de la manière suivante :

$$AH + H_2O \rightarrow A^- + H_3O^+$$

2- Définitions :

2-1. Définition d'un acide et une base :

Un acide est une substance qui dissocie dans l'eau sous forme d'ion H^+ .

$$HCl \rightarrow H^+ + Cl^-$$

Une base est une substance qui dissocie dans l'eau sous forme d'ions OH.

$$NaOH \rightarrow Na^+ + OH^-$$

2-2. La force des acides et des bases: Un acide fort est un acide qui se dissocie complètement en ions positifs et négatifs, comme l'acide chlorhydrique (HCl). Une base forte se dissocie complètement en ions positifs et négatifs, comme hydroxyde de sodium(NaOH).

Par contre la plupart des acides et des bases se dissocient très peu en solution aqueuse. Prenons par exemple l'acide acétique (CH₃COOH) qui n'a qu'une partie de ses ions (1.3%) qui se dissocient dans l'eau. Il est considéré comme un acide faible. Le même phénomène se produit avec l'ammoniaque (NH₃) qui dissocie en deux parties NH₄⁺ et OH. La majeure partie de ses molécules ne réagissent pas. L'ammoniaque est considérée comme une base faible.

2-3. Principe d'un dosage (titrage) :

Titrer une solution, c'est déterminer la concentration d'une espèce chimique A qu'elle contient.

TP N°3: Dosage acido -basique

Pour cela, on utilise une réaction chimique entre l'espèce A et une autre espèce chimique B. La burette contient une solution contenant l'espèce B dont on connaît précisément la concentration notée C_B . La burette permet de mesurer précisément le volume V_B qui sera versé.

Le bécher contient une certaine quantité de matière de l'espèce A notée n_A , cette quantité de matière est **inconnue**, mais le volume de solution est **connu** précisément et noté V_A .

Lorsqu'on verse quelques gouttes de solution **B**, l'espèce **B** réagit avec l'espèce **A** dans le bécher.

L'espèce **B** versée réagira tant qu'il restera de l'espèce **A** dans le bécher. Pour pouvoir effectuer un dosage :

- il faut que la réaction entre A et B soit la seule réaction qui ait lieu,
- il faut que cette réaction soit rapide,
- il faut que cette réaction soit totale.

Lorsque l'espèce A aura totalement réagi avec l'espèce B versée, on dira qu'on a atteint **l'équivalence**. Cela signifie que l'on aura versé une quantité de matière n_B respectant exactement les **proportions stæchiométriques** données par l'équation de la réaction entre A et B.

2-4. Dosage acido-basique:

Doser une solution aqueuse d'un acide ou d'une base, c'est déterminer sa concentration en réalisant une réaction acide-base.

A l'équivalence le nombre de moles H_3O^+ apportées par l'acide doit être égal au nombre de moles OH^- apportées par la base. Cela entraîne :

$$C_A.V_A = C_B.V_B$$

On désigne par : - C_A la concentration molaire de l'acide, par V_A le volume de l'acide,

- C_B la concentration molaire de la base, par V_B le volume de la base,

Un dosage acido-basique peut-être suivi par :

- **pH-mètre** : on suit l'évolution du pH au cours de la réaction.
- **Colorimétrie** : on utilise un indicateur coloré.

2-5. Indicateur coloré :

Un indicateur coloré est un réactif dont la couleur dépend du pH. Il peut être utilisé pour repérer la fin d'un dosage si l'équivalence est atteinte dans sa zone de virage.

Les indicateurs acido-basiques (connus aussi comme les indicateurs de pH) sont des substances qui changent de couleur avec le pH. Ce sont généralement des acides faibles qui se dissocient légèrement dans l'eau en donnant des ions. Ces couples acide-base sont caractérisés par une valeur dite pKa.

TP N°3: Dosage acido -basique

La forme acide et sa base conjuguée ont des couleurs différentes. La solution prendra la couleur de la forme qui prédomine déterminée par le pH de la solution :

- si pH < pKa la solution prend la couleur A de la forme acide
- si pH > pKa la solution prend la couleur B de la forme basique
- si **pH** = **pKa** alors on a un mélange des 2 couleurs A et B, c'est la **zone de virage** de l'indicateur. On considère en général une zone de une à deux unités de pH.

Exemples d'indicateurs colorés :

Indicateur	Couleur acide	Couleur basique	Interval de pH Zone de virage	pKa
Bleu de Thymol	Rouge	Jaune	1,2 - 2,8	1.5
Rouge de Méthyle	Jaune	Rouge	4,6 - 6,0	5.1
Bleu de bromothymol	Jaune	Bleu	6,0 - 7,6	7.0
Rouge de Phénol	Jaune	Rouge	6,8 – 8,4	7.9
Phénolphtaléine	Incolore	Rose	8,2 - 10,0	9.4

3- <u>Partie Expérimentale</u>:

Dosage colorimétrique de l'acide chlorhydrique par la soude

Matériel: Burette, Erlenmeyer, bécher, éprouvette, pissette, solution de NaOH (0.1N), solution d'HCL et les indicateurs colorés

Dosage en présente de phénolphtaléine :

- 1- Rincer le matériel. Burette, erlenmeyer ...etc.
- 2- Remplir la burette avec la solution de (NaOH) ($C_B=0.1N$) jusqu'à la graduation zéro.
- 3- Prendre ($V_A=10$ ml) de la solution à doser (HCl) et verser la dans un erlenmeyer de 100 mL.
- 4- Ajouter 2 à 3 gouttes d'indicateur coloré (phénolphtaléine).
- 5- Poser l'erlenmeyer sur une feuille blanche au-dessous de la burette.
- 6- Réaliser un dosage rapide pour estimer le volume d'équivalence.
- 7- Noter le volume V_B de (NaOH) versé.
- 8- En présence d'un papier pH, lire le pH de la solution chaque 2ml jusqu'à coloration.

TP N°3: Dosage acido -basique

4- Résultats et calculs:

- 1- But du TP.
- **2-** Ecrire l'équation de la réaction.
- 3- Calculer la Concentration (C_A) et la Normalité (N_A) de la solution d'HCL.
- 4- Remplier le tableau ci-dessous :

V_B mL	0	2	4	6	8	10	12	14	16
pН									

- 5- Tracer le graphe représentant la valeur du $pH = f(V_B)$ sur papier millimétré.
- **6-** Déterminer le volume V_E et le pH à l'équivalence en utilisant le graphique.
- 7- Que signifier pour vous une zone virage.

TP N°3: Dosage acido -basique

Ecrire l	'équation a	le la réac	tion:						
Calcule	r la Conce	ntration ((C_A) et la l	Normalité (I	V _A) de la	solution d'	HCl.		
Remplie	r le tablea	u ci-dess	ous:						
H mL	0	2	4	6	8	10	12	14	16
	le granhe r	n H – f (V	n) et Noté	le volume V	Tr at la nl	H à l'équive	alence		
Tracer	е дтарне р	711 – J (V.	в) ет поте	ie voiume v	E et te pi			ier pour vo	ous une
							e virage ?		
							Γ	Grand No.	Z Z
								om:	<u>т</u> :
								Note:	
								·:	
								_	