Chapitre 2

Ensembles et applications

2.1 Définitions et exemples

2.1.1 Ensembles et éléments

- Intuitivement, un ensemble est une collection d'objets. Les objets d'un ensemble sont appelés éléments de cet ensemble et qu'un élément a appartient à E (on écrit : $a \in E$) ou n'appartient à E (on écrit : $a \notin E$).
- \bullet Un ensemble particulier est l'ensemble vide, noté \emptyset qui est l'ensemble ne contenant aucun élément.
 - Un ensemble $E = \{a\}$, formé d'un seul élément, et appelé un singleton.
- Soit E un ensemble. Si un ensemble A est contenu dans E, on dit que A est une partie ou un sous ensemble de E. Les éléments de E n'appartenant pas à l'ensemble A constituent une nouvelle partie de E, appelée complémentaire de E dans E et notée E ou bien E ou bien E formellement, E ou bien E ou bien

2.1.2 Opérations sur les ensembles

A partir de deux ensembles A et B, on peut construire d'autres.

• On dit que A est inclus dans B (A est un sous-ensemble de B ou une partie de B) et on note $A \subset B$ si tout élément de A est aussi un élément de B.

$$A \subset B \Leftrightarrow (\forall x \in A \Rightarrow x \in B).$$

- On dit que A et B sont égaux si et seulement si $A \subset B$ et $B \subset A$.
- Soient A et B deux ensembles. La réunion de A et de B et noté $A \cup B$ (lire A union de B) est l'ensemble des éléments appartenant à A ou appartenant à B.

$$A \cup B = \{x \mid x \in A \ \lor \ x \in B\}$$

• Soient A et B deux ensembles. L'intersection de A et de B et noté $A \cap B$ (lire A inter B) est l'ensemble des éléments appartenant à la fois à A et à B.

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

• On dit que A, B sont des ensembles disjoints si $A \cap B = \emptyset$.

Exemple 2.1 Dans \mathbb{N} , si l'on désigne par $\mathcal{D}(n)$ l'ensemble des diviseurs de l'entier naturel n, on aura

$$\mathcal{D}(24) \cup \mathcal{D}(16) = \{1, 2, 3, 4, 6, 8, 12, 16, 24\} \ et \ \mathcal{D}(24) \cap \mathcal{D}(16) = \{1, 2, 3, 4, 8\}.$$

2.1.3 Propriétés et règles de calculs

Voici quelques propriétés et règles de calculs sur les ensembles.

Proposition 2.1 Soient A, B, C des parties d'un ensemble E. Alors

- 1. $A \cup A = A, A \cap A = A$.
- 2. $A \cup \emptyset = A$, $A \cap \emptyset = \emptyset$.
- 3. $A \cup B = B \cup A$, $A \cap B = B \cap A$ (Commutativité).
- 4. $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$ (Associativité).
- 5. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributivité).

Preuve: On démontre que $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Soit
$$x \in A \cup (B \cap C)$$
 \Leftrightarrow $x \in A$ ou $x \in (B \cap C)$
 \Leftrightarrow $x \in A$ ou $(x \in B \text{ et } x \in C)$
 \Leftrightarrow $(x \in A \text{ ou } x \in B) \text{ et } (x \in A \text{ ou } x \in C)$
 \Leftrightarrow $(x \in A \cup B) \text{ et } (x \in A \cup C)$
 \Leftrightarrow $x \in (A \cup B) \cap (A \cup C)$.

Définition 2.1 (L'ensemble des parties) Soit E un ensemble. On admet qu'il existe un ensemble noté $\mathcal{P}(E)$, tel qu'on ait l'équivalence

$$X \in \mathcal{P}(E) \Leftrightarrow X \subset E$$

 $\mathcal{P}(E)$ est appelé l'ensemble des parties de E.

Remarque 2.1 $Si\ card(E) = n$, $alors\ card\mathcal{P}(E) = 2^n$.

Exemple 2.2 Si $E = \{1, 2, 3\}$. Alors, $card \mathcal{P}(E) = 2^3 = 8$ et

$$\mathcal{P}(E) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Définition 2.2 (Différence ensembliste) Soient A, B deux sous-ensembles de E.

- 1. La différence de A et de B noté $A \setminus B$ est formé des éléments qui sont dans A mais qui ne sont pas dans B c.à.d $A \setminus B = A \cap C_E(B)$.
- 2. La différence symétrique de A et de B noté $A \triangle B$ est l'ensemble $(A \setminus B) \cup (B \setminus A)$ ou bien l'ensemble $(A \cup B) \setminus (A \cap B)$.

Exemple 2.3 1. Dans \mathbb{N} , on a $\mathcal{D}(24) \setminus \mathcal{D}(16) = \{3, 6, 12, 24\}$ et $\mathcal{D}(16) \setminus \mathcal{D}(24) = \{16\}$. Aussi, $\mathcal{D}(24) \triangle \mathcal{D}(24) = \{6, 12, 16, 24\}$.

2. L'ensemble $\mathbb{R} \setminus \mathbb{Q}$ contient des nombres irrationnels comme π .

Remarque 2.2 Lorsque $A \subset E$, on $a : E \setminus A = C_E(A)$.

Proposition 2.2 Soient A, B deux sous-ensembles de E. Alors

1.
$$A \setminus A = \emptyset$$
.

2.
$$A \setminus \emptyset = A$$
.

3.
$$A \cup C_E(A) = E$$
.

4.
$$A \cap C_E(A) = \emptyset$$
.

5.
$$C_E(C_E(A)) = A$$
.

6.
$$C_E(A \cap B) = C_E(A) \cup C_E(B)$$
.

7.
$$C_E(A \cup B) = C_E(A) \cap C_E(B)$$
.

Preuve: On démontre que $C_E(A \cap B) = C_E(A) \cup C_E(B)$.

Soit
$$x \in C_E(A \cap B)$$
 \Leftrightarrow $x \notin (A \cap B)$
 $\Leftrightarrow \overline{x \in (A \cap B)}$
 $\Leftrightarrow \overline{x \in A \text{ et } x \in B}$
 $\Leftrightarrow \overline{x \in A \text{ ou } \overline{x \in B}}$
 $\Leftrightarrow x \notin A \text{ ou } x \notin B$
 $\Leftrightarrow x \in C_E(A) \cup C_E(B)$.

Définition 2.3 (Partition) Soit E un ensemble. Une partition de E est un ensemble $\{E_i\}$ de parties de E, qui vérifie les deux conditions suivantes :

1.
$$E = \bigcup_{i \in I} E_i$$
;

2.
$$E_i \cap E_j = \emptyset \ (\forall i \neq j \in I).$$

Exemple 2.4 Soit A un sous-ensemble de E. Alors l'ensemble $\{A, C_E(A)\}$ est une partition de E.

Définition 2.4 (Produit cartésien) Soient A, B deux ensembles. Le produit cartésien, noté $A \times B$, est l'ensemble des couples (x, y) où $x \in A$ et $y \in B$.

$$A \times B = \{(x, y) \mid x \in A \ et \ y \in B\}.$$

Exemple 2.5.

1.
$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{(x, y) \mid x, y \in \mathbb{R}\}.$$

$$\textit{2. Soient } A = \{1,2,3\} \textit{ et } B = \{a,b\}. \textit{ Alors, } A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}.$$

Généralisation

Si on considère des ensembles $A_1, A_2, ..., A_n$ on peut de même définir les n-uples $(x_1, x_2, ..., x_n)$ où $x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n$.

$$A_1 \times A_2 \times ... \times A_n = \{(x_1, x_2, ..., x_n) \mid x_1 \in A_1, x_2 \in A_2, ..., x_n \in A_n\}.$$

Proposition 2.3 Soient A, B, C, D quatre sous-ensembles de E. Alors

1.
$$(A \times C) \cup (B \times C) = (A \cup B) \times C$$
.

2.
$$(A \times C) \cup (A \times D) = A \times (C \cup D)$$
.

3.
$$(A \times C) \cap (B \times D) = (A \cap B) \times (C \cap D)$$
.

Preuve: On démontre que $(A \times C) \cup (B \times C) = (A \cup B) \times C$.

$$(A \times C) \cup (B \times C) = \{(x, y) \mid (x, y) \in A \times C \text{ ou } (x, y) \in B \times C\}$$

= $\{(x, y) \mid (x \in A \text{ et } y \in C) \text{ ou } (x \in B \text{ et } y \in C)\}$
= $\{(x, y) \mid (x \in A \text{ ou } x \in B) \text{ et } y \in C\}$
= $(A \cup B) \times C$.

2.2 Applications

2.2.1 Définitions et exemples

Définition 2.5 Soient E, F deux ensembles. On dit que f est une application de E dans F si pour chaque élément $x \in E$, il existe un élément unique $y \in F$ tel que f(x) = y et on note

$$f: E \longrightarrow F$$
 ou bien $E \stackrel{f}{\longrightarrow} F$.

- L'ensemble E est dit ensemble de départ et F est dit ensemble d'arrivée. L'élément x est dit l'antécédent et y est dit l'image de x par f.
 - On note par $\mathfrak{F}(E,F)$ l'ensemble de toutes les applications de E dans F.

Exemple 2.6.

- 1. $f: \{1,2,3\} \longrightarrow \{2,4,5\}$ n'est pas une application.
- 2. L'identité $f: E \longrightarrow E$ est une application et sera très utile dans la suite.
- 3. Les projections $P_x: E \times F \longrightarrow E \qquad P_y: E \times F \longrightarrow F$ sont des applications aussi. $P_x: E \times F \longrightarrow F$ $P_x(x,y) = x \qquad (x,y) \mapsto P_y(x,y) = y$

Définition 2.6 (Restrictions et prolongements) Soit f une application de E vers F

1. On appelle restriction de f à une partie $A \subset E$, l'application notée $f_{|A}: A \longrightarrow F$ définie par

$$f_{|A} = f(x), \quad \forall x \in A.$$

2. On appelle prolongement de f à un ensemble E' contenant E, toute application g de E' vers F dont la restriction est f.

Exemple 2.7 Si f est l'identité de \mathbb{R}^+ dans lui-même, elle possède une infinité de prolongement à \mathbb{R} , parmi lesguels :

- 1. L'application identité de \mathbb{R} .
- 2. L'application "valeur absolue" de \mathbb{R} dans lui-même.
- 3. L'application h définie par $h(x) = \frac{1}{2}(x + |x|)$, et qui est identiquement nulle sur \mathbb{R}^- .

2.2.2 L'image directe et l'image réciproque

Définition 2.7 Soient E, F deux ensembles

1. Soit $A \subset E$ et $f: E \longrightarrow F$, l'image directe de A par f est un sous-ensemble de F définie par

$$f(A) = \{ f(x) \mid x \in A \}.$$

2. Soit $B \subset F$ et $f: E \longrightarrow F$, l'image réciproque de B par f est un sous-ensemble de E définie par

$$f^{-1}(B) = \{x \mid f(x) \in B\}.$$

Exemple 2.8 Soit f une application donnée par : $f: \mathbb{N} \longrightarrow \mathbb{N}$ $n \mapsto 2n+1$

- 1. Soit $A = \{0, 1, 2\}$, alors $f(A) = \{f(n) \mid n \in A\} = \{f(0), f(1), f(2)\} = \{1, 3, 5\}$.
- 2. Soit $B = \{5\}$, alors $f^{-1}(B) = \{n \in \mathbb{N} \mid f(n) \in B\} = \{n \in \mathbb{N} \mid f(n) = 5\} = \{2\}$.

Proposition 2.4 Soient $f: E \longrightarrow F$ une application, A_1, A_2 deux parties de E et B_1, B_2 deux parties de F. Alors

- (1) $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$, $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$;
- (2) Si $A_1 \subset A_2$, alors $f(A_1) \subset f(A_2)$;
- (3) $A_1 \subset f^{-1}(f(A_1))$;
- (4) $f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2), \quad f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2);$
- (5) Si $B_1 \subset B_2$, alors $f^{-1}(B_1) \subset f^{-1}(B_2)$;
- (6) $f(f^{-1}(B_1)) \subset B_1$.

Preuve: On démontre la propriété (2)

Soit $y \in f(A_1)$, alors $\exists x \in A_1 \mid f(x) = y$, et comme $A_1 \subset A_2$, donc $\exists x \in A_2 \mid f(x) = y$. D'où $y \in f(A_2)$.

Définition 2.8 (La composition) Soient E, F, G trois ensembles et f, g deux applications telles que

$$E \xrightarrow{f} F \xrightarrow{g} G$$

On peut en déduire une application de E vers G notée $h=g\circ f$ et appelée application composée de f et g, par

$$\forall x \in E, h(x) = g \circ f(x) = g[f(x)].$$

Remarque 2.3 En général, on a $f\circ g\neq g\circ f$ ceci est illustré par les fonctions réelles

$$f(x) = x^2$$
, $g(x) = 2x + 1$

 $f \circ g(x) = f[g(x)] = f(2x+1) = (2x+1)^2, \quad g \circ f(x) = g[f(x)] = g(x^2) = 2x^2 + 1.$ Alors, $f \circ g \neq g \circ f$.

• Par contre la composition des applications est associative $h \circ (g \circ f) = (h \circ g) \circ f$.

5

2.2.3 Injection, surjection, bijection

Définition 2.9 Soient E, F deux ensembles et $f: E \longrightarrow F$ une application

1. f est **injective** si et seulement si

$$\forall x, x' \in E, f(x) = f(x') \Rightarrow x = x'.$$

2. f est surjective si et seulement si

$$\forall y \in F, \exists x \in E \mid y = f(x).$$

- Une autre formulation: f est surjective si et seulement si f(E) = F.
- 3. f est bijective si f à la fois injective et surjective. Autrement dit:

$$\forall y \in F, \exists ! x \in E \mid y = f(x).$$

Remarque 2.4 Si f est bijective, et seulement dans ce cas, à tout $y \in F$ on fait correspondre un $x \in E$ et un seul. On définit ainsi une application bijective, notée

$$f^{-1}: F \longrightarrow E$$

et appelée application réciproque de f, et on a l'équivalence

$$y = f(x) \Leftrightarrow x = f^{-1}(x).$$

Exemple 2.9 Soit $f: \mathbb{N} \longrightarrow \mathbb{Q}$ définie par $f(x) = \frac{1}{1+x}$. Montrons que f est injective Soit $x, x' \in \mathbb{N}$ tels que f(x) = f(x'). Alors $\frac{1}{1+x} = \frac{1}{1+x'}$, donc 1+x=1+x' et donc x=x'. Alors f est injective.

Par contre f n'est pas surjective. Il s'agit de trouver un élément y qui n'a pas d'antécédent par f. Ici il est facile de voir que l'on a toujours $f(x) \leq 1$ et donc par exemple y = 2 n'a pas d'antécédent. Ainsi f n'est pas surjective. Donc n'est pas bijective.

Théorème 2.1 Soient E, F, G trois ensembles et f, g deux applications telles que $f: E \longrightarrow F$ et $g: F \longrightarrow G$

- 1. Si f et g sont injectives, alors $g \circ f$ est injective.
- 2. Si f et g sont surjectives, alors $g \circ f$ est surjective.
- 3. Si f et q sont bijectives, alors $q \circ f$ est bijective.
- 4. Si f et g sont bijectives, alors $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Preuve:

1. Comme f et g sont injectives, alors

$$(q \circ f)(x) = (q \circ f)(y) \Rightarrow f(x) = f(y) \Rightarrow x = y.$$

2. Comme f et g sont surjectives, alors on a

$$(g \circ f)(E) = g[f(E)] = g(F) = G.$$

- 3. Directement d'apres (1) et (2).
- 4. Soit $z \in G$, comme $g \circ f$ est bijective donc $\exists x \in E \mid (g \circ f)(x) = z$. On a $(g \circ f)^{-1}(z) = (g \circ f)^{-1}((g \circ f)(x)) = x$. D'autre part $(f^{-1} \circ g^{-1})(z) = (f^{-1} \circ g^{-1})((g \circ f)(x)) = f^{-1}(g(f(x))) = f^{-1}(f(x)) = x$. Donc, $(g \circ f)^{-1}(z) = (f^{-1} \circ g^{-1})(z) \ \forall z \in G$. D'où, $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.