Université Mohamed Boudiaf - Msila Faculté de Mathématiques et de l'informatique Socle commun MIAnnée Universitaire 2021-2022

Module: Algèbre 01

(Série d'exercices N° 2)

Exercice n°1:

1. Soit l'ensemble $A = \{1, 2, 3, 4, 5\}$. Les propositions suivantes sont elles vraies?

$$2 \in A, \ 3 \subset A, \ \emptyset \in A, \ \{\emptyset\} \subset A, \ A \cup \{\emptyset\} = A.$$

- 2. Soient $B = \{1, 2\}$ et $C = \{1, 3\}$ deux ensembles.
 - (a) Déterminer $B \cap C$, $B \cup C$, $C_A(B)$, $C_A(C)$, $A \setminus B$ et $B \triangle C$.
 - (b) Déterminer $B \times C, B \times \emptyset, B \times \{\emptyset\}$ et $\mathcal{P}(\mathcal{P}(B))$.

Exercice $n^{\circ}2$: Soient A, B, C trois parties de l'ensemble E. Montrer que :

- 1. $A \cap B = \emptyset \Leftrightarrow A \subset C_E(B)$.
- 2. $A \subset B \Leftrightarrow C_E(B) \subset C_E(A)$.
- 3. $C_E(A \cap B) = C_E(A) \cup C_E(B), \quad C_E(A \cup B) = C_E(A) \cap C_E(B) \ (*)$
- 4. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- 5. $C_E(A)\Delta C_E(B) = A \triangle B$, $C_E(A \triangle B) = C_E(A) \triangle B$ (*)
- 6. $(A \times C) \cup (B \times C) = (A \cup B) \times C$.
- 7. $A \subset B \Rightarrow \mathcal{P}(A) \subset \mathcal{P}(B)$.

Exercice n°3:(Devoir maison)

Soient A, B, C trois parties de l'ensemble E. Montrer que :

- 1. $A = B \Leftrightarrow A \cap B = A \cup B$.
- 2. $A \cup B = A \cap C \Leftrightarrow B \subset A \subset C$.
- 3. $A \cap B = \emptyset \Leftrightarrow C_E(A) \cup C_E(B) = E$.
- 4. $A \triangle B = \emptyset \Leftrightarrow A = B$.
- 5. $(A \cap B) \setminus C = (A \setminus C) \cap (B \setminus C) = (A \setminus C) \cap B = (B \setminus C) \cap A$.

<u>Exercice</u> $n^{\circ}4$: Soit $f: E \longrightarrow F$ une application. Soient A, B deux parties de l'ensemble E et C, D deux parties de l'ensemble F. Montrer que :

- 1. $f(A \cap B) \subset f(A) \cap f(B)$, $f(A \cup B) = f(A) \cup f(B)$ (*)
- 2. f est injective $\Leftrightarrow f(A \cap B) = f(A) \cap f(B)$.
- 3. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D), \quad f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$ (*)
- 4. $f(f^{-1}(C)) \subset C$.
- 5. f est surjective $\Leftrightarrow f(f^{-1}(C)) = C$.
- 6. $f^{-1}(C_F(C)) = C_E f^{-1}(C)$.
- 7. $f^{-1}(C \triangle D) = f^{-1}(C) \triangle f^{-1}(D)$.

Exercice $n^{\circ}5$: Soit l'application f définie par

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto f(x) = \frac{2x}{1+x^2}$

- 1. f est-elle injective? surjective?
- 2. Montrer que $f(\mathbb{R}) = [-1, 1]$.
- 3. Montrer que l'application g définie par

$$g: [-1,1] \longrightarrow [-1,1]$$

$$x \longmapsto g(x) = f(x)$$

est une bijection et trouver l'application réciproque g^{-1} .

Exercice n°6:(Devoir maison)

Soit E un ensemble non vide. On considère une application f de E dans $\mathbb R$ telle que

$$\begin{cases} i)f(\phi) = 0, \\ ii)f(E) = 1, \\ iii) \forall A, B \in \mathcal{P}(E) : f(A \cup B) = f(A) + f(B), \text{ si } A \cap B = \phi. \end{cases}$$

- 1. Pour toute partie A de E, exprimer $f(C_E^A)$ en fonction de f(A).
- 2. Démontrer que : $\forall A, B \in \mathcal{P}(E) : f(A \cup B) = f(A) + f(B) f(A \cap B)$.
- 3. On suppose de plus que

$$iv) \forall A \in \mathcal{P}(E) : f(A) \ge 0.$$

- (a) Montrer que $\forall A, B \in \mathcal{P}(E) : A \subset B \Rightarrow f(A) \leq f(B)$.
- (b) Montrer que $\forall A \in \mathcal{P}(E): 0 \leq f(A) \leq 1$.