Une introduction aux machines à vecteurs supports (SVM)

Plan

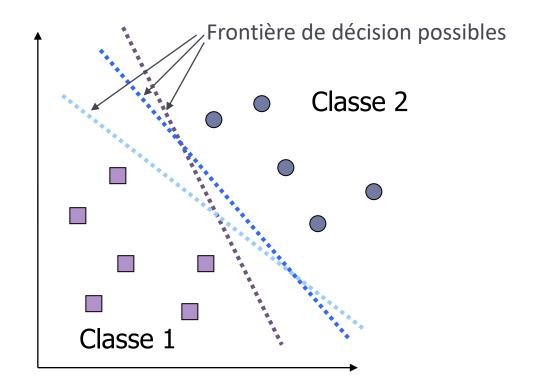
- Historique
- Quelle est la bonne frontière de séparation pour deux classes linéairement séparables ?
 - La solution SVM
- Adaptation aux cas non linéairement séparables: l'astuce des fonctions noyau
- Exemples d'application
- Conclusion

Historique du SVM

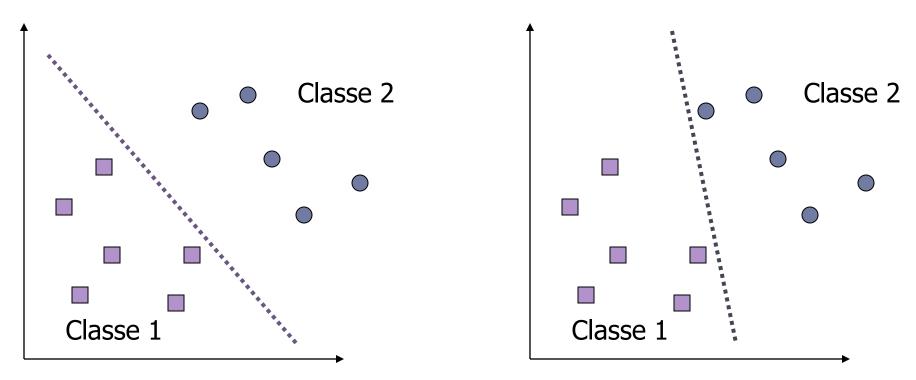
- Classifieur dérivé de la théorie de l'apprentissage statistique par Vapnik et Chervonenkis (~1994)
- Devenu populaire depuis qu'il a permis des performances égales ou meilleures aux RNA pour reconnaitre l'écriture manuscrite en partant d'images formées de pixels.
- ▶ Proche de :
 - Séparateurs à vastes marges
 - Méthodes à fonctions noyau
 - Réseaux de neurones à bases radiales

Problème à deux classes linéairement séparables

Plusieurs surfaces de décision existent pour séparer les classes ; laquelle choisir ?

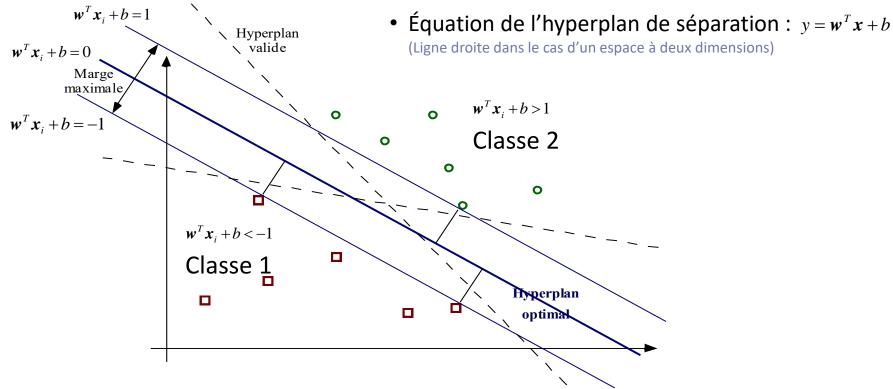


Exemples de mauvais choix



Pour minimiser la sensibilité au bruit, la droite de décision doit être aussi éloignée que possible des données de chaque classe

Hyperplan de plus vaste marge



Si $\{x_1, ..., x_n\}$ est l'ensemble des données et $y_i \in \{1,-1\}$ est la classe de chacune, on devrait avoir : $y_i(\mathbf{w}^T\mathbf{x}_i + b) > 1, \quad \forall i$

tout en ayant une distance optimale entre chaque x_i et le plan de séparation

Optimisation de la marge

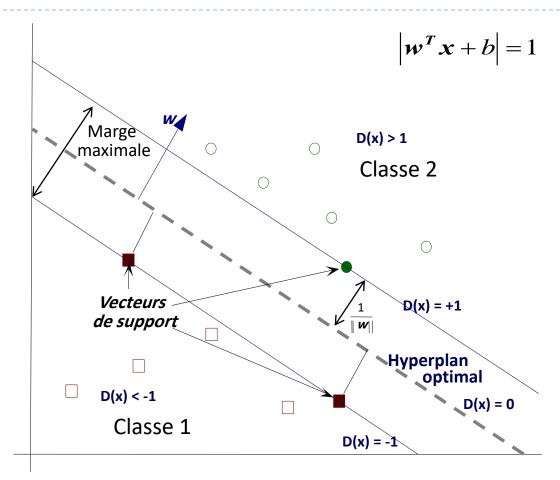
Distance normale d'un point à l'hyperplan: $D(x) = \frac{\left|w^{T}x + b\right|}{\left\|w\right\|}$

$$D(x) = \frac{\left| w^T x + b \right|}{\left\| w \right\|}$$

▶ Marge max. avant d'atteindre les frontières des deux classes ($|w^Tx+b|=1$):

$$m = \frac{2}{||\mathbf{w}||}$$

Maximiser m revient à minimiser //w// tout en préservant le pouvoir de classification:



$$min \frac{1}{2} \|\mathbf{w}\|^2$$
 sous la contrainte: $y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \forall i$

Problème d'optimisation quadratique

 \blacktriangleright Maximiser le pouvoir de généralisation du classeur revient à trouver w et b tels que :

$$\frac{1}{2} \| \mathbf{w} \|^2$$
 est minimum

et

$$y_i(\mathbf{w}^T \mathbf{x}_i + b) \ge 1, \quad i=1,...,n$$

- Si d est la dimension des X_i (nombre d'entrées), cela revient à régler d+1 paramètres (les éléments de w, plus b)
 - Possible par les méthodes d'optimisation classiques (e.g., optimisation quadratique) seulement si d pas trop grand (< qqs 10^3)
 - L'approche SVM utilise les multiplicateurs de Lagrange pour une solution plus simple

Les multiplicateurs de Lagrange en 30 s

- ▶ On veut maximiser ou minimiser f(x) sous la contrainte g(x)=0
- Solutions possibles :
 - Résoudre g(x)=0 et substituer la/les racines trouvées dans f(x); résoudre alors f'(x)=0: pas toujours facile!
 - Considérer que f(x) et g(x)=0 évoluent pareillement au voisinage de l'extrémum recherché. Leurs tangentes sont alors colinéaires et :

$$f'(x) = \alpha g'(x)$$
 (ou $f'(x) - \alpha g'(x) = 0$), α étant à déterminer

- La méthode des multiplicateurs de Lagrange regroupe la fonction a optimiser et la contrainte en une seule fonction $\Lambda(x,\alpha)=f(x)-\alpha g(x)$
 - La solution de $d\Lambda(x,\alpha)/dx = 0$ donne le point où les tangentes sont colinéaires; en même temps, $d\Lambda(x,\alpha)/d\alpha = 0$ répond à la contrainte.

Cas à plusieurs dimensions

- On veut trouver le minimum (ou maximum) d'une fonction f(x) en respectant un nombre de contraintes $g_i(x)=0$, i=1,...,n
- > On peut monter qu'à l'extrémum recherché : $\nabla f(x) = \sum_{i=1}^{n} \alpha_i \nabla g_i(x)$, (colinéarité des tangentes)

ou encore $\nabla f(x) - \sum_{i=1}^{n} \alpha_i \nabla g_i(x) = 0$, pour des coefficients α_i à déterminer

Si on forme la fonction (lagrangien): $\Lambda(x,\alpha) = f(x) - \sum_{i=1}^{l} \alpha_i g_i(x)$ Alors: $\nabla_x \Lambda(x,\alpha) = \nabla f(x) - \sum_{i=1}^{l} \lambda_i \nabla g_i(x)$ et $\nabla_{\alpha_i} \Lambda(x,\alpha) = g_i(x)$

=> la solution de $\nabla_x \Lambda(x,\alpha) = 0$ mène à un extrémum qui respecte les contraintes.

Forme duale du problème d'optimisation

- ▶ Ici, la fonction à optimiser sous contraintes est celle de l'hyperplan de séparation à marge maximale, qui est défini par les paramètres (w, b) correspondants.
- ▶ Donc, partant d'un ensemble de donnes données $\{(x_i, y_i)\}$, de l'ensemble de contraintes $\{(x_i^T w+b)y_i-1=0\}$ et des paramètres à optimiser $\{(w, b), on a:$

$$\begin{cases} \Lambda(\boldsymbol{w},b,\alpha) = \frac{1}{2} \|\boldsymbol{w}\|^2 - \sum_{i=1}^n \alpha_i \{(\boldsymbol{x}_i^T \boldsymbol{w} + b) y_i - 1\} \\ \forall i \ \alpha_i \ge 0 \end{cases}$$

Le minimum recherché est donné par la solution de $\nabla_{w,b}\Lambda(w,b,\alpha)=0$

- ▶ Il existe une formulation duale du problème plus facile à résoudre :
 - Théorème de Kuhn-Tucker : $\min_{\alpha} x \left(\max_{x} \Lambda(x, \alpha) \right) = \max_{x} \left(\min_{\alpha} \Lambda(x, \alpha) \right)$
 - Solution alternative pour trouver w et b: $résoudre \boxed{\nabla_{\alpha} \Lambda(w,b,\alpha) = 0} \text{ sous la contrainte } \nabla_{w,b} \Lambda(w,b,\alpha) = 0$

Forme duale du problème d'optimisation

- lacktriangle On résout l'équation du lagrangien par rapport à $m{lpha}$ au lieu de $m{w},\,b$
- Avantage de résoudre $\nabla_{\alpha}\Lambda(w,b,\alpha)=0$ au lieu de $\nabla_{w,b}\Lambda(w,b,\alpha)=0$:
 - La complexité du problème d'optimisation devient proportionnelle à n (nombre de paires d'apprentissage (x_i, y_i)) et non d (la dimension de w qui est donnée par celle des x_i)
 - ▶ Possible d'obtenir des solutions pour des problèmes impliquant $\approx 10^5$ exemples
 - Problème pour lequel le maximum global des α_i peut toujours être trouvé

Formulation du problème dual

Partant de
$$\begin{cases} \Lambda(\mathbf{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \{ (\mathbf{x}_i^T \mathbf{w} + b) y_i - 1 \} \\ \forall i \ \alpha_i \ge 0 \end{cases}$$
$$\nabla_{\mathbf{w}, b} \Lambda(\mathbf{w}, b, \boldsymbol{\alpha}) = 0 \text{ donne } \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\nabla_{\mathbf{w},b} \Lambda(\mathbf{w},b,\mathbf{\alpha}) = 0$$
 donne $\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$

$$et \quad \sum_{i=1}^{n} \alpha_i y_i = 0$$

 \blacktriangleright On a par substitution dans $\Lambda(w,b,\alpha)$:

$$\begin{cases} \Lambda(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}) \\ \forall i \ \alpha_{i} \ge 0 \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

- Il faut trouver α qui maximise $\Lambda(w,b,\alpha)$: résoudre $\nabla_{\alpha}\Lambda(w,b,\alpha)=0$
 - \rightarrow n équations linéaires homogènes à n inconnues (les composants de α)

Solution du problème d'optimisation

$$\begin{cases} \hat{\boldsymbol{w}} = \sum_{i=1}^{n_s} \hat{\alpha}_i y_i \boldsymbol{x}_i \\ \hat{b} = y_s - \sum_{i=1}^{n_s} \hat{\alpha}_i y_i (\boldsymbol{x}_i^T \boldsymbol{x}_s) \end{cases}$$

$$D(\boldsymbol{x}) = (\hat{\boldsymbol{w}}^T \boldsymbol{x} + \hat{b})$$

- ^ : estimé
- n_S : nombre de vecteurs de support (x_i avec $\alpha \neq 0$)
- (x_S, y_S) : vecteur de support arbitraire (pour trouver \hat{b})

- Les données X_i avec $\alpha \neq 0$ sont appelées vecteurs de support. Ils correspondent aux points les plus proches de la surface de séparation
- Dans l'expression du Lagrangien pour déterminer \hat{w} et \hat{b} , <u>les donnés x apparaissent uniquement pour</u> <u>former des produits scalaires</u>

$$\Lambda(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \left(\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j} \right)$$

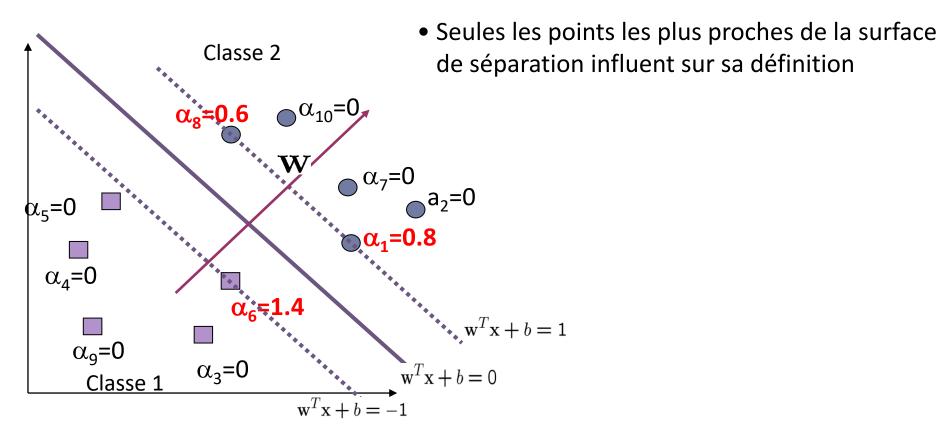
Caractéristiques de la solution

- Puisque plusieurs α_i sont nuls, w est une combinaison linéaire d'un petit nombre de données
- La surface de décision est uniquement déterminée par les n_s vecteurs de support trouvés: $\hat{w} = \sum_{i=1}^{n_s} \hat{\alpha}_i y_i x_i$

$$\hat{b} = y_s - \sum_{i=1}^{n_s} \hat{\alpha}_i y_i (\boldsymbol{x}_i^T \boldsymbol{x}_s)$$

- Pour classer une nouvelle donnée z
 - Calculer $\hat{w}^T z + \hat{b} = \sum_{i=1}^{n_s} \hat{\alpha}_i y_i (x_i^T z) + \hat{b}$ et classer z dans la classe 1 si le résultat est positif et dans la classe 2 s'il est négatif

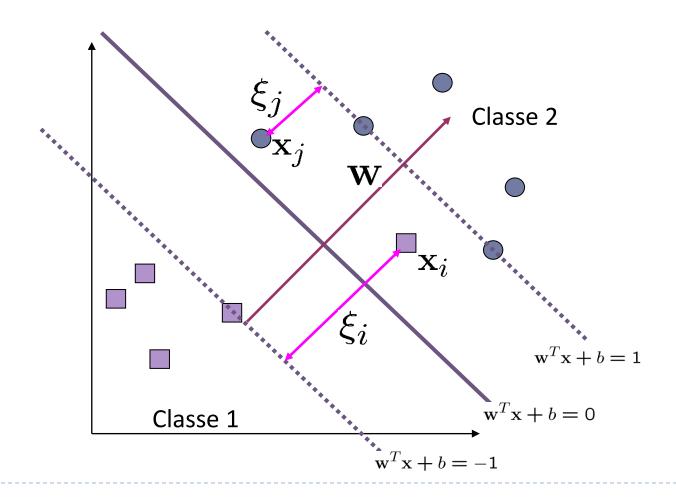
Interprétation géométrique



- Il existe des limites théorique pour l'erreur de classification de données nouvelles
 - Plus grande la marge, plus petite la limite
 - Plus petit le nombre de SV, plus petite la limite

Et pour un cas non linéairement séparable?

• On peut introduire une marge d'erreur ξ_i pour la classification



Hyperplan à marges douces

- $\xi_i = 0$ s'il n'existe pas d'erreur pour X_i
 - \triangleright ξ_i sont des variables qui donnent du "mou" aux marges optimales

$$\begin{cases} \mathbf{w}^T \mathbf{x}_i + b \ge 1 - \xi_i & y_i = 1 \\ \mathbf{w}^T \mathbf{x}_i + b \le -1 + \xi_i & y_i = -1 \\ \xi_i \ge 0 & \forall i \end{cases}$$

Nous voulons minimiser

$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

- C: paramètre de compromis entre l'erreur et la marge
- Le problème d'optimisation devient

Minimize
$$\frac{1}{2}||\mathbf{w}||^2 + C\sum_{i=1}^n \xi_i$$

subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i, \quad \xi_i \ge 0$

Détermination de l'hyperplan de séparation

La forme duale du problème est

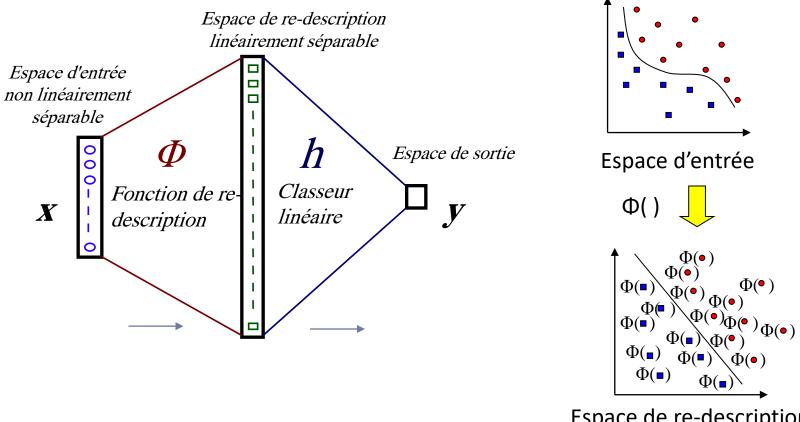
max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $C \ge \alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

- west aussi donné par $\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$
- La seule différence avec le cas linéairement séparable est qu'il existe une limite supérieure ${\it C}$ aux $\alpha_{\rm i}$

Extension à une surface de séparation non-linéaire

 \triangleright « Simplifier les choses » en projetant les x_i dans un espace qui les rend linéairement séparables



Modification due à la transformation

 Substituer les arguments transformés dans les produits scalaires lors de la phase d'apprentissage,

Problème original :
$$\max W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j$$

subject to $C \ge \alpha_i \ge 0, \sum_{i=1}^{n} \alpha_i y_i = 0$

Après transformation :

max.
$$W(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1,j=1}^{n} \alpha_i \alpha_j y_i y_j \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\phi}(\mathbf{x}_i)$$
 subject to $C \ge \alpha_i \ge 0$, $\sum_{i=1}^{n} \alpha_i y_i = 0$

Cependant, trouver $\Phi()$ n'est pas évident!

Modification due à la transformation

Les nouvelles données z sont toujours classées dans la classe 1 si f≥0, la classe 2 sinon :

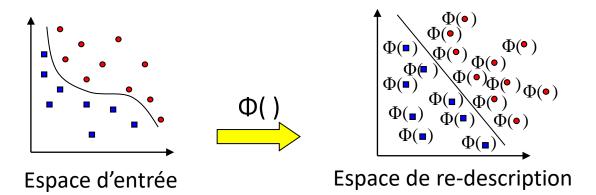
Original:
$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}$$
$$f = \mathbf{w}^T \mathbf{z} + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \mathbf{x}_{t_j}^T \mathbf{z} + b$$

Après xformation :
$$\mathbf{w} = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \phi(\mathbf{x}_{t_j})$$
$$f = \langle \mathbf{w}, \phi(\mathbf{z}) \rangle + b = \sum_{j=1}^{s} \alpha_{t_j} y_{t_j} \phi(\mathbf{x}_{t_j}) \phi(\mathbf{x}_{t_j}) + b$$

et la surface de séparation dans le nouvel espace est : $D(\mathbf{x}) = \sum_{j=1}^{s} \hat{\alpha}_{j} y_{j} \Phi(\mathbf{x}_{j})^{T} \Phi(\mathbf{x}_{j}) + \hat{b}$

Extension à une surface de séparation non-linéaire

- Problèmes cependant :
 - Φ = ?
 - ▶ Grand effort de calcul potentiel (d'explose!)
- SVM à fonctions noyaux résout les deux problèmes
 - Efficacité computationnelle
 - La transformation désirée des données est faite implicitement!



L'astuce des fonctions noyau

Définition d'une fonction noyau :

$$K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$$

- \Rightarrow La connaissance de K() permet de calculer un produit scalaire où intervient Φ () sans connaitre l'expression de Φ ()
- Or, seuls des produits scalaires interviennent dans la solution du problème d'optimisation
 - Un autre avantage d'utiliser K() est qu'il représente intuitivement la similarité entre les x et y, obtenue de nos connaissances a priori
 - Cependant, K(x,y) doit satisfaire certaines conditions (conditions de Mercer) pour que le Φ () correspondant existe

Les conditions de Mercer

■ Pour une fonction *K* symétrique, il existe une fonction Φ telle que :

$$K(x,x') = \Phi(x).\Phi(x') = \sum_{i=1}^{m} g_i(x).g_i(x')$$

ssi, pour toute fonction f telle que : $\int f(x)^2 dx$ est fini

l'on a:
$$\int K(x,x') f(x) f(x') dx dx' \ge 0$$

- Si cette condition est vérifiée, on peut appliquer la fonction noyaux dans le SVM
- lacktriangle MAIS cela ne dit pas comment construire Φ

Exemple illustratif

Définissons la fonction noyau K(x,y) telle que, pour toute paire de vecteurs $x=(x_1, x_2)$ et $y=(y_1, y_2)$:

 $K(\mathbf{x}, \mathbf{y}) = (1 + x_1 y_1 + x_2 y_2)^2$

lacktriangle Considérons maintenant une transformation Φ qui prend un vecteur de dimension 2 et le projette dans un espace de dimension 6 :

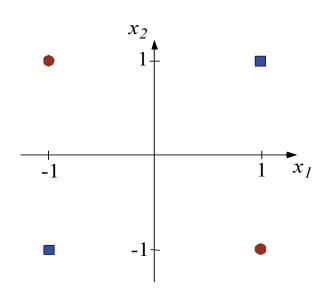
$$\Phi(\mathbf{x}) = \left(1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2\right)$$

On peut voir en effectuant le calcul que

$$\langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle = (1 + x_1 y_1 + x_2 y_2)^2$$

= $K(\mathbf{x}, \mathbf{y})$

On peut donc obtenir le résultat sans avoir à passer par l'espace transformé!



Index i	x_i	y
1	(1,1)	1
2	(1,-1)	-1
3	(-1,-1)	1
4	(-1,1)	-1

Il faut résoudre :

$$\begin{cases} \max_{\alpha} \left(\sum_{i=1}^{4} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} \alpha_{i} \alpha_{j} y_{i} y_{j} K(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) \right) \\ \forall i \quad 0 \leq \alpha_{i} \leq C \\ \sum_{i=1}^{4} \alpha_{i} y_{i} = 0 \end{cases}$$

Si on reprend la fonction noyau $K(x, y) = (1 + x_1y_1 + x_2y_2)^2$, on obtient les équations suivantes pour le Lagrangien :

$$Q(\alpha) = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$$

$$-\frac{1}{2}(9\alpha_1^2 - 2\alpha_1\alpha_2 + 2\alpha_1\alpha_3 - 2\alpha_1\alpha_4$$

$$+9\alpha_2^2 - 2\alpha_2\alpha_3 + 2\alpha_2\alpha_4 + 9\alpha_3^2 - 2\alpha_3\alpha_4 + 9\alpha_4^2)$$

$$\alpha_1 - \alpha_2 + \alpha_3 - \alpha_4 = 0$$

Le maximum de Q(a) est obtenu en prenant ses dérivées par rapport aux α_i et en trouvant les valeurs de α_i qui les annulent :

$$\begin{cases} 1 - 9\alpha_1 + \alpha_2 - \alpha_3 + \alpha_4 = 0 \\ 1 + \alpha_1 - 9\alpha_2 + \alpha_3 - \alpha_4 = 0 \\ 1 - \alpha_1 + \alpha_2 - 9\alpha_3 - \alpha_4 = 0 \\ 1 + \alpha_1 - \alpha_2 + \alpha_3 - 9\alpha_4 = 0 \end{cases}$$

La valeur optimale des multiplicateurs de Lagrange est :

$$\hat{\alpha}_1 = \hat{\alpha}_2 = \hat{\alpha}_3 = \hat{\alpha}_4 = \frac{1}{8}$$

Les 4 données du où exclusif sont donc des vecteurs de support, puisque aucune valeur trouvée de α n'est nulle

Dans l'espace de re-description :

$$\begin{cases} \hat{\boldsymbol{w}} = \sum_{i=1}^{n_s} \hat{\alpha}_i y_i \Phi(\boldsymbol{x}_i) \\ \hat{b} = y_s - \sum_{i=1}^{n_s} \hat{\alpha}_i y_i K(\boldsymbol{x}_i^T \boldsymbol{x}_s) \\ D(\boldsymbol{x}) = \sum_{j=1}^{s} \hat{\alpha}_j y_j K(\boldsymbol{x}_j, \boldsymbol{x}) + \hat{b} \end{cases}$$

Donc: $\hat{w} = \frac{1}{9} \left[-\Phi(x_1) + \Phi(x_2) + \Phi(x_3) - \Phi(x_4) \right]$

$$= \frac{1}{8} \left\{ -\begin{pmatrix} 1\\1\\\sqrt{2}\\1\\-\sqrt{2}\\1\\-\sqrt{2}\\2\\-\sqrt{2} \end{pmatrix} + \begin{pmatrix} 1\\1\\-\sqrt{2}\\1\\-\sqrt{2}\\\sqrt{2} \end{pmatrix} + \begin{pmatrix} 1\\1\\1\\\sqrt{2}\\1\\\sqrt{2}\\-\sqrt{2} \end{pmatrix} - \begin{pmatrix} 1\\1\\1\\\sqrt{2}\\1\\\sqrt{2}\\\sqrt{2} \end{pmatrix} \right\} = \begin{pmatrix} 0\\0\\-1/\sqrt{2}\\0\\0\\0 \end{pmatrix} \quad \text{La marge optimale est:}$$

$$\frac{1}{2} \|\hat{\boldsymbol{w}}\|^2 = \frac{1}{2} \hat{\boldsymbol{w}}^T \hat{\boldsymbol{w}} = \frac{1}{2} \left(\sum_{i=1}^4 \hat{\alpha}_i y_i \Phi(\boldsymbol{x}_i) \right)^T \left(\sum_{j=1}^4 \hat{\alpha}_j y_j \Phi(\boldsymbol{x}_i) \right)$$

(on connait Φ () dans cet exemple, mais il n'est pas requis en général, car l'équation de la marge dépend seulement de K())

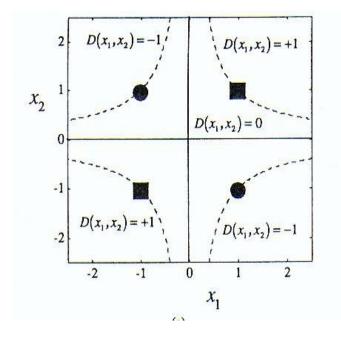
$$\hat{b} = 1 - \frac{1}{8} \sum_{j=1}^{4} y_j K(\mathbf{x}_j, \mathbf{x}_1) = 1 + \frac{1}{8} \sum_{j=1}^{4} (-1)^j K(\mathbf{x}_j, \mathbf{x}_1) = 0$$

$$D(\mathbf{x}) = \frac{1}{8} \sum_{j=1}^{4} y_j K(\mathbf{x}_j, \mathbf{x}) = -\frac{1}{8} \sum_{j=1}^{4} (-1)^j K(\mathbf{x}_j, \mathbf{x}) = -x_1 x_2$$

(on aurait obtenu le même résultat en utilisant Φ () :

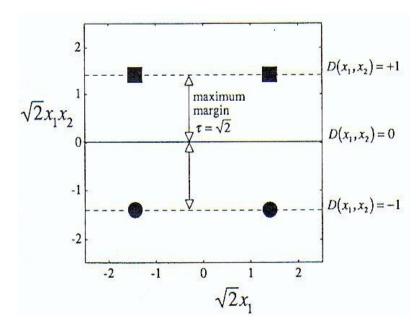
$$\hat{w}^{\mathrm{T}}\Phi(\mathbf{x}) = \left(0, 0, \frac{-1}{\sqrt{2}}, 0, 0, 0\right) \begin{pmatrix} 1 \\ x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \\ \sqrt{2}x_1 \\ \sqrt{2}x_2 \end{pmatrix} = -x_1x_2$$

$$\frac{1}{2} \|\hat{\mathbf{w}}\|^{2} = \frac{1}{2} \hat{\mathbf{w}}^{T} \hat{\mathbf{w}} = \frac{1}{2} \left(\sum_{i=1}^{4} \hat{\alpha}_{i} y_{i} \Phi(\mathbf{x}_{i}) \right)^{T} \left(\sum_{j=1}^{4} \hat{\alpha}_{j} y_{j} \Phi(\mathbf{x}_{i}) \right) \\
= \frac{1}{2} \cdot \frac{1}{8^{2}} \sum_{i=1}^{4} \sum_{j=1}^{4} y_{i} y_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{1}{4} \Rightarrow \|\hat{\mathbf{w}}\| = \frac{1}{\sqrt{2}}$$



Séparatrice dans l'espace d'entrée

$$D(x) = -x_1 x_2$$



Séparatrice dans l'espace $\Phi(x)$

$$\sqrt{2} x_1 x_2 = 0$$

Autre Exemple

- ▶ Supposons 5 nombres x_1 =1, x_2 =2, x_3 =4, x_4 =5, x_5 =6, avec
 - ▶ 1, 2, 6 \in classe 1 (y=1)
 - ▶ $4, 5 \in \text{classe 2} (y=-1)$
 - Donc: $\{(X_i, y_i)\}_{i=1,...,5} = \{(1,1), (2,1), (4,-1), (5,-1), (5,1)\}$
- Utilisons à nouveau le noyau polynomial de degré 2
 - $K(x,y) = (1+x^Ty)^2$
 - C est choisi égal à 100
- ▶ Trouvons d'abord $\{\alpha_i\}_{i=1, ..., 5}$ pour satisfaire :

max.
$$\sum_{i=1}^{5} \alpha_i - \frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5} \alpha_i \alpha_j y_i y_j (x_i x_j + 1)^2$$
$$100 \ge \alpha_i \ge 0, \sum_{i=1}^{5} \alpha_i y_i = 0$$

Exemple

- La solution est :
 - α_1 =0, α_2 =2.5, α_3 =0, α_4 =7.333, α_5 =4.833
 - ▶ Les vecteur supports sont donc $\{x_2=2, x_4=5, x_5=6\}$
- La fonction discriminante est

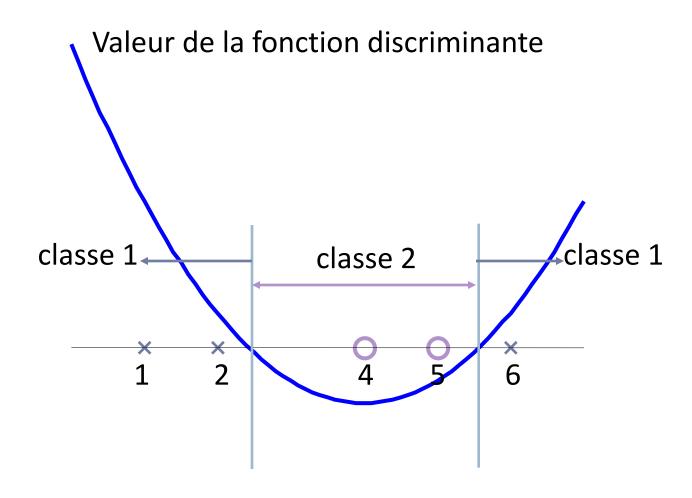
$$f(y) = 2.5(1)(2y+1)^2 + 7.333(-1)(5y+1)^2 + 4.833(1)(6y+1)^2 + b$$

= 0.6667x² - 5.333x + b

b trouvé en résolvant f(2)=1 ou f(5)=-1 ou f(6)=1, puisque x_2 , x_4 , x_5 sont dans $y_i(\mathbf{w}^T\phi(z)+b)=1$ et tous donnent b=9

$$f(y) = 0.6667x^2 - 5.333x + 9$$

Exemple



Exemples de fonctions noyaux

Noyau polynomial de degré d

$$K(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{y} + 1)^d$$

Noyau à fonction à base radiale de dispersion σ

$$K(x, y) = \exp(-||x - y||^2/(2\sigma^2))$$

- Très proche des RN avec fonctions à base radiale
- Sigmoïde avec paramètres κ et θ

$$K(\mathbf{x}, \mathbf{y}) = \tanh(\kappa \mathbf{x}^T \mathbf{y} + \theta)$$

- Ne satisfait pas la condition de Mercer pour tous κ et θ
- La recherche d'autres fonctions noyaux pour diverses applications est très active !

Exemple d'application avec SciKit

```
from sklearn import datasets
from sklearn.model selection import train test split
from sklearn import svm
from sklearn import metrics
#Load dataset
cancer = datasets.load breast cancer()
# print the names of the 30 features
print("Features: ", cancer.feature names)
# print the label type of cancer('malignant' 'benign')
print("Labels: ", cancer.target names)
# print data rows and features
print("rows, features per row: ", cancer.data.shape)
# Split dataset into 70% training set and 30% test set
X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,
test size=0.3,random state=109)
```

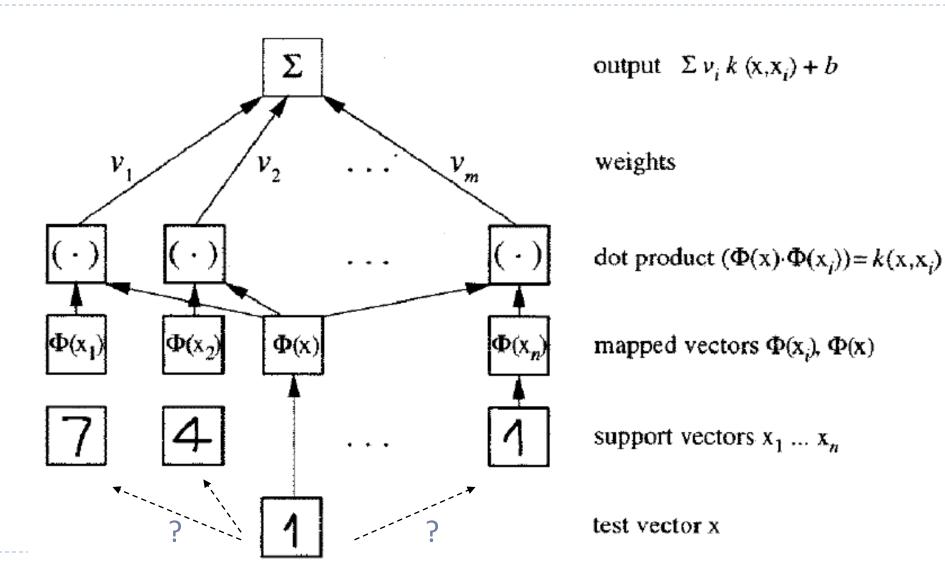
```
#Create a svm Classifier
clf = svm.SVC(kernel='linear') # default=rbf
#Train the model using the training sets
clf.fit(X_train, y_train)
#Predict the response for test dataset
y_pred = clf.predict(X_test)

# Model Accuracy
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred)
```

Classification multi-classes

- SVM est à la base un classifieur binaire
- ▶ On peut changer la formulation pour permettre la classification multi-classe
 - L'ensemble des données est divisé en deux parts de multiples façons, et classé ensuite
 - Un contre tous ou un contre chaque alternative
 - Un SVM séparé est formé pour chaque division
 - La classification multi-classes est accomplie en combinant la sortie de tous les SVM
 - Prône à l'explosion combinatoire des possibilités!

Example d'application des SVM : Reconnaissance de l'écriture manuscrite



Sommaire: étapes de la classification

- Préparer la matrice des patrons
- Choisir la fonction noyau à utiliser
- Choisir les paramètres de la fonction noyau et la valeur de C (valeurs suggérées par le logiciel SVM ou essai-erreur).
- \blacktriangleright Exécuter l'algorithme d'apprentissage pour trouver α_i
- Les données nouvelles peuvent être classées en fonctions des α_i et des vecteurs supports trouvés

Effet des paramètres de contrôle.

- Apprentissage de données en damier
 - Apprentissage de deux classes
 - SVM à fonction noyau gaussienne

$$K(\mathbf{x},\mathbf{x}') = e^{-\frac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}}$$

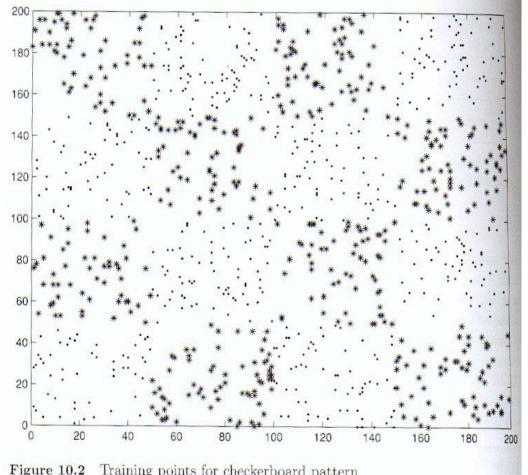


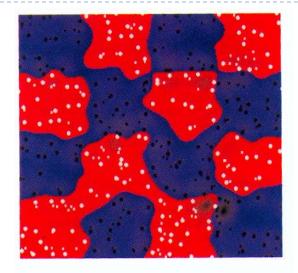
Figure 10.2 Training points for checkerboard pattern

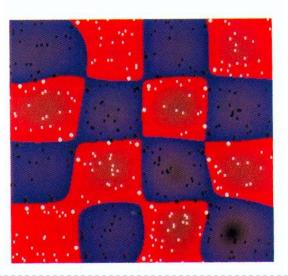
Effet des paramètres de contrôle

- Apprentissage de deux classes
 - exemples tirés uniformément sur l'échiquier
- SVM à fonctions noyau gaussienne

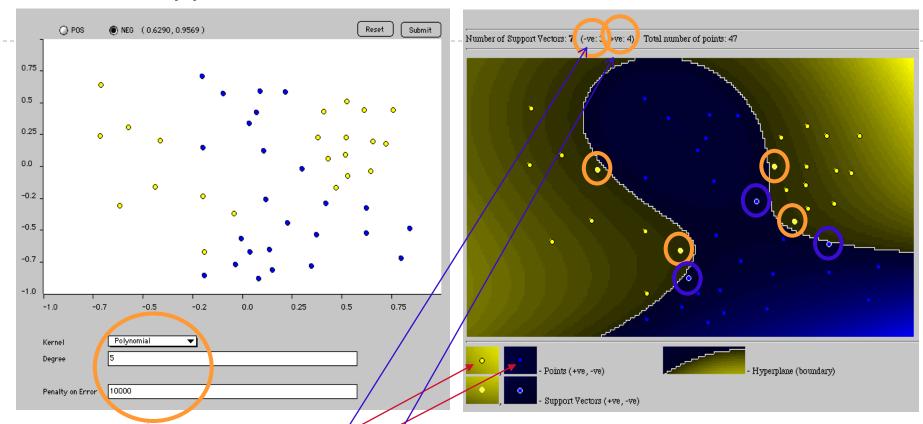
$$K(\mathbf{x},\mathbf{x}') = e^{-\frac{\|\mathbf{x}-\mathbf{x}'\|^2}{2\sigma^2}}$$

- Ici deux valeurs de σ
 - En haut : petite valeur
 - ► <u>En bas</u>: grande valeur
- Les gros points sont des exemples critiques
 - Plus en haut qu'en bas



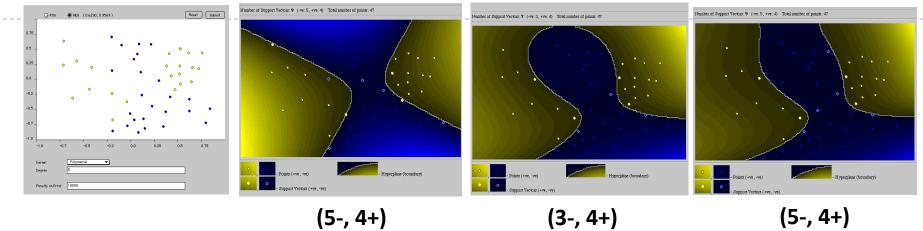


Une applette de démonstration



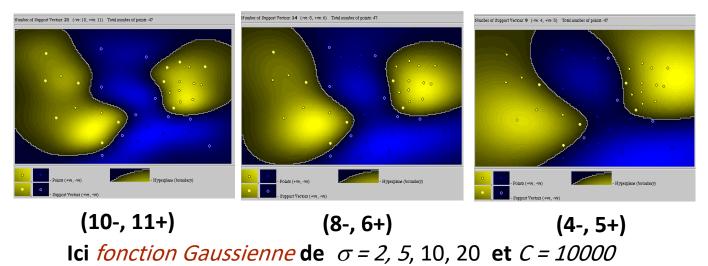
- http://sym.cs.rhul.ac.uk/pagesnew/GPat.shtml
- \blacktriangleright 47 exemples (22 +, 25 -)
- Exemples critiques: 4 + et 3 -
- ▶ Ici fonction polynomiale de degré 5 et C = 10000

Paramètres de contrôle : les fonctions noyau



▶ 47 exemples (22 +, 25 -)

- Ici fonction polynomiale de degré 2, 5, 8 et C = 10000
- Exemples critiques: 4 + et 3 -



Domaines d'application des SVMs

Traitement d'images

- Reconnaissance de caractères manuscrits
- Reconnaissance de scènes naturelles
- Reconnaissance de visages
- Entrées: image bidimensionnelle en couleur ou en tons de gris codée en vecteur de pixels ou traits
- Sortie: classe (chiffre / personne)

Application: images couleurs

- Ex.: Base d'images Corel Stock Photo Collection
 - ▶ 200 catégories
 - ▶ 100 images / catégorie
- Codage
 - Pixel = vecteur dans espace à trois dimensions (RGB)
 - Image = histogramme (fraction des pixels d'une couleur donnée)
 Invariant / nombreuses opérations
- Noyau:

$$K(x,z) = exp(-rac{d(x,z)}{\sigma^2})$$
 $d(x,z) = \sum_{i=1}^n rac{(x_i-z_i)^2}{x_i+z_i}$ (fonction c²)

Domaines d'application des SVMs

- Catégorisation de textes
 - Classification de courriels
 - Classification de pages web
 - Entrées : document (texte ou html)
 - Approche « sac de mots »
 - Document = vecteur de mots (lemmatisés pondérés par tf-idf)
 - Sortie: catégorie (thème, spam/non-spam)
 - Noyau:
 - Produit scalaire des vecteurs
 - ► $C = \infty$ (marge dure)

Domaines d'application des SVMs

Diagnostic médical

- Évaluation du risque de cancer
- Détection d'arythmie cardiaque
- ▶ Évaluation du risque d'accidents cardio-vasculaires à moins de 6 ans
- Entrées : état du patient (sexe, age, bilan sanguin, ...)
- > Sortie:
 - ▶ Classe : à risque ou non
 - Probabilité d'accident à échéance donnée

Extensions

- Leçon à retenir des SVM:
 - Un algorithme linéaire dans l'espace de re-description peut remplacer un algorithme non-linéaire dans l'espace d'entrée
- Les algorithme linéaires classiques peuvent être généralisés en des versions non-linéaires en allant vers l'espace de re-description
 - ▶ ACP à noyaux, k-moyennes à noyaux, etc.
 - Régression
 - Détection de « nouveautés »

Régression vectorielle à support ε (ε -SVR)

- L'idée est de trouver $f(\vec{x}) = \vec{w} \cdot \vec{x} + b$ qui fait l'approximation d'un ensemble $\{\vec{x}_i, y_i\}_{i=1..N}$ avec une déviation maximale de $\pm \varepsilon$ des vraies valeurs de y
 - Les points doivent être compris dans la bande de largeur 2ε .
- ▶ Le problème d'optimisation est :

Min
$$\frac{1}{2}||w||^2 + C \sum_{i=1}^n (\xi_i + \xi_i^*)$$

subject to
$$\begin{cases} u_i - \mathbf{w}^T \mathbf{x}_i - b \le \epsilon + \xi_i \\ \mathbf{w}^T \mathbf{x}_i + b - y_i \le \epsilon + \xi_i^* \\ \xi_i \ge 0, \xi_i^* \ge 0 \end{cases}$$

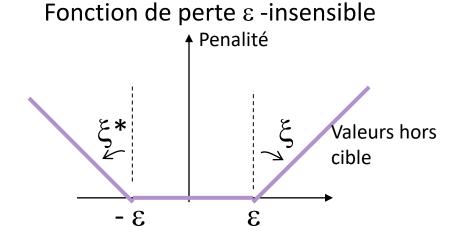
ou ξ_i et ξ_i^* pénalisent les points hors cible

Formulation similaire à SVM

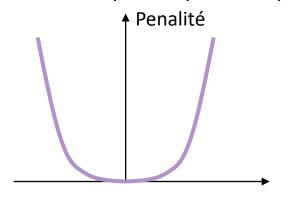


Régression vectorielle à support ε (ε-SVR)

- Régression linéaire dans l'espace de redescription
- À l'encontre de la régression par moindres carrés, la fonction d'erreur est une fonction de perte ε-insensible, et linéaire ensuite
 - Intuitivement, une erreur inférieure à ϵ est ignorée
 - Cela mène à des points de marge terses similaires à SVM



Fonction de perte quadratique

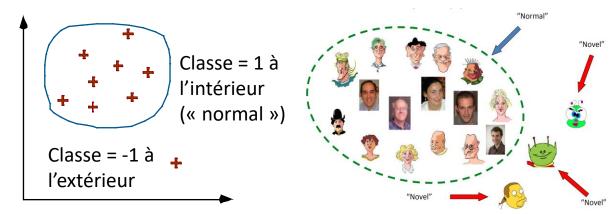


Exemple d'application pour la regression

```
# Support Vector Regression (SVR) using linear and non-linear kernels
                                                                                           for ix, svr in enumerate(svrs):
# 1D regression using linear, polynomial and RBF kernels.
                                                                                                          axes[ix].plot(X, svr.fit(X, y).predict(X), color=model color[ix], lw=lw,
                                                                                           label='{}
                                                                                                                         model'.format(kernel label[ix]))
import numpy as np
                                                                                                           axes[ix].scatter(X[svr.support], y[svr.support], facecolor="none",
from sklearn.svm import SVR
                                                                                                                                        edgecolor=model color[ix], s=50,
import matplotlib.pyplot as plt
                                                                                           label='{} support
# Generate sample data
                                                                                                          vectors'.format(kernel label[ix]))
X = np.sort(5 * np.random.rand(40, 1), axis=0)
                                                                                                          axes[ix].scatter(X[np.setdiff1d(np.arange(len(X)), svr.support )],
y = np.sin(X).ravel()
                                                                                                          y[np.setdiff1d(np.arange(len(X)), svr.support )], facecolor="none",
# Add noise to targets
                                                                                                                         edgecolor="k", s=50, label='other training data')
y[::5] += 3 * (0.5 - np.random.rand(8))
                                                                                                          axes[ix].legend(loc='upper center', bbox to anchor=(0.5, 1.1),
# Fit regression model
                                                                                           ncol=1,
                                                                                                                                        fancybox=True, shadow=True)
svr rbf = SVR(kernel='rbf', C=100, gamma=0.1, epsilon=.1)
                                                                                           fig.text(0.5, 0.04, 'data', ha='center', va='center')
svr lin = SVR(kernel='linear', C=100, gamma='auto')
                                                                                           fig.text(0.06, 0.5, 'targe'
svr poly = SVR(kernel='poly', C=100, gamma='auto', degree=3, epsilon=.1, coef0=1)
                                                                                           fig.suptitle("Support Vec
# Look at the results
lw = 2
                                                                                           plt.show()
svrs = [svr rbf, svr lin, svr poly]
kernel label = ['RBF', 'Linear', 'Polynomial']
model color = ['m', 'c', 'g']
fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(15, 10), sharey=True)
Source: scikit
```

SVM pour le groupement à une classe (One Class SVM)

- Permet la détection de nouveautés ou d'anomalies
 - On cherche à séparer au maximum les points de la classe de l'origine



▶ On trouve $f(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$ en minimisant :

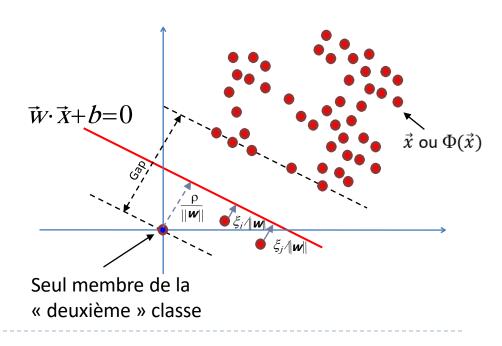
$$\frac{1}{2} \|\vec{w}\|^2 + \frac{1}{\nu N} \sum_{i=1}^{N} \xi_i + b$$

Sous les contraintes $\vec{w} \cdot \vec{x} + b \ge -\xi_i$

$$\xi_i \ge 0$$
 pour $i = 1,...,N$

v permet de régler la fraction de points singuliers

Apprentissage non supervisé! (une seule classe)



Exemple d'utilisation pour la détection d'anomalies

```
print( doc )
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.font manager
from sklearn import sym
xx, yy = np.meshgrid(np.linspace(-5, 5, 500), np.linspace(-5, 5, 500))
# Generate train data
X = 0.3 * np.random.randn(100, 2)
X \text{ train} = np.r [X + 2, X - 2]
# Generate some regular novel observations
X = 0.3 * np.random.randn(20, 2)
X \text{ test} = np.r [X + 2, X - 2]
# Generate some abnormal novel observations
X outliers = np.random.uniform(low=-4, high=4, size=(20, 2))
# fit the model
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
clf.fit(X train)
y pred train = clf.predict(X train)
y pred test = clf.predict(X test)
y pred outliers = clf.predict(X outliers)
n error train = y pred train[y pred train == -1].size
n error test = y pred test[y pred test == -1].size
n error outliers = y pred outliers[y pred outliers == 1].size
```

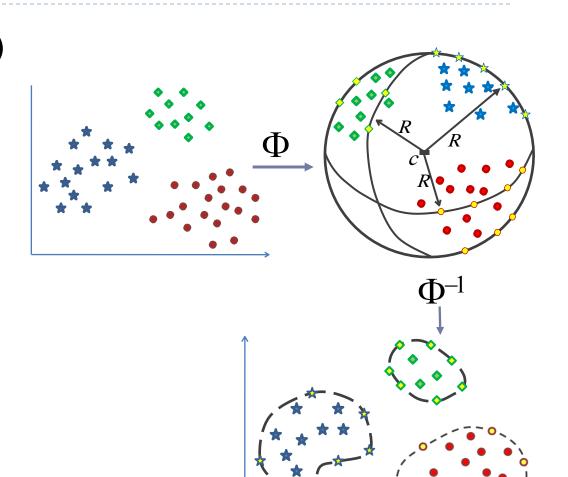
```
# plot the line, the points, and the nearest vectors to the plane
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.title("Novelty Detection")
plt.contourf(xx, yy, Z, levels=np.linspace(Z.min(), 0, 7), cmap=plt.cm.PuBu)
a = plt.contour(xx, yy, Z, levels=[0], linewidths=2, colors='darkred')
plt.contourf(xx, yy, Z, levels=[0, Z.max()], colors='palevioletred')
s = 40
b1 = plt.scatter(X train[:, 0], X train[:, 1], c='white', s=s, edgecolors='k')
b2 = plt.scatter(X test[:, 0], X test[:, 1], c='blueviolet', s=s,
          edgecolors='k')
c = plt.scatter(X outliers[:, 0], X outliers[:, 1], c='gold', s=s,
         edgecolors='k')
plt.axis('tight')
plt.xlim((-5, 5))
plt.ylim((-5, 5))
plt.legend([a.collections[0], b1, b2, c],
      ["learned frontier", "training observations",
       "new regular observations", "new abnormal observations"],
      loc="upper left",
      prop=matplotlib.font manager.FontProperties(size=11))
plt.xlabel(
  "error train: %d/200; errors novel regular: %d/40; "
  "errors novel abnormal: %d/40"
  % (n error train, n error test, n error outliers))
plt.show()
```

SVM pour le groupement de plusieurs classes

- SVDD (support vector domain description) trouve l'hypersphère de plus petit rayon à englober les données
 - Les vecteurs à la surface de l'hypesphère sont des vecteurs de support
- Pour $X = \{x_i\}$ et Φ une transformation de noyau radial (p. ex. gaussien), trouver la plus petite hypersphere de rayon R et centre c qui satisfait :

$$\|\Phi(x_j) - c\|^2 \le R^2 + \xi_j$$
$$\xi_j \ge 0$$

> SVM à une classe avec noyau RBF est une forme de SVDD



Pourquoi ça marche?

La marge est liée à la capacité en généralisation

- Normalement, la classe des hyperplans de R^d est de $d_H = d + 1$
- ► <u>Mais</u> la classe des hyperplans de marge est bornée par : $d_H \le Min(R^2 c, d) + 1$ $\frac{1}{|w|} tq. ||w||^2 \le c$

où R est le rayon de la plus petite sphère englobant l'échantillon d'apprentissage S

∠ Peut être beaucoup plus petit que la dimension d de l'espace d'entrée X

Forces et faiblesses des SVM

Forces

- L'apprentissage est relativement facile
 - Pas de minima locaux comme pour les RNA
- L'algorithme est robuste face aux changements d'échelle
- Le compromis entre la complexité du classeur et l'erreur de classification peut être gérée explicitement
- Méthode générale
 - Des données non conventionnelles, telles des chaînes et des arbres peuvent servir d'entrées au SVM, à la place des vecteurs de traits
- Résultats en général équivalents et souvent meilleurs

Faiblesses

- Il faut trouver la "bonne" fonction noyau
- Problèmes i.i.d. (données indépendantes et identiquement distribuées)
- Deux classes à la fois

Sources documentaires

Ouvrages / articles

- Cornuéjols & Miclet (02): Apprentisage artificiel. Concepts et algorithmes. Eyrolles, 2002.
- Cristianini & Shawe-Taylor (00): Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000.
- ▶ Herbrich (02) : *Learning kernel classifiers*. MIT Press, 2002.
- Schölkopf, Burges & Smola (eds) (98): Advances in Kernel Methods: Support Vector Learning. MIT Press, 1998.
- Schölkopf & Smola (02): *Learning with kernels*. MIT Press, 2002.
- Smola, Bartlett, Schölkopf & Schuurmans (00): Advances in large margin classifiers. MIT Press, 2000.
- Vapnik (95): *The nature of statistical learning.* Springer-Verlag, 1995.

Sites web

- http://www.kernel-machines.org/ (point d'entrée)
- http://www.support-vector.net (point d'entrée)

Implémentation des SVMs

- Minimisation de fonctions différentiables convexes à plusieurs variables
 - Pas d'optima locaux
 - Mais:
 - Problèmes de stockage de la matrice noyau (si milliers d'exemples)
 - Long dans ce cas
 - D'où mise au point de méthodes spécifiques
 - Gradient sophistiqué
 - Méthodes itératives, optimisation par morceaux
 - Plusieurs packages publics disponibles
 - SVMTorch
 - ▶ SVM^{Light}
 - ► SMO
 - **...**

Logiciels

- Une liste de réalisations de SVM se trouve à http://www.kernel-machines.org/software.html
- Certaines (tel LIBSVM) peuvent gérer la classification multi-classe
- SVMLight figure parmi les premières mises en oeuvres de SVM (écrit en c ; http://svmlight.joachims.org/)
- ▶ IL existe plusieurs boîtes à outils Matlab pour les SVM sur le web
- Scikit aussi inclut SVM

Autres ressources

- http://www.kernel-machines.org/
- http://www.support-vector.net/
- http://www.support-vector.net/icml-tutorial.pdf
- http://www.kernel-machines.org/papers/tutorial-nips.ps.gz
- http://www.clopinet.com/isabelle/Projects/SVM/applist.html

Conclusion

- SVM sont une alternative aux réseaux de neurones pour la classification binaire
- Concepts clés des SVM : maximiser la marge et exploiter l'astuce des noyaux
- Domaine de recherche encore d'intérêt
- ▶ Plusieurs mises en œuvre en logiciel libre existent et sont disponible sur le WEB!