République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université Mohamed BOUDIAF - M'sila

Faculté des sciences

Domaine : Science de la Matière (SM)

Socle commun: L1 – S1

Matière : TP Physique 1

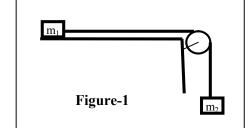
TP 02 2° loi de Newton

Déroulement de l'expérience	://
Enseignant correcteur	:

Compte rendu fait par :

Nom	Prénom	Groupe	Sous groupe	Note d'int	Note finale
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20
				/5	/20

Année Universitaire : 2021/2022


TP 02 2º loi de Newton

1-But de l'expérience

Le but est de montrer avec une simple expérience la 2^{eme} loi de Newton « $\vec{F} = m\vec{a}$ » ainsi de déterminer la valeur « g » de l'accélération de la pesanteur.

2- Travail de préparation

Sur la figure -1- est représenté une masselotte « m₂ » plongée dans le champ de la gravitation, acquière un mouvement. Elle entraîne, par l'intermédiaire d'un fil inextensible, un mobile autoporteur de masse « m₁ » qui glisse sur un rail sans frottements.

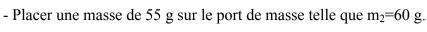
On néglige la masse de la poulie ainsi que les frottements du fil passant par sa gorge.

- 1-Faites l'inventaire des forces extérieures appliquées au mobile autoporteur de masse « m₁ » et à la masselotte « m₂ » sur la figure -1-
- 2-Appliquer la deuxième loi de Newton au mobile autoporteur (m_1) et à la masselotte (m_2) .

.....

	3						1			1	
 		 	 	 	 	• • • • •	 	 	 		
 		 	 •								

3-En projetant celles-ci sur des axes différents. Écrire les équations des forces pour chaque masse


- 4-Déduire l'expression littérale de l'accélération (a) du système en fonction de m₁, m₂ et g.
- 5-Quel est le type de mouvement ?
- 6-Donner l'équation temporaire de ce mouvement.....

3 Pratique:

3.1 Etude des variations de la distance en fonction du temps :

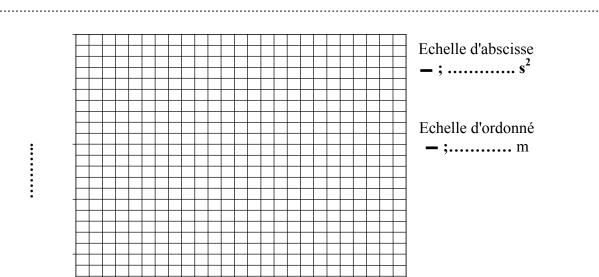
Faire le montage expérimental de la figure 2

- m₁: chariot avec surcharges
- m₂: masselottes
- B.O: Barrière optique
- Peser la masse du chariot puis ajouter une masse de 100 g, de tel sorte que : $m_1 = m_{chariot} + 100$ (g).

- Placer la longuette sur le chariot et mesurer sa largeur $\delta x = 5$ mm.
- Placer la barrière optique à la position S.
- Mettre en marche la soufflerie.
- Mettre le chronomètre dans la position zéro, puis libérer le mouvement.
- Prendre deux mesures.
- Choisir une nouvelle distance (position S) de pas de 10 cm et refaire les étapes précédentes.

S (cm)	30	40	50	60	70
t_1 (s)					
t_2 (s)					
t_{moy} (s)					
t^2 (s ²)					
a (m/s ²)					
g (m/s ²)					

Tableau 1


TP 02 2º loi de Newton

Questions

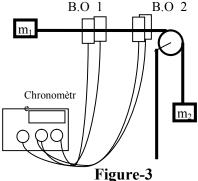
- 1- Remplir le tableau 1.
- 2- Tracer la courbe $S = f(t^2)$ (figure ci-dessous), puis en déduire la valeur de g_{exp} .
- 3- Déduire du tableau la valeur de g de la ville de M'sila.

g_{exp}=.....

4- Quelles distances, courtes ou longues, utilisez-vous pour avoir la meilleure valeur de g_{exp}.

3.2 Relation entre accélération et force

Faire le montage expérimental de la figure 3.

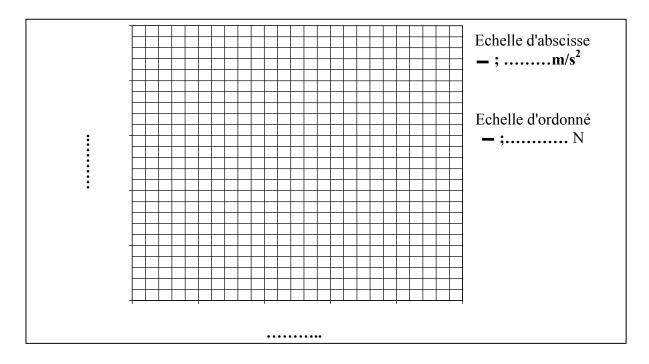

On étudie la relation entre l'accélération du système (a) et la force accélératrice $(F=m_2.g)$ (on prend l'accélération de la pesanteur « g_{exp} » de la première partie).

- Pour varier *F* on enlève une masse d'un côté et on la remet de l'autre côt**é** tel sorte que la somme m₁+m₂ du système est reste constante.
- Fixer les barrières optiques à des distances longues.
- Mettre le chariot à la position initiale et régler le chronomètre de tel sorte qu'il indique les temps parcourus t_i et les temps de passage « δt_i » de la longuette de largeur δx =5mm par chaque barrière optique.
- Porter sur le tableau 2 les valeurs des t_i et δt_i .
- Répéter l'opération une deuxième fois.

Questions

- 1- Remplir le tableau 2.
- 2- Que constatez-vous du rapport « F/a »?
- 3- Tracer la variation de « F » avec « a » (figure ci-dessous).
- 4- Que représente la pente ? Comparez-là avec le rapport « F/a » ?

.....



3

TP 02 2º loi de Newton

$m_2(g)$	5	10	20	30	40
$m_1(g)$					
$[m_1+m_2](g)$	305	305	305	305	305
$F = m_2.g(N)$					
$t_1(s)$					
$t_2(s)$					
$\delta t_1(\mathbf{s})$					
$\delta t_2(\mathbf{s})$					
$v_1 = \delta x / \delta t_1 \text{ (m/s)}$					
$v_2 = \delta x / \delta t_2 \text{ (m/s)}$					
$a = (v_2 - v_1)/(t_2 - t_1)$ (m/s ²)					
F/a					

Tableau 2

Donner une conc	clusion.	