Faculté des Mathématiques et de l'informatique Licence mathématiques LMD

Département de Mathématiques 3^{eme} année S_5 (2020 - 2021)

Examen de rattrapage (Mesure et intégration)

λ désigne la mesure de Lebesgue sur \mathbb{R} .

Exercice 01 (03 points):

- 1. Donner la définition d'une mesure positive sur une tribu A.
- 2. Citer le théorème de la convergence dominée de Lebesgue.

Exercice 02 (**08 points**) : Soit A et B de ensembles non vides, tels que $A \cap B \neq \emptyset$. On pose $X = A \cup B$. Soit $\mathcal{A} = \{\emptyset, A, B, A \setminus B, B \setminus A, A \cap B, A\Delta B, X\}$. **Rappelle :** $A\Delta B = (A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A)$.

- 1. Montrer que A est une tribu sur X.
- 2. Soit μ une mesure définie sur \mathcal{A} , vérifie :

$$\mu(A \setminus B) = 3$$
 $\mu(B \setminus A) = 2$ $\mu(A \cap B) = 1$.

Calculer $\mu(A)$, $\mu(B)$, $\mu(A\Delta B)$, $\mu(X)$.

3. Soit les fonctions φ et ψ , définies de (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ comme suivant :

$$\forall x \in X : \varphi(x) = 2\chi_{A \setminus B}(x) + 3\chi_{B \setminus A}(x) + \chi_{A \cap B}(x) \qquad \psi(x) = \chi_A(x) + \chi_B(x).$$

- i) Monterer que φ et ψ sont des fonctions mesurables.
- ii) Calculer $\int_X \varphi d\mu$.
- iii) Calculer $\int_X \psi d\mu$.

Exercice 03 (09 points): Soit la suite des fonctions $\{f_n\}_{n=1}^{\infty}$, de $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$ dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$,

définie par :
$$\forall x \in \mathbb{R} : f_n(x) = \begin{cases} n : x \in \left[-\frac{1}{2n}, \frac{1}{2n} \right] \\ 0 : x \notin \left[-\frac{1}{2n}, \frac{1}{2n} \right] \end{cases}$$

- 1. Tracer la représentation graphique de f_1, f_2, f_3 .
- 2. Montrer que la suite $\{f_n\}_{n=1}^{\infty}$ est Lebesgue mesurable.
- 3. Montrer que la suite $\{f_n\}_{n=1}^{\infty}$ converge siplement vers $f \equiv 0$.
- 4. Cette convergence est elle uniforme?
- 5. Comparer entre $\lim_{n\to+\infty}\int_{\mathbb{R}}f_nd\lambda$ et $\int_{\mathbb{R}}fd\lambda$.
- 6. Soit θ une fonction continue sur , et soit ρ la primitive de θ . Montrer que :

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} f_n(x)\theta(x)dx = \rho'(0) = \theta(0)$$

.

Corrigé de l'examen de rattrapage 20-21 (Mesure et intégration)

Exercice 01 (03 points):

- 1. (1.5 points) Soit (X, A) un espace mesurable, et soit la fonction μ une application de A dans \mathbb{R} . On dit que μ et une mesure positive si et seulement si :
 - i) Pour toute $A \in \mathcal{A}$, on a $\mu(A) \geq 0$,
 - ii) $\mu(\emptyset) = 0$,
 - iii) pour toute <u>suite dénombrable</u> $\{A_n\}_{n=1}^{+\infty}$ des éléments disjoints deux à deux de $\underline{\mathcal{A}}$, on

a:
$$\mu\left(\bigcup_{n=1}^{+\infty} A_n\right) = \sum_{n=1}^{+\infty} \mu(A_n).$$

- 2. (1.5 points) Soit $\{f_n\}_{n=1}^{\infty}$ une suite des fonctions intégrables définie d'un espace mesuré (X, \mathcal{A}, μ) dans $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, \lambda)$. Supposons que :
 - (a) $\{f_n\}_{n=1}^{\infty}$ converge μ -ppt vers une fonction f.
 - (b) Il existe une fonction intégrable g telle que $|f_n| \le g \mu$ ppt pour tout n.

$$\text{Alors}: f \text{ est} \underline{\text{ intégrable}} \text{ et } \underline{f_n} \overset{L^1(X,\mu)}{\longrightarrow} \underline{f} \text{ (ce qui donne } \lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu \text{)}.$$

Exercice 02 (08 points) : $A \neq \emptyset, B \neq \emptyset, A \cap B \neq \emptyset, X = A \cup B$.

- 1. On a:
 - i) (0.5 point) $\emptyset \in \mathcal{A}$,
 - ii) (0.5 point) $\emptyset^c = X \in \mathcal{A}, A^c = B \setminus A \in \mathcal{A}, B^c = A \setminus B \in \mathcal{A}, (A \setminus B)^c = B \in \mathcal{A}, (B \setminus A)^c = A \in \mathcal{A}, (A \cap B)^c = A\Delta B \in \mathcal{A}, (A\Delta B)^c = A \cap B \in \mathcal{A}, X^c = \emptyset \in \mathcal{A},$
 - iii) (01 point) $\forall E \in \mathcal{A} : \emptyset \cup E = E \in \mathcal{A}, E \cup E = E \in \{A\}, X \cup E = X \in \mathcal{A}, A \cup B = X \in \mathcal{A}, A \cup (A \setminus B) = A \in \mathcal{A}, A \cup (B \setminus A) = X \in \mathcal{A}, A \cup (A \cap B) = A \in \mathcal{A}, A \cup (A \cap B) = X \in \mathcal{A}, B \cup (A \cap B) = X \in \mathcal{A}, B \cup (A \cap B) = X \in \mathcal{A}, B \cup (A \cap B) = X \in \mathcal{A}, B \cup (A \cap B) = X \in \mathcal{A}, B \cup (A \cap B) = X \in \mathcal{A}, A \cup (A \setminus B) \cup (B \setminus A) = A \cap B \in \mathcal{A}, (A \setminus B) \cup (A \cap B) = A \cap B \in \mathcal{A}, (A \setminus B) \cup (A \cap B) = A \cap B \in \mathcal{A}, (B \setminus A) \cup (A \cap B) = A \cap B \in \mathcal{A}, (A \cap B) \cup (A \cap B) = X \in \mathcal{A}.$

Donc : \mathcal{A} est une tribu sur X.

- 2. (0.5 point) les ensembles $A \setminus B$, $B \setminus A$, $A \cap B$ sont disjoints deux à deux, donc :
 - i) (0.5 point) $\mu(A) = \mu((A \setminus B) \cup (A \cap B)) = \mu(A \setminus B) + \mu(A \cap B) = 4$,
 - ii) (0.5 point) $\mu(B) = \mu((B \setminus A) \cup (A \cap B)) = \mu(A \setminus B) + \mu(A \cap B) = 3$,
 - iii) (0.5 point) $\mu(A \Delta B) = \mu((A \setminus B) \cup (B \setminus A)) = \mu(A \setminus B) + \mu(B \setminus A) = 5$,
 - $\mathbf{vi)} \ \ \mathbf{(0.5 \ point)} \ \mu(X) = \mu((A \backslash B) \cup (B \backslash A) \cup (A \cap B)) = \mu(A \backslash B) + \mu(B \backslash A) + \mu(A \cap B) = 6.$
- 3. $\forall x \in X : \varphi(x) = 2\chi_{\{1\}}(x) + \chi_{\{2\}}(x) + \chi_{\{3,4,5\}}(x) \qquad \psi(x) = x.$
 - i) (1.5 points)

1ère réponce:

 φ et ψ sont des fonctions simples, donc mesurables.

2ème réponce:

- * $A \in \mathcal{A}$, donc χ_A est une fonction mesurable,
- * $B \in \mathcal{A}$, donc χ_B est une fonction mesurable,
- * $A \setminus B \in \mathcal{A}$, donc $\chi_{A \setminus B}$ est une fonction mesurable,
- * $A \setminus B \in \mathcal{A}$, donc $\chi_{B \setminus A}$ est une fonction mesurable,
- * $A \setminus B \in \mathcal{A}$, donc $\chi_{A \cap B}$ est une fonction mesurable. Alors:
- * $\varphi = 2\chi_{A \setminus B} + \chi_{B \setminus A} + 3\chi_{A \cap B}$ est une fonction mesurable.
- * $\psi = \chi_A + \chi_B$ est une fonction mesurable.

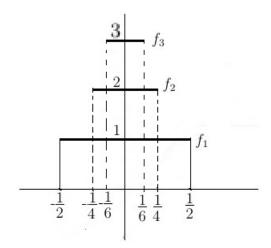
ii) (01 point)
$$\int_X \varphi d\mu = 2\mu(A\setminus B) + \mu(B\setminus A) + 3\mu(A\cap B) = 11.$$

$$\psi = \chi_A + \chi_B = \chi_{(A \setminus B) \cup (A \cap b)} + \chi_{(B \setminus A) \cup (A \cap b)} = \chi_{A \setminus B} + \chi_{B \setminus A} + 2\chi_{A \cap B}.$$
(0.5 points) Alors:

$$\int_X \psi d\mu = \mu(A \setminus B) + \mu(B \setminus A) + 2\mu(A \cap B) = 7.$$

Exercice 03 (09 points):
$$\forall x \in \mathbb{R} : f_n(x) = \begin{cases} n : x \in \left[-\frac{1}{2n}, \frac{1}{2n} \right] \\ 0 : x \notin \left[-\frac{1}{2n}, \frac{1}{2n} \right] \end{cases}$$

1. (1.5 points) Représentation graphique :



2. (1.5 point) $f_n = \chi_{[-\frac{1}{2n}, \frac{1}{2n}]}$, et $[-\frac{1}{2n}, \frac{1}{2n}]$ est une partie mesurable, donc $\{f_n\}_{n=1}^{\infty}$ est Lebesgue mesurable.

3. (1.5 point) Soit
$$x \in \mathbb{R}$$
,

il existe
$$n_0 \in \mathbb{N}^*$$
 tel que $|x| > \frac{1}{n_0}$. Alors : $f_n(x) = 0, \forall n \geq n_0$.

Donc,
$$\lim_{n \to +\infty} f_n(x) = 0$$
.

4. **(1.5 points)** On a

$$\lim_{n \to +\infty} \sup_{x \in \mathbb{R}} |f_n(x) - f(x)| = \lim_{n \to +\infty} n = +\infty.$$
 Donc: la convergence n'est pas uniforme.

5. (1.5 points) On a :
$$\int_{\mathbb{R}} f_n d\lambda = \int_{-\frac{1}{2n}}^{\frac{1}{2n}} n dx = 1. \text{ Alors : } \lim_{n \to +\infty} \int_{\mathbb{R}} f_n d\lambda = 1.$$

$$\int_{\mathbb{R}} f d\lambda = 0.\lambda(\mathbb{R}) = 0 \times (+\infty) = 0.$$

Donc:
$$\lim_{n \to +\infty} \int_{\mathbb{R}} f_n d\lambda \neq \int_{\mathbb{R}} f d\lambda$$
.

6. (1.5 points)

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} f_n(x)\theta(x)dx = \lim_{n \to +\infty} \int_{-\frac{1}{2n}}^{\frac{1}{2n}} n\theta(x)dx = \lim_{n \to +\infty} n \left[\rho\left(\frac{1}{2n}\right) - \rho\left(-\frac{1}{2n}\right) \right].$$

On pose
$$h = \frac{1}{2n}$$
, alors:

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} f_n(x)\theta(x)dx = \lim_{h \to 0} \frac{\rho(h) - \rho(-h)}{2h} = \rho'(0) = \theta(0).$$