

🛎 Examen d'Analyse (Session Normale) 🕰

1^{er} Année Socle Commun

Durée : 1 h et 30 min

Module Analyse 1

Exercice 1:

6 points

Soit l'ensemble A définie par $A = \left\{5 - \frac{1}{2n-1}: n \in \mathbb{N}^*\right\}$. Alors,

- 1. Montrer que $\forall n \in \mathbb{N}^* : 4 \le 5 \frac{1}{2n-1} < 5$. En on déduit la bornitude de A.
- 2. Montrer que la suite $(u_n)_{n\geq 1}$ de terme générale $u_n=5-\frac{1}{2n-1}$ est strictement croissante et puis calculer sa limite.
- 3. Déterminer $\inf(A)$. Est ce que A admet le petit élément (i.e., $\min(A)$)?
- 4. Déduire $\sup(A)$. Est ce que A admet le grand élément (i.e., $\max(A)$)?
- 5. En utilisant le propriété caractéristique de borne supérieure, sup, montrer que $\sup(A) = 5$.

Exercice 2:

7 points

Soit la suite (u_n) définie par la relation de récurrence $\begin{cases} u_0 = 9e \\ u_{n+1} = 3\sqrt{u_n} \text{ pour tout } n \in \mathbb{N}. \end{cases}$ Posons $v_n = \ln\left(\frac{u_n}{9}\right)$ pour tout $n \in \mathbb{N}$.

- 1. Montrer que la suite (v_n) est une suite geométrique et calculer son raison q et la premier terme v_0 .
- 2. Écrire v_n et u_n en fonction de n.
- 3. Calculer les limites $\lim_{n\to+\infty} v_n$ et $\lim_{n\to+\infty} u_n$.

Exercice 3:

7 points

Soit la fonction f définie sur D =]-2,2] par $f(x) = \sqrt{\frac{2-x}{x+2}}$.

- 1. Montrer que f est continue sur D. Est-elle dérivable ?
- 2. Montrer que f est strictement décroissante sur] 2, 2]. Puis calculer f(D).
- 3. Montrer que l'équation f(x) = x admet une solution unique dans l'intervalle]0,1[.