Université de M'sila

Faculté des Mathématiques et de l'Informatique

$\mathbf{1}^{ier}$ Socle commun

 $Module: Analyse \hbox{-} 1$

Correction d'examen (Session normale) : 24/02/2021

Durée de l'examen : 1 Heure et 30 Minutes

$Ce\ sujet\ comporte\ 3\ exercices$:

	Exercice 1:	Les ensembles bornées, sup, inf, max, min	6	points
_	Exercice 2:	Les suites numériques	7	points
	Exercice 3:	Les fonctions	7	points

Correction d'exercice 1 : (6 pts)

- **1 -** Pour tout $n \in \mathbb{N}^*$, on a $n \ge 1 \Leftrightarrow 2n-1 \ge 1 \Leftrightarrow 0 < \frac{1}{2n-1} \le 1 \Leftrightarrow -1 \le -\frac{1}{2n-1} < 0 \Leftrightarrow 4 \le 5 \frac{1}{2n-1} < 5$. Alors, en on déduit que $A \subset [4,5[$, c'est-à-dire A est bornée.
- **2 a)** On a : $\forall n \in \mathbb{N}^*$: $u_{n+1} u_n = 5 \frac{1}{2n+1} (5 \frac{1}{2n-1}) = \frac{2}{(2n+1)(2n-1)} > 0$. Donc, $(u_n)_{n \ge 1}$ est strictement croissante sur \mathbb{N}^* .
 - **b)** $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} (5 \frac{1}{2n-1}) = 5.$
- **3 -** Comme 4 et un minorant de A, car $\forall n \in \mathbb{N}^* : 5 \frac{1}{2n-1} \ge 4$ et $4 \in A$ (pour n=1). Donc, $\inf(A) = 4$. Dans ce cas là, en on déduit que $\min(A) = 4$.
- 4 D'après le théorème des suites monotones, on obtient $\sup(A) = \sup\{u_n : n \in \mathbb{N}^*\} = \lim_{n \to +\infty} u_n = 5.$ Comme $5 \notin A$, alors, $\max(A)$ n'existe pas.
- **5** Maintenant, on montre que $\sup(A) = 5$.

$$\sup(A) = 5 \Leftrightarrow \begin{cases} (i) & \forall u_n \in A & : u_n \le 5 \\ (ii) & \forall \varepsilon > 0, \exists u_{n_0} \in A & : 5 - \varepsilon < u_{n_0}. \end{cases}$$
 (1)

D'après ce que précédent (i) est évident, car $A \subset [4, 5[$. Montrons (ii). Soit $\varepsilon > 0$, alors, on a $u_n \in A \Rightarrow \exists n \in \mathbb{N}^* : u_n = 5 - \frac{1}{2n-1}$. Donc, $5 - \varepsilon < u_{n_0} \Leftrightarrow 5 - \varepsilon < 5 - \frac{1}{2n_0 - 1} \Leftrightarrow \frac{1}{2n_0 - 1} < \varepsilon \Leftrightarrow 2n_0 - 1 > \frac{1}{\varepsilon} \Leftrightarrow n_0 > \frac{1 + \varepsilon}{2\varepsilon}$, d'après le théorème d'Archimède un tel naturel n_0 existe tel que $n_0 > \frac{1 + \varepsilon}{2\varepsilon}$, on choisit, habituellement $n_0 = \left[\frac{1 + \varepsilon}{2\varepsilon}\right] + 1$ pour garantir (1).

01 pt

02 pt

01 pt

01 pt

01 pt

0.5 pt

Correctio d'exercice 2 : (7 pts)

- 1 On a pour tout $n \in \mathbb{N}$: $v_{n+1} = \ln(\frac{u_{n+1}}{9}) = \ln(\frac{3\sqrt{u_n}}{9}) = \ln(\sqrt{\frac{u_n}{9}}) = \ln\left(\frac{u_n}{9}\right)^{\frac{1}{2}} = \frac{1}{2}\ln\left(\frac{u_n}{9}\right) = \frac{1}{2}v_v.$ Donc, (v_n) est une suite geométrique de raison $q = \frac{1}{2}$ et $v_0 = \ln(\frac{u_0}{9}) = \ln(e) = 1$.
- **2** Les termes générales des (v_n) et (u_n) .
 - a) On a pour tout $n \in \mathbb{N}$: $v_n = v_0 q^n$, c'est-à-dire, $v_n = \left(\frac{1}{2}\right)^n$.
 - **b)** Comme, $v_n = \ln(\frac{u_n}{9}) \Leftrightarrow u_n = 9e^{v_n}$. Alors, par conséquent, on aura, $u_n = 9e^{(\frac{1}{2})^n}$.

Correction	d'examen-Ana	1-S1.

mi

01 pt
$$\lim_{x \to +\infty} v_n = \lim_{x \to +\infty} \left(\frac{1}{2}\right)^n = 0, \text{ car } q \in]-1,1[.$$
01 pt
$$\lim_{x \to +\infty} u_n = \lim_{x \to +\infty} 9e^{\left(\frac{1}{2}\right)^n} = 9e^0 = 9.$$

Correction d'exercice 3:(7 pts)

- **1 a)** Comme les fonctions suivantes $x \mapsto 2-x$, $x \mapsto x+2$, sont continues sur D. Alors, la fonction $x \mapsto \frac{2-x}{x+2}$ est continue sur D. Par conséquent la fonction $x \mapsto \sqrt{\frac{2-x}{x+2}}$ aussi continue sur D =]-2,2]. Car, $\forall x \in]-2,2]: \frac{2-x}{x+2} \geq 0$ et la fonction $x \mapsto \sqrt{x}$ est continue sur \mathbb{R}_+ .
 - **b)** On a la fonction $x \mapsto \frac{2-x}{x+2}$ est dérivable sur D. Donc la fonction $x \mapsto \sqrt{\frac{2-x}{x+2}}$ est dérivable sur]-2,2[. car $\forall x \in]-2,2[$: $\frac{2-x}{x+2}>0$ et la fonction $x \mapsto \sqrt{x}$ est dérivable où x>0.
- **2 a)** On a pour tout $x \in]-2, 2[:$

$$f'(x) = \frac{\left(\frac{(2-x)}{(x+2)}\right)'}{2\sqrt{\frac{2-x}{x+2}}} = \frac{\frac{-4}{(x+2)^2}}{2\sqrt{\frac{2-x}{x+2}}}$$
$$= \frac{-2\sqrt{(x+2)}}{(x+2)^2\sqrt{2-x}} = \frac{-2}{(x+2)^{\frac{3}{2}}\sqrt{2-x}}.$$

Donc, $\forall x \in]-2, 2[:f'(x) < 0$. Car $\forall x \in]-2, 2[:(x+2)^{\frac{3}{2}}\sqrt{2-x} > 0$. Par conséquent f est strictement décroissante sur D.

- b) D'après qui ce précède f est continue et strictement décroissante. Donc, d'après un théorme (image d'intervalle par une fonction continue). 0n a : $\forall x \in]-2,2]$: $-2 < x \le 2 \Rightarrow f(2) \le f(x) < \lim_{\substack{x \to -2 \\ >}} f(x) \Rightarrow 0 \le f(x) < +\infty$. D'où $f(D) = [0, +\infty[$.
- **3 -** Posons g(x) = f(x) x pour tout $x \in]0,1[$. Alors, on remarque que la fonction g est satisfaite toutes les conditions de théorème des valeurs intermédiaires. En effet
 - a) g est continue sur]0,1[, car les fonctions f et $x\mapsto x$ sont continues sur $]0,1[\subset]-2,2[$.
 - b) g(0) = 1 > 0 et $g(1) = \frac{1}{\sqrt{3}} 1 = \frac{1 \sqrt{3}}{\sqrt{3}} < 0$, c'est-à-dire $g(0) \times g(1) < 0$. Donc, d'après le théorème précédente, il existe $c \in]0,1[$ tel que g(c) = 0. Par conséquent f(c) c = 0, c'est-à-dire l'équation f(x) = x admet au moins une solution dans]0,1[. Comme la fonction f est strictement décroissante, alors la solution est unique.

FIN.

01 pt

1.5 pt

01 pt

0.5 pt

0.5 pt

0.5 pt

0.5 pt

0.25 pt 0.25 pt

0.25 pt

 $0.25 \mathrm{\ pt}$