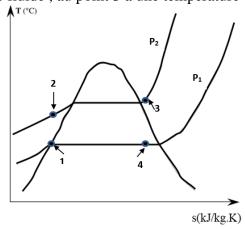
Faculté de technologie Option : Energétique Module conversion d'énergie Enseignant : A.BERKACHE

CORRECTION EXAMEN FINAL

EXERCICE 1


Le cycle de Hirn est un cycle de Rankine avec une surchauffe. Il comporte les transformations suivantes :

- 1-2 Compression isentropique de l'eau liquide de $P_1 = 10$ kPa à $P_2 = 2$ MPa dans la pompe.
- 2-3 Chauffage puis vaporisation à pression constante P2, dans la chaudière.
- 3-4 Détente isentropique de la pression P₂ à la pression P₁, dans la turbine.


La vapeur est sèche à l'entrée de la turbine, représentée par le point 3 sur le diagramme entropique (T, S) ci-joint.

4-1 Condensation dans le condenseur à la pression P_1 et à la température T_1 constantes, jusqu'à l'état liquide saturé.

À la sortie de la chaudière, le fluide, au point 3 a une température $T_3 = 300$ °C.

1. Représenter le schéma de principe de cette installati s(kJ/kg.K) vapeur, en indiquant le sens de parcours du fluide et en numérotant la position du fluide aux entrées et sorties des différents éléments (chaudière, condenseur, pompe, turbine).

- 2. Donner la nature de l'eau (liquide ou vapeur) du cycle sur le diagramme entropique (coordonnée T s) joint aux points 1,2,3 et 4.
- 1 : Liquide saturé
- 2 : Liquide comprimé
- 3 : Vapeur surchaufée
- 4 : Mélange Vapeur-liquide

3. En utilisant les données des tables thermodynamiques ci jointes de l'eau, déterminer les enthalpies massiques par kg (en kJ/kg) du fluide aux points 1 et 3 (h₁ et h₃)

 $h_1 \stackrel{.}{a} P_1 = 10 \text{ kPa}$; liquide saturé donc $h_1 = 191.83 \text{ kJ/k}$

 h_3 à P_2 =2 MPa ; vapeur surchauffée donc h_3 =3023.5kJ/kg

Table thermodynamique de vapeur et liquide saturé

P(kPa)	h _{liquide} (kJ/kg)	h _{vapeur} (kJ/kg)	Sliquide(kJ/kg.K)	Svapeur(kJ/kg.K)
10	191.83	2584.7	0.6493	8.1502
2000	908.79	2799.5	2.4474	6.3409

Table thermodynamique de vapeur surchauffée

P = 10 kPa			P=2 MPa		
$T(^{\circ}C)$	h (kJ/kg)	S(kJ/kg.K)	$T(^{\circ}C)$	<i>h</i> (<i>kJ/kg</i>)	S(kJ/kg.K)
300	307.5	9.2813	300	3023.5	6.7664

4. En négligeant le travail de la pompe, déduire l'enthalpie h₂ (en kJ/kg).

 $h_2 = h_1 = 191.83 kJ/kg$

5. En utilisant le titre de vapeur x, calculer l'enthalpie au point 4 (h4 en kJ/kg)

$$x = \frac{h_4 - h_{1liq}}{h_{4vap} - h_{1liq}} = \frac{s_3 - s_{1liq}}{s_{4vap} - s_{1liq}} = \frac{6.7664 - 0.6493}{8.1502 - 0.6493} = 0.81$$

$$h_4 = x(h_{4vap} - h_{1liq}) + h_{1liq} = 0.81(2584.7 - 191.83) + 191.83 = 2130.05 \, kJ/kg$$

6. Calculer la quantité de chaleur Q₂₃ échangée dans la chaudière entre le milieu extérieur (en kJ/kg)

 $Q_{23} = h_3 - h_2 = 3023.5 - 191.83 = 2831.67 \text{ kJ/kg}$

- 7. Calculer le travail W₄₃ effectué par la turbine (en kJ/kg)
- 8

 $W_{34} = h_3 - h_4 = 3023.5 - 2130.05 = 893.45 \, kJ/kg$

9. Calculer le rendement thermique du cycle.

$$\rho = \frac{W_{34}}{Q_{23}} = \frac{893.45}{2831.67} = 0.31$$

- 9. On remarque que le rendement est faible
- 10. On peut l'améliorer

En augmentant la valeur de la température à la sortie de la chaudière T3 jusqu'à la valeur maximale

En chauffant la valeur une deuxième fois après la sortie de la turbine