
1 

 

 

 

PMSM MODEL  

The setting in the state form of the PMSM model allows the 

simulation of this latter. In the rotor rotating ( qd  ) 

reference frame, the PMSM stator current model is 

described as follows [18], [19]:  
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With the following expression of field vector )(xf : 
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The components of this vector are expressed according to 

the PMSM parameters as follows:  
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Where : qd ii ,    : d, q axis stator current; 

            qd VV ,    : d, q axis stator voltage; 

            qd LL ,
  

: d, q axis stator inductance; 

              sR       : Stator resistance; 

              f      : Rotor permanent magnet flux. 

              r      
 : Mechanical rotor speed (  pr n ) 

               
f

      
: Viscous friction coefficient 

              TL       : Load torque 

              
J        : Moment of Inertia 

   As presented in the appendix we take in this paper in 

PMSM with smooth poles LLL qd  in this case )0( 8 a
 

   The use of the classical controllers such as the 

proportional and integral controller (PI) is insufficient to 

provide good speed tracking performance. To overcome 

these problems, a robust controller based on backstepping 

control approach is proposed. 

III. BACKSTEPPING CONTROL TECHNIQUE 

   The Backstepping is a systematic and recursive design 

methodology for nonlinear feedback control. This approach 

is based upon a systematic procedure for the design of 

feedback control strategies suitable for the design of a large 

 

 
 

 

  

 

 

class of feedback linearisable nonlinear systems exhibiting 

constant uncertainty, and it guarantees global regulation 

and tracking for the class of nonlinear systems 

transformable into the parametric-strict feedback form. The 

backstepping design alleviates some limitations of other 

approaches [18, 20, 21 ]. It offers a choice of design tools to 

accommodate uncertainties and nonlinearities and can 

avoid wasteful cancellations.  

    The idea of backstepping design is to select recursively 

some appropriate functions of state variables as pseudo-

control inputs for lower dimension subsystems of the 

overall system. Each backstepping stage results into a new 

pseudo-control design, expressed in terms of the pseudo-

control designs from the preceding design stages. When the 

procedure terminates, a feedback design for the true control 

input results and achieves the original design objective by 

virtue of a Lyapunov function, which is formed by 

summing up the Lyapunov functions associated with each 

individual design stage [21, 17, 22]. 

    The control objective in this case is to force the PMSM 

speed ( 3xr  ) to follow its reference 
*
3x  and maintain in 

the same time the direct current ( 1xid  ) to zero under load 

torque disturbance. The application of the backstepping 

control strategy to the PMSM in this case is divided into 

two steps (see [18, 20]).  

1. Speed regulator:  

This first step consists to identify the error e which 

represents the error between real speed 3xr 
 

and 

reference
*
3

* xr  . In this case we control 3x by 2x .  

Let the Lyapunov function:
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Whose derivative is: 
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The error derivative is given by: 
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          If we selected stabilizing functions as follows:                                                  
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Where 01 k  

Then the derivative of Lyapunov function 1V  is written as: 

            

 02
11  eKV                                                      (8) 

This guarantees convergence of the speed r  
to its 

reference 
*
3x  with robustness respect to load torque 

disturbance. 
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2. Direct and Quadrature currents regulator: 

The second step consists to control the currents 1xid 
 
and  

2xiq  by the voltages dd Vu   and qq Vu  ; where

0*
11  xx  and

*
22 xx    

Consider the following Lyapunov function: 
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Where )( *
33 xxe  and )( *

22 xxeq   

The derivative of V with respect to time is: 

11xxeeeeV qq
                                          

 (10) 

From (10) and in order to control 2x
 
by du . The term of the 

derivative V can be written as:  
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If we take the first control low as: 
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Then this term is written: 
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Where 03 K then the convergence of 1x  to 0 is ensuring.  

The remaining terms of (10) Let qqeeeee     as:   
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The first term can be written as: 
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or by adding and subtracting the term 
*
26xa we get: 
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By simplification :  
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By replacing the term 
*
26xa  presented in (6) in this last 

equation we get: 
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From (6) and (18) we get: 
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(19) 

Otherwise if one chooses: 
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From the second term of (14) 
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By replacing (20) in (21) we get: 
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Where 04 K . Finally, by grouping terms (19) and (22) we 

obtain:  
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By simplification:  
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From (8) and (24) we get: 
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Finely, from the foregoing, it is clear that it suffices to 

properly select the different gains iK ( 4,3,2,1i ) for the 

set-negativity of the derivative of the complete Lyapunov 

function ( 0V ) overall V  defined by (25). This implies 

that all the error variables are globally uniformly bounded 

and maintain the system closed loop performance in 

presence of load torque disturbances.  

 

 

 

 

 

a1 a2 a3 a4 a5 a6 a7 a8 a9 b1 b2 d 

-297.52 1 -297.52 -1.074 -1 520 -0.5 0 0.026 82.644 82.644 -20000 

Rated Values Power  22   w 

 Frequency 50    Hz  

 pn   2   

Rated parameters 
sR   3.4     

 
dL   0.0121   H  

 qL   0.0121 
  H  

 f  0.4212    H  

 J   0.0001   2Kg.m  

 f  0.0005    IS  

 


