

___مقیاس: ریاضیات مؤسسة

حل مختصر للسلسلة رقم: (02)

التمرين الأول: حل البرامج الخطية باستخدام الطريقة البيانية

التمرين الثاني: الحل باستخدام طريقة السمبلكس

مراحل الحل

1-تحويل إلى النموذج القياسي بإضافة متغيرات الفجوة 5 إلى القيود لتصبح من نوع المساواة مع اضافتها كذلك إلى دالة الهدف بمعاملات صفرية ثم وضع بيانات النموذج القياسي في جدول الحل الأساسي.

3-نختار أكبر قيمة موجبة من السطر Z التي تمثل عمود الدوران (المحوري).

4-نقوم بقسمة عمود النسبة Bi على عناصر العمود المقابلة لها ونختار أقل قيمة موجبة والتي تمثل سطر الدوران.

5-متغير العمود المحوري يأخذ مكان متغير السطر المحوري.

كيفية حساب قيم الجدول الموالي:

عناصر سطر الدوران تحسب كالتالي: العنصر الجديد = العنصر العنصر العنصر العنصر الدوران

العنصر المقابل في عمود الدوران X العنصر المقابل في معود الدوران عمود الدوران العنصر المقابل في عمود الدوران عنصر العنصر العنصر العنصر العنصر العنصر العنصر العنصر الدوران

6- التأكد من أمثلية الحل: شرط الامثلية عند التعظيم (دالة الهدف Max) بقيود أقل أو يساوي هو: $Z_{
ho} \leq Z_{
ho}$ أي كل قيم السطر $Z_{
ho}$ أقل أو تساوي الصفر، وفي حالة عدم تحقق الشرط نمر للجدول الموالى حتى نصل للحل الأمثل.

ملاحظة: في جدول الحل الأمثل وقبل قراءة قيمة دالة الهدف تُضرب قيمتها بالجدول في -1 للتخلص من الإشارة السالبة.

النموذج الأول

الشكل القياسي	النموذج
$MaxZ = 5X_1 + 1.5X_2 + 4X_3 + 0S_1 + 0S_2 + 0S_3$	$MaxZ = 5X_1 + 1.5X_2 + 4X_3$
$\left[2X_{2} + 4X_{3} + S_{1} = 4250 (1)\right]$	$\left[2X_{2} + 4X_{3} \le 4250 (1)\right]$
$2X_1 + 1.5X_3 + S_2 = 2000 (2)$	$ 2X_1 + 1.5X_3 \le 2000 (2)$
	$2.5X_1 + 4.5X_2 + 2X_3 \le 1500 (3)$
$X_1, X_2, X_3, S_1, S_2, S_3 \ge 0$	$\left(X_{1}, X_{2}, X_{3} \geq 0\right)$

العنصر المحوري العمود المحوري السطر المحوري

 X_2 X_3 S_1S_2 S_3

1. جدول الحل الأساسىT

Bi

4250

2000

1500

جداول السمبلكس

2000/2 = 1000

1500/2.5=600

			دول T ₂	2.الج	1		
							Bi
S_1	0	2	4	1	0	0	4250
S_2	0	-3.6	-0.1	0	1	-0.8	800
\mathbf{X}_1	1	1.8	0.8	0	0	0.4	4250 800 600
\mathbf{Z}_{p}	0	-7.5	0	0	0	-2	3000

شرط الأمثلية 2p≤0 محقق

شرط الأمثلية 2p≤0 غير محقق

 $Z_{P}=3000, X_{1}=600, X_{2}=0, X_{3}=0, S_{1}=4250, S_{2}=800; S_{3}=0$ الجدول T_{2} يعبر عن جدول حل أمثل و عليه: $T_{2}=3000$

النموذج الثاني

الشكل القياسي	النموذج
$MaxZ = 5X_1 + 6X_2 + 0S_1 + 0S_2$	$MaxZ = 5X_1 + 6X_2$
$(X_1 + 3X_2 + S_1 = 18 (1)$	$(X_1 + 3X_2 \le 18 (1)$
S/C { $5X_1 + 2X_2 + S_2 = 25 (2)$	S/C $\left\{ 5X_1 + 2X_2 \le 25 (2) \right\}$
$X_1, X_2, S_1, S_2, \ge 0$	$X_1, X_2 \ge 0$

جداول السمبلكس

2.الجدول T ₂								1. جدول الحل الأساسي.T							
T_2	\mathbf{X}_1	\mathbf{X}_2	S_1	S_2	Bi	النسبة		T_1	\mathbf{X}_1	\mathbf{X}_2	S_1S_2	Bi	النسبة		
\mathbf{X}_1	1/3	1	1/3	0	6	18		S ₁	1	3	1 0	18	6		
S_2	13/3	0	-2/3	1	13	3		S_2	5	2	0 1	25	12.5		
$Z_{\rm p}$	3	0	-2	0	-36			\mathbf{Z}_{p}	5	6	0 0	0	/		
	ِ محقق	z غیر	p≤0	مثلية	شرط الأ					نق	ئىر محق	e Zp≤(شرط الأمثلية 0		

 $Z_P=45$, یعبر عن جدول حل أمثل و علیه: T_3 الجدول $X_1=3$, $X_2=5$, $S_1=0$, $S_2=0$

	7	ساس <i>ى</i> 3	ل الحل الأ،	3. جدوا		
T_3	\mathbf{X}_1	\mathbf{X}_2	S_1	S_2	Bi	
\mathbf{X}_2	0	1	45/117	-1/13	5	
\mathbf{X}_1	1	0	-2/13	3/13	3	
\mathbf{Z}_{p}	0	0	-20/13	-9/13	-45	
,						

شرط الأمثلية 2p≤0 محقق

النموذج الثالث

مراحل الحل

1-تحويل إلى النموذج القياسي حيث:

-قيود الأقل أو تساوي: يتم إضافة متغيرات الفجوة S بإشارة موجبة S +

-قيود المساواة: يتم المتغيرات الاصطناعية R فقط بإشارة موجبة R+

-قيوم الأكبر أو تساوي: يتم إضافة متغيرات الفجوة S بإشارة سالبة والمتغيرات الاصطناعية R بإشارة موجبة: R--R

2-يتم إضافة المتغيرات S بمعاملات صفرية OS والمتغيرات الاصطناعية R المستخرجة من القيود وضربها في M الذي يأخذ قيمة عظمى.

3-نختار <u>أقل</u> قيمة من السطر Z التي تمثل عمود الدوران أي أكبر قيمة متبوعة بإشارة سالبة والأولوية للقيمة المضروبة في M.

4-نقوم بقسمة عمود النسبة Bi على عناصر العمود المقابلة لها ونختار أقل قيمة موجبة والتي تمثل سطر الدوران.

5-متغير العمود المحوري يأخذ مكان متغير السطر المحوري.

كيفية حساب قيم الجدول الموالي:

عناصر سطر الدوران تحسب كالتالي: العنصر الجديد = $\frac{\text{العنصر القديم}}{\text{عنصر الدوران}}$

باقي العناصر تحسب كالتالي: العنصر الجديد = العنصر القديم - عنصر الدوران الدوران عنصر الدوران

6- التأكد من أمثلية الحل: شرط الامثلية عند التدنية (دالة الهدف Min) هو: $Z_{\rho} \geq 0$ أي كل قيم السطر Z_{ρ} أكبر أو تساوي الصفر، وفي حالة عدم تحقق الشرط نمر للجدول الموالي حتى نصل للحل الأمثل.

ملاحظة: في جدول الحل الأمثل وقبل قراءة قيمة دالة الهدف تُضرب قيمتها بالجدول في -1 للتخلص من الإشارة السالبة.

الشكل القياسي	النموذج
$Min_Z = 10X_1 + 14X_2 - 0S_1 - 0S_2 + M(R_1 + R_2)$	$MinZ = 10X_1 + 14X_2$
$5X_1+2X_2-S1+R1=3$	$(5X_1 + 2X_2 \ge 3 (1))$
$ \begin{aligned} 6X_1 + 7X_2 - S_2 + R_2 &= 10 \\ X_1, X_2, S_1, S_2, R_1, R_2 &\ge 0 \end{aligned} $	S/C $\{6X_1 + 7X_2 \ge 10 (2)\}$ $\{X_1, X_2 \ge 0\}$
	$(\Lambda_1, \Lambda_2 \ge 0)$

 $\overline{R_1+R_2=13-11X_1-9X_2+S_1+S_2}$

 $R_1+R_2=13-11X_1-9X_2+S_1+S_2$

 $Min_z = 10X_1 + 14X_2 - 0S_1 - 0S_2 + M(13 - 11X_1 - 9X_2 + S_1 + S_2)$

 $Min_z = 10X_1 + 14X_2 - 0S_1 - 0S_2 + 13M - 11MX_1 - 9MX2 + MS1 + MS2$

 $Min_Z = (10-11M)X_1 + (14-9M)X_2 + MS_1 + MS_2 + 13M$

جداول السمبلكس

2.الجدول T ₂											ىاسىي₁T	ل الأس	م الح	. جدوز	1		
T_2	X_1	\mathbf{X}_2	S ₁	S ₂	$ackslash \mathbf{R_2} ig/$	Bi	النسبة		T_1	X_1	\mathbf{X}_2	S_1	S_2	\mathbf{R}_{1}	\mathbf{R}_2	Bi	النسبة
\mathbf{X}_1	5	0.4	-0.2	0	0/	0.6	1.5		\mathbf{R}_1	<u>5</u>	2	-1	0	1/	0	3	0.6
${f R}_2$	0	<u>4.6</u>	1.2	-1	<u>/</u> 1	6.4	1.39		\mathbf{R}_2	6	7	0	-1	Ø	1	10	1.67
\mathbf{Z}_{p}	0	10- 4.6M	2- 1.2M	M	$/ o \setminus$	-6- 32M	-		\mathbf{Z}_{p}	10- 11M	14- 9M	M	M	0	0	-13M	-
	ئق	ير محف	شرط الأمثلية 2p≥0 غير ا					شرط الأمثلية 2p≥0 غير محقق									
		T	4.الجدول T ₄					3. جدول الحل الأساسي ₃ T									
T_4		\mathbf{X}_1	\mathbf{X}_2	\mathbf{S}_1	S_2	2	Bi		T_3	X_1	\mathbf{X}_2	S_1		S_2	В	i	النسبا
$\frac{\mathbf{T}_4}{\mathbf{X}_1}$	2	X ₁	X ₂ 1.17	S ₁	-0.1		Bi 1.67		T_3 X_1	X ₁	\mathbf{X}_2	-0.3	_	S ₂	B : 0.0		النسبأ
-						.7				_			3	_)3	
\mathbf{X}_1		1	1.17	0	-0.1	7	1.67		\mathbf{X}_1	1	0	-0.3	3 <u> </u>	0.09	0.0	39	

 $Z_P=16.67, X_1=1.67, X_2=0, S_1=5.33, S_2=0$ الجدول T_4 الجدول حل أمثل وعليه: T_4