Série d'exercices N°1

(Transformation de Laplace)

Exercice 1

Déterminer la transformée de Laplace pour chacune des fonctions causales suivantes: (Utiliser les propriétés adéquates)

- a) $f_1(t)=a$ (a=c^{te}) signal échelon
- c) $f_3(t)=a.t^2$ (a= e^{te})
- e) $f_5(t)=a.t^n$ (a= c^{te})
- g) $f_7(t) = \sin \omega t + \cos \omega t$
- i) $f_{10}(t)=t^2.e^{-at}$

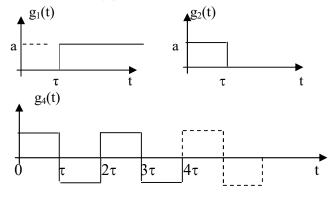
- b) $f_2(t)=a.t$ (rampe)
- d) $f_4(t) = \delta(t)$ (impulsion de Dirac)
- f) $f_6(t)=3e^{-t}+e^{-3t}$
- h) $f_9(t)=e^{-at}$.sin ωt (Sinus amorti)
- i) $f_{12}(t)=e^{-3t}.\sin(5t+\pi/3)$

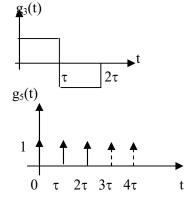
Exercice 2

Déterminer les transformées de Laplace des fonctions représentées par les graphes suivants:

- a) $g_1(t)=f_1(t-\tau)$ (échelon décalé)
- b) $g_2(t)$ est un signal rectangulaire
- c) g₃ (t) est une onde rectangulaire
- d) g₄(t) est un signal périodique

d)
$$g_5(t) = \sum_{n=0}^{\infty} \delta(t - n\tau)$$
 (train d'impulsions unitaires)





Exercice 3

Déterminer les fonctions originales des transformées de Laplace suivantes:

$$F_1(p) = \frac{1}{(p+3)(p+4)}$$
; $F_2(p) = \frac{p+2}{(p+1)^2(p+3)}$; $F_3(p) = \frac{p+1}{p^2+4p+16}$

$$F_2(p) = \frac{p+2}{(p+1)^2(p+3)}$$

$$F_3(p) = \frac{p+1}{p^2 + 4p + 16}$$

$$F_4(p) = \frac{p+2}{p(p+1)(p^2+9)} \ ;$$

$$F_4(p) = \frac{p+2}{p(p+1)(p^2+9)}$$
; $F_5(p) = \frac{4p^3 + p^2 - 22p + 16}{p(p+2)(p-2)^2}$

Exercice 4

En utilisant la transformée de Laplace trouver la solution des équations différentielles ci-dessous pour les conditions initiales suivantes:

1)
$$\ddot{x}(t) + 3\dot{x}(t) + 2x(t) = 0$$

avec x (0) =0 et
$$\dot{x}$$
 (0) =2

$$2) \ddot{x}(t) - \ddot{x}(t) = 0$$

avec x (0) =2,
$$\dot{x}$$
 (0) =0 et \ddot{x} (0)=1

3)
$$\ddot{x}(t) + 3\dot{x}(t) + 2x(t) = 1$$

avec x (0) = -1 et
$$\dot{x}$$
 (0) = 2

4)
$$\ddot{x}(t) - 3\dot{x}(t) + 2x(t) = e^{5t}$$

avec x (0) =1 et
$$\dot{x}$$
 (0) =2

5)
$$\ddot{x}(t) + x(t) = 1$$

avec
$$x(0) = \dot{x}(0) = \ddot{x}(0) = 0$$