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Design & Analysis of Algorithms  

Knapsack Problem- 

 You are given the following- 

• A knapsack (kind of shoulder bag) with limited weight capacity. 

• Few items each having some weight and value. 

 The problem states- 

Which items should be placed into the knapsack such that- 

• The value or profit obtained by putting the items into the knapsack is maximum. 

• And the weight limit of the knapsack does not exceed. 

  

 
Knapsack Problem Variants- 

Knapsack problem has the following two variants- 

1. Fractional Knapsack Problem 

2. 0/1 Knapsack Problem 

  

In this article, we will discuss about 0/1 Knapsack Problem. 

  

0/1 Knapsack Problem- 

  

In 0/1 Knapsack Problem, 

• As the name suggests, items are indivisible here. 

• We can not take the fraction of any item. 

• We have to either take an item completely or leave it completely. 

• It is solved using dynamic programming approach. 

0/1 Knapsack Problem Using Dynamic Programming- 

  

Consider- 

• Knapsack weight capacity = W 

• Number of items each having some weight and value = n 
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0/1 knapsack problem is solved using dynamic programming in the following steps- 

  

Step-01: 

  

• Draw a table say ‘T’ with (n+1) number of rows and (w+1) number of columns. 

• Fill all the boxes of 0th row and 0th column with zeroes as shown- 

  

 
  

Step-02: 

  

Start filling the table row wise top to bottom from left to right. 

Use the following formula- 

T (i , j) = max { T ( i-1 , j ) , valuei + T( i-1 , j – weighti ) } 

  

Here, T(i , j) = maximum value of the selected items if we can take items 1 to i and have weight restrictions 

of j. 

  

• This step leads to completely filling the table. 

• Then, value of the last box represents the maximum possible value that can be put into the knapsack. 

  

Step-03: 

  

To identify the items that must be put into the knapsack to obtain that maximum profit, 

• Consider the last column of the table. 

• Start scanning the entries from bottom to top. 

• On encountering an entry whose value is not same as the value stored in the entry immediately above 

it, mark the row label of that entry. 

• After all the entries are scanned, the marked labels represent the items that must be put into the 

knapsack. 

  

Time Complexity- 

  

• Each entry of the table requires constant time θ(1) for its computation. 

• It takes θ(nw) time to fill (n+1)(w+1) table entries. 

• It takes θ(n) time for tracing the solution since tracing process traces the n rows. 

• Thus, overall θ(nw) time is taken to solve 0/1 knapsack problem using dynamic programming. 



  

PRACTICE PROBLEM BASED ON 0/1 KNAPSACK PROBLEM- 

  

Problem- 

  

For the given set of items and knapsack capacity = 5 kg, find the optimal solution for the 0/1 knapsack 

problem making use of dynamic programming approach. 

  

Item Weight Value 

1 2 3 

2 3 4 

3 4 5 

4 5 6 

  

OR 

  

Find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach. 

Consider- 

n = 4 

w = 5 kg 

(w1, w2, w3, w4) = (2, 3, 4, 5) 

(b1, b2, b3, b4) = (3, 4, 5, 6) 

  

OR 

  

A thief enters a house for robbing it. He can carry a maximal weight of 5 kg into his bag. There are 4 items 

in the house with the following weights and values. What items should thief take if he either takes the item 

completely or leaves it completely? 

  

Item Weight (kg) Value ($) 

Mirror 2 3 

Silver nugget 3 4 

Painting 4 5 

Vase 5 6 

  

Solution- 

  

Given- 

  

• Knapsack capacity (w) = 5 kg 

• Number of items (n) = 4 

  

Step-01: 

  

• Draw a table say ‘T’ with (n+1) = 4 + 1 = 5 number of rows and (w+1) = 5 + 1 = 6 number of 

columns. 

• Fill all the boxes of 0th row and 0th column with 0. 

  



 
  

Step-02: 

  

Start filling the table row wise top to bottom from left to right using the formula- 

T (i , j) = max { T ( i-1 , j ) , valuei + T( i-1 , j – weighti ) } 

  

Finding T(1,1)- 

  

We have, 

• i = 1 

• j = 1 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,1) = max { T(1-1 , 1) , 3 + T(1-1 , 1-2) } 

T(1,1) = max { T(0,1) , 3 + T(0,-1) } 

T(1,1) = T(0,1) { Ignore T(0,-1) } 

T(1,1) = 0 

  

Finding T(1,2)- 

  

We have, 

• i = 1 

• j = 2 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,2) = max { T(1-1 , 2) , 3 + T(1-1 , 2-2) } 

T(1,2) = max { T(0,2) , 3 + T(0,0) } 

T(1,2) = max {0 , 3+0} 

T(1,2) = 3 

  

Finding T(1,3)- 

  



We have, 

• i = 1 

• j = 3 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,3) = max { T(1-1 , 3) , 3 + T(1-1 , 3-2) } 

T(1,3) = max { T(0,3) , 3 + T(0,1) } 

T(1,3) = max {0 , 3+0} 

T(1,3) = 3 

  

Finding T(1,4)- 

  

We have, 

• i = 1 

• j = 4 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,4) = max { T(1-1 , 4) , 3 + T(1-1 , 4-2) } 

T(1,4) = max { T(0,4) , 3 + T(0,2) } 

T(1,4) = max {0 , 3+0} 

T(1,4) = 3 

  

Finding T(1,5)- 

  

We have, 

• i = 1 

• j = 5 

• (value)i = (value)1 = 3 

• (weight)i = (weight)1 = 2 

  

Substituting the values, we get- 

T(1,5) = max { T(1-1 , 5) , 3 + T(1-1 , 5-2) } 

T(1,5) = max { T(0,5) , 3 + T(0,3) } 

T(1,5) = max {0 , 3+0} 

T(1,5) = 3 

  

Finding T(2,1)- 

  

We have, 

• i = 2 

• j = 1 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,1) = max { T(2-1 , 1) , 4 + T(2-1 , 1-3) } 

T(2,1) = max { T(1,1) , 4 + T(1,-2) } 



T(2,1) = T(1,1) { Ignore T(1,-2) } 

T(2,1) = 0 

  

Finding T(2,2)- 

  

We have, 

• i = 2 

• j = 2 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,2) = max { T(2-1 , 2) , 4 + T(2-1 , 2-3) } 

T(2,2) = max { T(1,2) , 4 + T(1,-1) } 

T(2,2) = T(1,2) { Ignore T(1,-1) } 

T(2,2) = 3 

  

Finding T(2,3)- 

  

We have, 

• i = 2 

• j = 3 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,3) = max { T(2-1 , 3) , 4 + T(2-1 , 3-3) } 

T(2,3) = max { T(1,3) , 4 + T(1,0) } 

T(2,3) = max { 3 , 4+0 } 

T(2,3) = 4 

  

Finding T(2,4)- 

  

We have, 

• i = 2 

• j = 4 

• (value)i = (value)2 = 4 

• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,4) = max { T(2-1 , 4) , 4 + T(2-1 , 4-3) } 

T(2,4) = max { T(1,4) , 4 + T(1,1) } 

T(2,4) = max { 3 , 4+0 } 

T(2,4) = 4 

  

Finding T(2,5)- 

  

We have, 

• i = 2 

• j = 5 

• (value)i = (value)2 = 4 



• (weight)i = (weight)2 = 3 

  

Substituting the values, we get- 

T(2,5) = max { T(2-1 , 5) , 4 + T(2-1 , 5-3) } 

T(2,5) = max { T(1,5) , 4 + T(1,2) } 

T(2,5) = max { 3 , 4+3 } 

T(2,5) = 7 

  

Similarly, compute all the entries. 

After all the entries are computed and filled in the table, we get the following table- 

  

 
  

• The last entry represents the maximum possible value that can be put into the knapsack. 

• So, maximum possible value that can be put into the knapsack = 7. 

  

Identifying Items To Be Put Into Knapsack- 

  

Following Step-04, 

• We mark the rows labelled “1” and “2”. 

• Thus, items that must be put into the knapsack to obtain the maximum value 7 are- 

Item-1 and Item-2 

  

  

PROGRAM 

 
public class KSP { 
 // maximum of two integers  
    static int max(int a, int b)   { return (a > b) ? a : b; }  
// main  
    public static void main(String args[])  
    {  
        // input  // ا يمكن تغييره  معطيات  هذا مثال  
        int n = 5; 
        int val[] = new int[] { 60, 100, 120, 50 , 250 };   
        int wt[] = new int[] { 10, 20, 30, 41,65 };  
        int sumwt = 0;  
        for(int i=0; i<n;i++) sumwt+= wt[i]; 
        double ratio =0.5; 



        int W = (int) ((int) sumwt*ratio); 
    // variables 
        int i, w;  
        int T[][] = new int[n + 1][W + 1];  
    // Building table T[][] in bottom up manner  
        for (i = 0; i<= n; i++) {  
            for (w = 0; w<= W; w++) {  
                if (i == 0 || w == 0)  
                    T[i][w] = 0;  
                else if (wt[i - 1]<= w)  
                    T[i][w] = max(val[i - 1] + T[i - 1][w - wt[i - 1]], T[i - 1][w]);  
                else 
                    T[i][w] = T[i - 1][w];  
            }  
        }  
        System.out.println("The optimum of this instance is : " + T[n][W]); 
// look for selected items 
        System.out.println("Selected Items : " );  
        while (n != 0) { 
 if (T[n][W] != T[n - 1][W]) { 
  System.out.println("\tItem " + n + " with Weight = " + wt[n - 1] + " and Value = " + val[n - 1]); 
  W = W - wt[n-1]; 
 } 
   n--; 
       } 
    }  
} 
 

 


