
0/1 Knapsack Problem | Dynamic Programming | Example

Design & Analysis of Algorithms

Knapsack Problem-

 You are given the following-

• A knapsack (kind of shoulder bag) with limited weight capacity.

• Few items each having some weight and value.

 The problem states-

Which items should be placed into the knapsack such that-

• The value or profit obtained by putting the items into the knapsack is maximum.

• And the weight limit of the knapsack does not exceed.

Knapsack Problem Variants-

Knapsack problem has the following two variants-

1. Fractional Knapsack Problem

2. 0/1 Knapsack Problem

In this article, we will discuss about 0/1 Knapsack Problem.

0/1 Knapsack Problem-

In 0/1 Knapsack Problem,

• As the name suggests, items are indivisible here.

• We can not take the fraction of any item.

• We have to either take an item completely or leave it completely.

• It is solved using dynamic programming approach.

0/1 Knapsack Problem Using Dynamic Programming-

Consider-

• Knapsack weight capacity = W

• Number of items each having some weight and value = n

https://www.gatevidyalay.com/0-1-knapsack-problem-using-dynamic-programming-approach/
https://www.gatevidyalay.com/category/subjects/design-analysis-of-algorithms/

0/1 knapsack problem is solved using dynamic programming in the following steps-

Step-01:

• Draw a table say ‘T’ with (n+1) number of rows and (w+1) number of columns.

• Fill all the boxes of 0th row and 0th column with zeroes as shown-

Step-02:

Start filling the table row wise top to bottom from left to right.

Use the following formula-

T (i , j) = max { T (i-1 , j) , valuei + T(i-1 , j – weighti) }

Here, T(i , j) = maximum value of the selected items if we can take items 1 to i and have weight restrictions

of j.

• This step leads to completely filling the table.

• Then, value of the last box represents the maximum possible value that can be put into the knapsack.

Step-03:

To identify the items that must be put into the knapsack to obtain that maximum profit,

• Consider the last column of the table.

• Start scanning the entries from bottom to top.

• On encountering an entry whose value is not same as the value stored in the entry immediately above

it, mark the row label of that entry.

• After all the entries are scanned, the marked labels represent the items that must be put into the

knapsack.

Time Complexity-

• Each entry of the table requires constant time θ(1) for its computation.

• It takes θ(nw) time to fill (n+1)(w+1) table entries.

• It takes θ(n) time for tracing the solution since tracing process traces the n rows.

• Thus, overall θ(nw) time is taken to solve 0/1 knapsack problem using dynamic programming.

PRACTICE PROBLEM BASED ON 0/1 KNAPSACK PROBLEM-

Problem-

For the given set of items and knapsack capacity = 5 kg, find the optimal solution for the 0/1 knapsack

problem making use of dynamic programming approach.

Item Weight Value

1 2 3

2 3 4

3 4 5

4 5 6

OR

Find the optimal solution for the 0/1 knapsack problem making use of dynamic programming approach.

Consider-

n = 4

w = 5 kg

(w1, w2, w3, w4) = (2, 3, 4, 5)

(b1, b2, b3, b4) = (3, 4, 5, 6)

OR

A thief enters a house for robbing it. He can carry a maximal weight of 5 kg into his bag. There are 4 items

in the house with the following weights and values. What items should thief take if he either takes the item

completely or leaves it completely?

Item Weight (kg) Value ($)

Mirror 2 3

Silver nugget 3 4

Painting 4 5

Vase 5 6

Solution-

Given-

• Knapsack capacity (w) = 5 kg

• Number of items (n) = 4

Step-01:

• Draw a table say ‘T’ with (n+1) = 4 + 1 = 5 number of rows and (w+1) = 5 + 1 = 6 number of

columns.

• Fill all the boxes of 0th row and 0th column with 0.

Step-02:

Start filling the table row wise top to bottom from left to right using the formula-

T (i , j) = max { T (i-1 , j) , valuei + T(i-1 , j – weighti) }

Finding T(1,1)-

We have,

• i = 1

• j = 1

• (value)i = (value)1 = 3

• (weight)i = (weight)1 = 2

Substituting the values, we get-

T(1,1) = max { T(1-1 , 1) , 3 + T(1-1 , 1-2) }

T(1,1) = max { T(0,1) , 3 + T(0,-1) }

T(1,1) = T(0,1) { Ignore T(0,-1) }

T(1,1) = 0

Finding T(1,2)-

We have,

• i = 1

• j = 2

• (value)i = (value)1 = 3

• (weight)i = (weight)1 = 2

Substituting the values, we get-

T(1,2) = max { T(1-1 , 2) , 3 + T(1-1 , 2-2) }

T(1,2) = max { T(0,2) , 3 + T(0,0) }

T(1,2) = max {0 , 3+0}

T(1,2) = 3

Finding T(1,3)-

We have,

• i = 1

• j = 3

• (value)i = (value)1 = 3

• (weight)i = (weight)1 = 2

Substituting the values, we get-

T(1,3) = max { T(1-1 , 3) , 3 + T(1-1 , 3-2) }

T(1,3) = max { T(0,3) , 3 + T(0,1) }

T(1,3) = max {0 , 3+0}

T(1,3) = 3

Finding T(1,4)-

We have,

• i = 1

• j = 4

• (value)i = (value)1 = 3

• (weight)i = (weight)1 = 2

Substituting the values, we get-

T(1,4) = max { T(1-1 , 4) , 3 + T(1-1 , 4-2) }

T(1,4) = max { T(0,4) , 3 + T(0,2) }

T(1,4) = max {0 , 3+0}

T(1,4) = 3

Finding T(1,5)-

We have,

• i = 1

• j = 5

• (value)i = (value)1 = 3

• (weight)i = (weight)1 = 2

Substituting the values, we get-

T(1,5) = max { T(1-1 , 5) , 3 + T(1-1 , 5-2) }

T(1,5) = max { T(0,5) , 3 + T(0,3) }

T(1,5) = max {0 , 3+0}

T(1,5) = 3

Finding T(2,1)-

We have,

• i = 2

• j = 1

• (value)i = (value)2 = 4

• (weight)i = (weight)2 = 3

Substituting the values, we get-

T(2,1) = max { T(2-1 , 1) , 4 + T(2-1 , 1-3) }

T(2,1) = max { T(1,1) , 4 + T(1,-2) }

T(2,1) = T(1,1) { Ignore T(1,-2) }

T(2,1) = 0

Finding T(2,2)-

We have,

• i = 2

• j = 2

• (value)i = (value)2 = 4

• (weight)i = (weight)2 = 3

Substituting the values, we get-

T(2,2) = max { T(2-1 , 2) , 4 + T(2-1 , 2-3) }

T(2,2) = max { T(1,2) , 4 + T(1,-1) }

T(2,2) = T(1,2) { Ignore T(1,-1) }

T(2,2) = 3

Finding T(2,3)-

We have,

• i = 2

• j = 3

• (value)i = (value)2 = 4

• (weight)i = (weight)2 = 3

Substituting the values, we get-

T(2,3) = max { T(2-1 , 3) , 4 + T(2-1 , 3-3) }

T(2,3) = max { T(1,3) , 4 + T(1,0) }

T(2,3) = max { 3 , 4+0 }

T(2,3) = 4

Finding T(2,4)-

We have,

• i = 2

• j = 4

• (value)i = (value)2 = 4

• (weight)i = (weight)2 = 3

Substituting the values, we get-

T(2,4) = max { T(2-1 , 4) , 4 + T(2-1 , 4-3) }

T(2,4) = max { T(1,4) , 4 + T(1,1) }

T(2,4) = max { 3 , 4+0 }

T(2,4) = 4

Finding T(2,5)-

We have,

• i = 2

• j = 5

• (value)i = (value)2 = 4

• (weight)i = (weight)2 = 3

Substituting the values, we get-

T(2,5) = max { T(2-1 , 5) , 4 + T(2-1 , 5-3) }

T(2,5) = max { T(1,5) , 4 + T(1,2) }

T(2,5) = max { 3 , 4+3 }

T(2,5) = 7

Similarly, compute all the entries.

After all the entries are computed and filled in the table, we get the following table-

• The last entry represents the maximum possible value that can be put into the knapsack.

• So, maximum possible value that can be put into the knapsack = 7.

Identifying Items To Be Put Into Knapsack-

Following Step-04,

• We mark the rows labelled “1” and “2”.

• Thus, items that must be put into the knapsack to obtain the maximum value 7 are-

Item-1 and Item-2

PROGRAM

public class KSP {
 // maximum of two integers
 static int max(int a, int b) { return (a > b) ? a : b; }
// main
 public static void main(String args[])
 {
 // input // ا يمكن تغييره معطيات هذا مثال
 int n = 5;
 int val[] = new int[] { 60, 100, 120, 50 , 250 };
 int wt[] = new int[] { 10, 20, 30, 41,65 };
 int sumwt = 0;
 for(int i=0; i<n;i++) sumwt+= wt[i];
 double ratio =0.5;

 int W = (int) ((int) sumwt*ratio);
 // variables
 int i, w;
 int T[][] = new int[n + 1][W + 1];
 // Building table T[][] in bottom up manner
 for (i = 0; i<= n; i++) {
 for (w = 0; w<= W; w++) {
 if (i == 0 || w == 0)
 T[i][w] = 0;
 else if (wt[i - 1]<= w)
 T[i][w] = max(val[i - 1] + T[i - 1][w - wt[i - 1]], T[i - 1][w]);
 else
 T[i][w] = T[i - 1][w];
 }
 }
 System.out.println("The optimum of this instance is : " + T[n][W]);
// look for selected items
 System.out.println("Selected Items : ");
 while (n != 0) {
 if (T[n][W] != T[n - 1][W]) {
 System.out.println("\tItem " + n + " with Weight = " + wt[n - 1] + " and Value = " + val[n - 1]);
 W = W - wt[n-1];
 }
 n--;
 }
 }
}

