Examen de Topologie (06-02-2022, durée 01h30 à 10 : 30)

Exercice 1. (8pts = 2 + 2 + 2 + 1 + 1)

Soit δ l'application définie sur $\mathbb{R} \times \mathbb{R}$ par

$$\delta(x,y) := |e^x - e^y|, \ \forall x, y \in \mathbb{R}.$$

- 1 Montrer que δ est une distance sur \mathbb{R} .
- 2 Calculer la boule ouverte et fermée de centre 0 et de rayon 1.
- 3 Montrer que cette distance n'est pas équivalente à la distance usuelle d.
- 4 Montrer que la suite de terme générale $u_n = \ln \frac{1}{n}$ est de Cauchy dans (\mathbb{R}, δ) .
- 5 Est elle convergente? conclure.

Exercice 2. (12pts = 2.5 + 1 + 2 + 1 + (1.25 + 1.25) + (1.5 + 1.5))

Soient E un ensemble non vide et $a, b \in E$. On définit la famille suivante

$$\mathcal{T}_a := \{\phi\} \cup \{A \subset E \mid a \in A\}.$$

- 1 Montrer que \mathcal{T}_a est une topologie sur E.
- 2 Donner l'ensemble des fermés \mathcal{F} de E.
- 3 Déterminer $\overset{\circ}{A}$ et \overline{A} (l'intérieur et l'adhérence de A) pour un ensemble quelconque A de E.
- 4 Est ce que E est séparé?.
- 5 Soit $f:(E,\mathcal{T}_a) \longrightarrow (E,\mathcal{T}_b)$ une application.
 - Montrer que f est continue en a.
 - Si b = f(a), montrer que f est continue sur E.
- 6 On pose $E = \mathbb{R}$, a = 2020, $u_n = 2021 + (-1)^n$, pour tout $n \in \mathbb{N}$.
 - Trouver l'ensemble des voisinages de 2022.
 - Déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente vers 2022.

Correction d'examen de Topologie

Exercice 1.

- 1 Montrons que δ est une distance. Soient $x, y, z \in \mathbb{R}$.
 - on a $\delta(x,y) = 0 \iff |e^x e^y| = 0 \iff e^x = e^y \iff x = y$
 - on a $\delta(x, y) = |e^x e^y| = |e^y e^x| = \delta(y, x)$
 - et on a

$$\delta(x,y) = |e^x - e^y| = |e^x - e^z + e^z - e^y|$$

$$\leq |e^x - e^z| + |e^z - e^y|$$

$$= \delta(x,z) + \delta(z,y).$$

Calculons la boule ouverte et fermée B(0,1) et $\overline{B}(0,1)$.

$$B(0,1) := \{x \in \mathbb{R} : \delta(x,0) < 1\} = \{x \in \mathbb{R} : |e^x - 1| < 1\}$$

$$= \{x \in \mathbb{R} : -1 < e^x - 1 < 1\} = \{x \in \mathbb{R} : 0 < e^x < 2\}$$

$$= \{x \in \mathbb{R} : -\infty < x < \ln 2\} =] -\infty, \ln 2[.$$

Pour la boule fermée, de la même manière, on a

$$\overline{B}(0,1) := \{x \in \mathbb{R} : \delta(x,0) \le 1\} = \{x \in \mathbb{R} : |e^x - 1| \le 1\}
= \{x \in \mathbb{R} : -1 \le e^x - 1 \le 1\}
= \{x \in \mathbb{R} : 0 \le e^x \le 2\}
= \{x \in \mathbb{R} : 0 < e^x \le 2\}
= \{x \in \mathbb{R} : -\infty < x \le \ln 2\} =] -\infty, \ln 2].$$

 δ et d sont équivalentes si

$$\exists c_1, c_2 > 0, \forall x, y \in \mathbb{R} : c_1 d(x, y) < \delta(x, y) < c_2 d(x, y) \dots (*)$$

Pour $x = n, y = 0, n \in \mathbb{N}^*$, on a

$$(*) \implies c_1|n-0| \le |e^n-1| \le c_2|n-0|, \forall n \in \mathbb{N}^*$$
$$\implies c_1 \le |\frac{e^n}{n} - \frac{1}{n}| \le c_2, \forall n \in \mathbb{N}^*.$$

Passsant à la limite quand $n \to \infty$, on obtient $+\infty \le c_2$. Contradiction. Donc d et δ ne sont pas équivalentes.

4 Soient $p, q \in \mathbb{N}, q \geq p$. On a

$$\delta(u_p, u_q) = \left| \frac{1}{p} - \frac{1}{q} \right| = \frac{1}{p} - \frac{1}{q} \le \frac{1}{p}.$$

Soit $\varepsilon > 0$. On a $\frac{1}{p} \le \varepsilon \iff p \ge \frac{1}{\varepsilon}$. D'où, pour $N = [\frac{1}{\varepsilon}] + 1 > \frac{1}{\varepsilon}$, on a

$$q \ge p \ge N \Longrightarrow p > \frac{1}{\varepsilon} \Longrightarrow \delta(u_p, u_q) \le \varepsilon.$$

Donc $(u_n)_n$ est de Cauchy.

5 Si $(u_n)_n$ est convergente vers $\ell \in \mathbb{R}$, alors $\delta(u_n, \ell) \to 0$ quand $n \to \infty$. Or

$$\delta(u_n, \ell) = \left| \frac{1}{n} - e^{\ell} \right| \longrightarrow e^{\ell} \neq 0,$$
 (contradiction).

Donc $(u_n)_n$ n'est pas convergente. D'où, on conclut que (\mathbb{R}, δ) n'est pas complet.

Exercice 2.

- 1 Montrons que \mathcal{T}_a est une topologie sur E.
 - On a $\phi \in \mathcal{T}_a$ (Par définition) et $E \in \mathcal{T}_a$ car $a \in E$.
 - Soient $A, B \in \mathcal{T}_a$. Montrons que $A \cap B \in \mathcal{T}_a$ (i.e. $(A \cap B = \phi) \vee (a \in A \cap B)$. Supposons que $A \cap B \neq \phi$. D'où $A \neq \phi$ et $B \neq \phi$ et donc $a \in A \wedge a \in B$ car $A, B \in \mathcal{T}_a$. Donc $a \in A \cap B$ et $A \cap B \in \mathcal{T}_a$.
 - Soit $\{A_i\}_{i\in I}$ une famille de \mathcal{T}_a (i.e. $A_i \in \mathcal{T}_a$, $\forall i \in I$). Montrons que $\bigcup_{i\in I} A_i \in \mathcal{T}_a$. Supposons que $\bigcup_{i\in I} A_i \neq \phi$. Alors $\exists i_0 \in I : A_{i_0} \neq \phi$. D'où $a \in A_{i_0}$ car $A_{i_0} \in \mathcal{T}_a$. Donc $a \in \bigcup_{i\in I} A_i$. D'où $\bigcup_{i\in I} A_i \in \mathcal{T}_a$.
- 2 On par définition

$$\mathcal{F} := \{ F \subset E \mid F^c \in \mathcal{T}_a \} = \{ F \subset E \mid (F^c = \phi) \lor (a \in F^c) \}$$
$$= \{ F \subset E \mid F = E \lor a \not\in F \} = \{ E \} \cup \{ F \subset E \mid a \not\in F \}.$$

- 3 Calculons $\overset{\circ}{A}$ et \overline{A} .
 - Si $a \in A$ alors A est ouvert et donc $\overset{\circ}{A} = A$. Comme \overline{A} est fermé alors $\overline{A} = E$ ou $a \notin \overline{A}$. Or $a \in A \subset \overline{A}$. Donc $\overline{A} = E$.
 - Si $a \notin A$ alors A est fermé et donc $\overline{A} = A$. Comme $\overset{\circ}{A}$ est ouvert alors $\overline{A} = \phi$ ou $a \in \overset{\circ}{A}$. Or $a \notin A \supset \overset{\circ}{A}$. Donc $\overset{\circ}{A} = \phi$.
- 4 Si E est séparé, alors pour $x, y \in E$ avec $x \neq y$, $\exists \mathcal{O}_x, \mathcal{O}_y \in \mathcal{T}_a$ tels que $\mathcal{O}_x \cap \mathcal{O}_y = \phi$ et $x \in \mathcal{O}_x, y \in \mathcal{O}_y$. Mais on a $a \in \mathcal{O}_x$ et $a \in \mathcal{O}_y$. D'où $\mathcal{O}_x \cap \mathcal{O}_y \neq \phi$. Contradiction. Donc E n'est pas séparé.

- $f: (E, \mathcal{T}_a) \longrightarrow (E, \mathcal{T}_b)$ est une application.
 - Montrons que f est continue en a (i.e. $\forall V \in \mathcal{V}(f(a)) : f^{-1}(V) \in \mathcal{V}(a)$). Soit $V \in \mathcal{V}(f(a))$. Donc $f(a) \in V$. D'où $a \in f^{-1}(V)$. Donc $f^{-1}(V)$ est un ouvert contenant a et par conséquent c'est un voisinage de a.
 - Montrons f est continue (i.e. $\forall \mathcal{O} \in \mathcal{T}_b : f^{-1}(\mathcal{O}) \in \mathcal{T}_a$). Soit $\mathcal{O} \in \mathcal{T}_b$. Si $\mathcal{O} = \phi$, alors $f^{-1}(\mathcal{O}) = \phi \in \mathcal{T}_a$. Si $\mathcal{O} \neq \phi$, alors $f(a) := b \in \mathcal{O}$. D'où $a \in f^{-1}(\mathcal{O})$ et donc $f^{-1}(\mathcal{O}) \in \mathcal{T}_a$. D'où f est continue.
- 6 On a $E = \mathbb{R}$, a = 2020, $u_n = 2021 + (-1)^n$.
 - On a

$$V \in \mathcal{V}(2022) \iff \exists \mathcal{O} \in \mathcal{T}_a : 2022 \in \mathcal{O} \subset V$$
 (0.1)

Et on a

$$\mathcal{O} \in \mathcal{T}_a \iff a = 2020 \in \mathcal{O} \vee \mathcal{O} = \phi.$$
 (0.2)

De (0.1) et (0.2), on a $V \in \mathcal{V}(2022) \iff 2020, 2022 \in V$ et Par conséquent

$$\mathcal{V}(2022) = \{ V \subset E \mid 2020, 2022 \in V \}.$$

• Montrons que la suite $(u_n)_n$ converge vers 2022 : i.e.

$$\forall V \in \mathcal{V}(2022), \exists N \in \mathbb{N}, \forall n \geq N : u_n \in V.$$

Soit $V \in \mathcal{V}(2022)$. Alors $2020, 2022 \in V$ et on a $u_n = 2020$ si n est impaire et $u_n = 2022$ si n est pair. Donc $u_n \in V$, pour tout $n \in \mathbb{N}$. D'où

$$\exists N = 0 \in \mathbb{N}, \forall n \geq 0 : u_n \in V.$$

CQFD.