

Série: N 2

Remarque

l'exercice noté par (★) ou supplémentaire ne sera pas corrigé dans le sience de TD.

En utilisant les sommes de Riemann, calculer les intégrales suivantes

1.
$$\int_{0}^{1} x dx$$
.

$$2. \int_{0}^{1} x^2 dx.$$

3.
$$\int_{0}^{1} x^{3} dx.(\star)$$

1.
$$\int_{0}^{1} x dx$$
. 2. $\int_{0}^{1} x^{2} dx$. 3. $\int_{0}^{1} x^{3} dx$.(*) 4. $\int_{0}^{1} e^{x} dx$.(*)

On rappelle que :
$$\sum_{k=1}^{k=n} k = \frac{n(n+1)}{2}$$
, $\sum_{k=1}^{k=n} k^2 = \frac{n(n+1)(2n+1)}{6}$ et $\sum_{k=1}^{k=n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$.

Soit la fonction f définie sur l'intervalle $I = [0, \frac{\pi}{2}]$ par $f(x) = \sin x$.

- 1. En utilisant la somme de Darboux, montrer que f est intégrable sur I.
- 2. Même quastion pour $f: x \mapsto x^2$ et $I = [0, 1].(\star)$

Exercice 03

Calculer les limites, lorsque $n \to +\infty$ des suites (définies pour $n \in \mathbb{N}^*$).

1.
$$\sum_{k=1}^{k=n} \frac{1}{n+k}$$
.

$$3. \sum_{k=1}^{k=n} \frac{k}{n^2} \sin\left(\frac{\pi k}{n}\right).$$

5.
$$\frac{1}{n^{p+1}}(1^p + 2^p + ... + n^p).(\star)$$

2.
$$\sum_{k=1}^{k=n} \frac{n+k}{n^2 + k^2} . (\star)$$

4.
$$\frac{1}{\sqrt{n}} \sum_{k=1}^{k=n} \frac{1}{\sqrt{n+k}} . (\star)$$

Exercice 04

Soit $I_n = \int_0^1 x^n e^{-x} dx$, $n \in \mathbb{N}$.

- 1. Calculer I_0
- 2. Calculer I_n en fonction de I_{n-1} pour $n \in \mathbb{N}^*$.
- 3. Application : Calculer $J = \int (3x^3 2x^2 + x + 1)e^{-x} dx$.
- 4. Recalculer cette intégrale en charchant directement une primitive de $f(x) = (3x^3 2x^2 + x + 1)e^{-x}$ sous la forme $F(x) = (ax^3 + bx^2 + cx + d)e^{-x}$, où a, b, c et d sont quatre réels à déterminer.

Exercice 05

En utilisant changement de variable approprié, calculer les intégrales suivantes

$$1. \int \sin^2 x \cos x dx.$$

$$5. \int \frac{e^x}{\sqrt{1 - e^{2x}}} dx.$$

$$9. \int \frac{\sqrt{x}}{1 + \sqrt[4]{x^3}} dx.$$

$$2. \int \frac{dx}{\sqrt{3-x^2}}.$$

$$6. \int \frac{dx}{4+3x^2}.$$

$$10. \int 3x^2 (1+x^3)^3 dx.$$

2.
$$\int \frac{dx}{\sqrt{3-x^2}}.$$
3.
$$\int \frac{1}{\sin^4 x} dx. (\star)$$
4.
$$\int \frac{\sin x}{1+\cos^2 x} dx.$$

6.
$$\int \frac{dx}{4+3x^2}.$$
7.
$$\int \sin^2 x \cos^3 x dx. (\star)$$
8.
$$\int x^2 \sqrt{x-1} dx.$$

$$11. \int \frac{x}{\sqrt{5-x^2}} dx.$$

S. W: https://elearning.univ-msila.dz/

PAGE 1/2

قسم التعليم القًا عدي المشترك Р. Facbook :МІ

Exercice 06

Calculer les les intégrales suivantes

$$1. \int_{-1}^{2} [x] dx.(\star)$$

$$2. \int_{-3}^{4} |x^2 - 3x + 2| dx.$$

Exercice 07

Calculer les primitives

1.
$$\int \cos^2 x dx$$
.

$$4. \int \frac{3x+3}{x^2-2x+1} d.$$

$$7. \int \frac{dx}{\sqrt{1+x+x^2}}$$

$$2. \int \frac{x}{1+x^3} dx.$$

$$5. \int \frac{x+3}{x^2-x-2} dx$$

8.
$$\int \frac{1}{e^x + 1} dx.(\star)$$

3.
$$\int \frac{x^3 - 3x^2 + x + 1}{x - 3} dx$$

1.
$$\int \cos^2 x dx$$
.
2. $\int \frac{x}{1+x^3} dx$.
3. $\int \frac{x^3 - 3x^2 + x + 1}{x-3} dx$.
4. $\int \frac{3x+3}{x^2 - 2x + 1} dx$
5. $\int \frac{x+3}{x^2 - x - 2} dx$.
6. $\int \frac{3}{(x-2)(x^2 - 4x)} dx.(\star)$

Exercice supplémentaire 1

Calculer les intégrales suivantes en effectuant le changement de variables recommandé

1.
$$I_1 = \int_0^{\pi} \frac{dx}{2 + \cos x}$$
, poser $t = \tan\left(\frac{x}{2}\right)$.

4.
$$I_4 = \int_{\frac{\pi}{2}}^{\frac{2\pi}{3}} \frac{dx}{\sin x}$$
, poser $u = \tan(\frac{x}{2})$.

2.
$$I_2 = \int_{0}^{\frac{\pi}{2}} \frac{\sin^3 x \cos x}{1 + \cos^2 x} dx$$
, poser $u = \sin x$.

5.
$$I_5 = \int_0^{\frac{1}{2}} \frac{dx}{x\sqrt{1+x^2}}$$
, poser $\sqrt{1+x} = u$.

6. $I_6 = \int_1^1 \sqrt{1 - x^2} dx$, poser $x = \sin t$.

3.
$$I_3 = \int_{0}^{1} e^{2x} \ln(1 + e^x) dx$$
, poser $u = e^x$.

7.
$$I_7 = \int \frac{1}{1 + \cos x} dx$$
, poser $t = \tan\left(\frac{x}{2}\right)$.(*)

Exercice supplémentaire 2

Soit f une fonction Riemann-intégrable sur l'intervalle fermé [a,b] tel que $\forall \in [a,b]$: f(a+b-x)=f(x).

- 1. Montrer que $\int_{-\infty}^{b} x f(x) dx = \frac{a+b}{2} \int_{-\infty}^{b} f(x) dx.$
- 2. En déduit la valeur de l'intégrale $\int x \frac{\sin x}{1 + \cos^2 x} dx$.

Exercice supplémentaire 3

Calculer les les intégrales suivantes

1.
$$\int x \arctan x dx$$

$$2. \int (\ln x)^2 dx. (\star$$

1.
$$\int x \arctan x dx$$
. 2. $\int (\ln x)^2 dx$.(*) 3. $\int \cos x \ln(1 + 4) \int \arcsin x dx$.

+4.
$$\int \arcsin x dx$$

Exercice supplémentaire 4

Soit f une fontions définie sur l'intervalle [0,1] par $f(x) = \begin{cases} 1 & \text{si } x \in \mathbb{Q} \\ 0 & \text{si } x \notin \mathbb{Q}. \end{cases}$

Est ce que f est intégrable ?. Justifier votre réponse.

