Manipulation N° II: Titrage par précipitation (Dosage des chlorures dans les eaux)

I. Introduction:

Pour qu'une eau soit potable à la consommation, elle doit répondre à un certain nombre de critères de qualités très strictes fixées par le ministère de la santé. Les normes de potabilité obligent l'eau de robinet à répondre à un certain de critères, en particulier des seuils maximums pour la concentration des ions. Par exemple, le titre massique en ions chlorures ne doit pas dépasser 260 mg/l dans une eau soit potable.

Nous allons voir une méthode de dosage des ions chlorures dans une eau, appelée *méthode de Mohr*, qui est classique dans la surveillance de la qualité des eaux.

II. But : Déterminer la normalité et la concentration massique des ions de chlorure trouvés dans l'eau potable par dosage avec le nitrate d'argent AgNO₃ de concentration connue.

III. Principe:

Le dosage des ions chlorures dans l'eau est un dosage volumétrique direct (*méthode de Mohr*) utilisant l'ion chromate CrO_4^{2-} comme indicateur coloré (souvent du chromate de potassium K_2CrO_4).

Dans la prise d'essai de solution à doser on ajoute quelques gouttes de cet indicateur, la solution est alors jaune. On dose alors les ions chlorures par une solution de nitrate d'argent AgNO₃ selon la réaction :

$$Ag^+ + Cl^- \longrightarrow AgCl_{blanc}$$

Dans un premier temps on observe la formation d'un précipité blanc de chlorure d'argent AgCl (K_s =1.6 10^{-10} à 25 °C). Lorsque la quantité d'ions chlorures disponibles devient négligeable, on observe la formation d'un précipité rouge de chromate d'argent Ag₂CrO₄ (K_s = 1.7 10^{-12} à 25 °C) ce qui permet de détecter l'équivalence du dosage.

IV. Protocole Expérimentale :

Les échantillons utilisés sont : l'eau distillée, l'eau minérale, l'eau de robinet et eau de la source (la solution doit être à pH voisin de 7 pour visualiser correctement le changement de couleur).

- Mettre la solution de nitrate d'argent (AgNO₃) de concentration (0.1 N) dans la burette.
- Placer dans l'erlenmeyer 10 ml de l'eau de chaque échangions ; ajouter 2 à 3 gouttes de K₂CrO₄.
- Verser le nitrate d'argent lentement dans l'erlenmeyer (goutte à goutte et en agitant) jusqu'au l'apparition de la couleur jaune laiteuse et continuer le dosage jusqu'au l'apparition de la couleur rouge brique.

Echantillon	Eau distillée	Eau minérale	Eau de robinet	Eau de la source
Volume équivalent				
moyen de AgNO ₃ (ml)				

Précaution : le nitrate d'argent solide ainsi que sa solution sont instables à la lumière, les solutions doivent donc être gardées à l'abri de la lumière dans des flacons teintés.

V. Exploitation des résultats :

- 1. Ecrire les différentes équations des réactions effectues dans ce titrage.
- 2. Calculer la concentration massique des chlorures de chaque échantillon.
- 3. Comparer entre les valeurs obtenues et le seuil maximum. Qu'est que vous conclure ?