RÉPUBLIQUE ALÉRIENNE DÉMOCRATIQUE ET POPULAIRE

MINISTÈRE DE L'ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITÉ MOHAMED BOUDIAF -M'SILA-

Exercices Corrigés pour le Module Série Mathématique 04 (Analyse Complexe)

Par:

Somia GUECHI

Pour:

Deuxieme année Licence Domaine : Sciences et Technologies

Courriels:

somia.guechi@univ-msila.dz guechi.s2711@gmail.com

Année: 2021/2022

Ce document donnent les principales théorèmes, définitions, résultats et des exercices avec les solutions d'analyse complexe (Math 4). Il s'adresse aux étudiants de deuxième année de Licence des sciences et techniques ; Électronique, Génie Mécanique, Electromécanique, Génie Civil et Hydraulique, ainsi qu'aux étudiants des autres filières. Il est le fruit d'un enseignement de mathématiques pour les ingénieurs dispensé à la faculté de technologie de l'université de Msila, et le contenu du cours :

- \heartsuit Nombres Complexes,
- ♥ Fonctions Complexes,
- ♡ Dérivation dans un domaine complexe,
- ♥ Intégration dans un domaine complexe,
- ♥ Points singuliers et série de Laurent.

Table des matières

1	Nombres et fonctions complexes		
	1.1	Nombres complexes	1
	1.2	Exercices corrigés sur les nombres complexes	2
	1.3	Fonctions complexes	9
	1.4	Exercices corrigés sur les fonctions complexes	4
2	Dér	rivation et intégration dans un domaine complexe	6
	2.1	Dérivation dans un domaine complexe	6
	2.2	Exercices corrigés	7
	2.3	Intégration le long d'une courbe	8
	2.4	Exercices corrigés sur l'intégration dans \mathbb{C}	ę
3	Points singuliers et série de Laurent		
	3.1	Points singuliers	15
	3.2	Séries entières	15
	3.3	Séries de Taylor	16
	3.4	Série de Laurent	17
	3.5	Exercice corrigés	17

Chapitre 1

Nombres et fonctions complexes

1.1 Nombres complexes

 \heartsuit Il ya trois formes d'un nombre complexe

Forme algébrique :	Forme trigonométrique :	Forme exponentielle:
$z = x + iy, x, y \in \mathbb{R}$	$z = z (\cos \theta + i \sin \theta),$	$z = R \times e^{i\theta}.$
	$R = z = \sqrt{x^2 + y^2}$: Le module de z ,	
	$\theta = \arg(z) = arctg\left(\frac{y}{x}\right)$: L'argument de z.	

 \heartsuit Formule de Moivre : Si $z_1 = R_1 (\cos \theta_1 + i \sin \theta_1)$ et $z_2 = R_2 (\cos \theta_2 + i \sin \theta_2)$ alors

$$z_{1} \times z_{2} = R_{1} \times R_{2} \left[\cos (\theta_{1} + \theta_{2}) + i \sin (\theta_{1} + \theta_{2}) \right],$$

$$\frac{z_{1}}{z_{2}} = \frac{R_{1}}{R_{2}} \left[\cos (\theta_{1} - \theta_{2}) + i \sin (\theta_{1} - \theta_{2}) \right],$$

$$z_{1}^{n} = R_{1}^{n} \left(\cos n\theta_{1} + i \sin n\theta_{1} \right).$$

 \heartsuit Racine n-ième d'un nombre complexe : Si $z = R(\cos \theta + i \sin \theta)$ d'après la formule de Moivre

$$\sqrt[n]{z} = z^{\frac{1}{n}} = R^{\frac{1}{n}} \left(\cos \frac{\theta + 2k\pi}{n} + i \sin \frac{\theta + 2k\pi}{n} \right), \quad k = 0, 1, 2, \dots, n - 1.$$

$$arg(z) = Arg(z) + 2k\pi, \quad k \in \mathbb{Z}.$$

¹ Si $-\pi < \theta \le \pi$ l'ongle θ est appelé l'argument principale noté par Arg(z), on a

\heartsuit Courbe dans le plan complexe :

Le cercle de rayon R et de centre $z_0 = x_0 + iy_0$ \Rightarrow $|z - z_0| = R$ ou la forme polaire $z(t) = z_0 + R \times e^{i\theta}, \ \theta \in [0, 2\pi]$.

Le segment de droite reliant deux points z_0 et z_1 \Rightarrow $z(t) = z_0 + t(z_1 - z_0)$, ou $z(t) = (1-t)z_0 + tz_1$, $t \in [0,1]$.

Le disque ouvert de rayon R et de centre z_0 $\Rightarrow |z-z_0| < R$.

Le disque fermé de rayon R et de centre z_0 $\Rightarrow |z-z_0| \leq R$.

La couronne de centre z_0 $\Rightarrow R_1 \leq |z - z_0| \leq R_2$, R_1 le rayon interne et R_2 le rayon externe

1.2 Exercices corrigés sur les nombres complexes

Exercice 01:

1. Soit w = u + iv, exprimer les fonctions u et v en fonction de x et y dans les exemples suivants :

A)
$$w = z^3$$
 B) $w = ze^z$ C) $w = \frac{1}{2} \left(z + \frac{1}{z} \right)$ D) $w = \frac{z - i}{1 - i\overline{z}}$ E) $w = \cos(z)$

Solution:

On a z = x + iy,

(a)
$$w = z^3 = (x + iy)^3 = x^3 - 3xy^2 - i(y^3 - 3x^2y) \Rightarrow \begin{cases} u(x,y) = x^3 - 3xy^2 \\ v(x,y) = -y^3 + 3x^2y \end{cases}$$

(b)
$$w = ze^z = (x + iy) e^{(x+iy)} = (x + iy) e^x e^{iy} = (x + iy) e^x (\cos y + i \sin y)$$

$$\Rightarrow \begin{cases} u(x,y) = xe^x \cos y - ye^x \sin y \\ v(x,y) = xe^x \sin y + ye^x \cos y \end{cases}$$

(c)
$$w = \frac{1}{2} \left(z + \frac{1}{z} \right) = \frac{1}{2} \left(\frac{z^2 + 1}{z} \right) \times \frac{\overline{z}}{\overline{z}}$$

$$\Rightarrow u(x, y) = \frac{1}{2} \frac{x^3 + x}{x^2 + y^2} \text{ et } v(x, y) = \frac{-1}{2} \frac{y^3 + y}{x^2 + y^2}.$$

(d)
$$w = \frac{z - i}{1 - i\overline{z}} = \frac{x + i(y - 1)}{1 - y - ix} \times \frac{1 - y + ix}{1 - y + ix}$$

$$\Rightarrow u(x, y) = \frac{-2xy + 2x}{(1 - y)^2 - x^2} \text{ et } v(x, y) = \frac{x + (1 - y)^2}{(1 - y)^2 - x^2}.$$

(e)
$$w = \cos(z) = \cos(x + iy) = \cos x \ chy - i \sin x \ shy$$
. (ou $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$).

2. Ecrire les nombres complexes sous forme algébrique :

A)
$$w = \frac{3+2i}{1-i}$$
, B) $w = \left(\frac{\sqrt{3}-i}{\sqrt{3}+i} + \frac{\sqrt{3}+i}{\sqrt{3}-i} - i - 1\right)^7$

Solution:

(a)
$$w = \frac{3+2i}{1-i} = \frac{3+2i}{1-i} \times \frac{1+i}{1+i} = \frac{1}{2} + \frac{5}{2}i$$
,

(b)
$$w = \left(\frac{\sqrt{3} - i}{\sqrt{3} + i} + \frac{\sqrt{3} + i}{\sqrt{3} - i} - i - 1\right) = i.$$

3. Trouver l'ensemble des points, tel que $c \in \mathbb{R}$ et $a \in \mathbb{C}$:

A) Re
$$(z^2) \ge 1$$
 B) $1 < |z - 3| < 2$ C) arg $(z) = \frac{\pi}{2}$

D)
$$|z - i| = 4$$
 E) $az + \overline{az} + c = 0$.

Solution:

(a)
$$\text{Re}(z^2) \ge 1 \Rightarrow x^2 - y^2 \ge 1$$
, $(x - x_0)^2$

L'équation générale d'un Hyperbole est $\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$

- (b) $1 < |z 3| < 2 \Rightarrow$ L'ensemble des points est la couronne de centre $z_0 = 3$ et de rayon interne $r_1 = 1$ et de rayon externe $r_2 = 2$.
- (c) $\arg(z) = \frac{\pi}{2} \Rightarrow$ L'ensemble des points est la demi-droite de l'équation x = 0.
- (d) $|z-i|=4 \Rightarrow$ L'ensemble des points est le cercle de centre $z_0(0,1)$ et de rayon R=4.
- (e) On pose $a = \alpha + i\beta$ et $z = x + iy \Rightarrow az + \overline{az} + c = 0 \Rightarrow \beta y = \alpha x + \frac{c}{2}$ alors l'ensemble des points est une droite.

1.3 Fonctions complexes

♣ La forme générale d'une fonction complexe ² ³est

$$\omega = f(z) = f(x + iy) = u(x, y) + iv(x, y), \quad z \in \mathbb{C} \text{ et } x, y \in \mathbb{R}.$$
 (1.1)

tel que u = Re(f) et v = Im(f).

 $^{^2}f$ est uniforme : si une seule valeur de ω correspond à chaque valeur de z.

 $^{^3}f$ est multiforme : si plusieurs valeurs de ω correspond à chaque valeur de z.

 \clubsuit f admet une limite l=a+ib en $z_0=x_0+iy_0,\ a,b,x_0$ et y_0 sont des réels alors

$$\lim_{z\to z_0} f\left(z\right) = l \iff \lim_{(x,y)\to(x_0,y_0)} u\left(x,y\right) = a \text{ et } \lim_{(x,y)\to(x_0,y_0)} v\left(x,y\right) = b.$$

- \clubsuit f est dite continue en z_0 si $\lim_{z \to z_0} f(z) = f(z_0)$.
- \clubsuit f est dite continue dans $D \subset \mathbb{C}$ si elle est continue en tous les points de D.
- ♣ Fonctions élémentaires
 - 1. Fonction exponentielle:

 - $\oint \frac{e^{z_1}}{e^{z_2}} = e^{z_1 z_2}.$
 - 2. Fonction logarithmique⁴: $\forall z \in \mathbb{C}^*$:

$$\log(z) = \ln|z| + i(\arg(z) + 2k\pi), \quad k \in \mathbb{Z}$$

$$Log(z) = \ln|z| + iArg(z), \quad -\pi < Arg(z) \le \pi$$

Log(z): est la valeur principale de log(z).

1.4 Exercices corrigés sur les fonctions complexes

Exercice 01 : Résoudre les équations :

A)
$$z^4 - z^2 + 1 = 0$$
 B) $\sin z = 5$ C) $\exp(e^z) = 1$
D) $\log(z) = i - 1$ E) $z^{1-i} = 4$.

Solution:

1. (a)
$$z^4 - z^2 + 1 = 0$$
, on pose $w = z^2 \Rightarrow z = \pm \sqrt{w}$
alors $z^4 - z^2 + 1 = 0 \Rightarrow w^2 - w + 1 = 0$ donc $S = \left\{ -e^{i\frac{\pi}{6}}, -e^{-i\frac{\pi}{6}}, e^{i\frac{\pi}{6}}, e^{-i\frac{\pi}{6}} \right\}$.
(b) $\sin z = 5 \Rightarrow e^{iz} - e^{-iz} = 5 \times 2i \Rightarrow (e^{iz})^2 - 10i(e^{iz}) - 1 = 0$
donc $S = \left\{ -i\log\left(5 + 4\sqrt{6}\right)i, -i\log\left(5 - 4\sqrt{6}\right)i \right\}$.

 $^{^4}$ Les fonctions logarithmiques complexes log ont des propriétés analogues à celles des fonctions logarithmiques réelles, mais ne sont pas vérifiées pour Log.

(c)
$$\exp(e^z) = 1 \Rightarrow e^z = 2ik\pi$$
, $k \in \mathbb{Z} \Rightarrow z = \log(2ik\pi) = \ln(2k\pi) + i\left(\frac{1}{2} + k'\right)\pi$, $k' \in \mathbb{Z}$

(d)
$$\log(z) = i - 1 \Rightarrow z = e^{-1}(\cos(1) + i\sin(1))$$
.

(e)
$$z^{1-i} = 4 \Rightarrow \log(z^{1-i}) = \log(4) \Rightarrow (1-i)\log z = \ln(4) + i2k\pi, \Rightarrow \log z = \frac{\ln(4) + i2k\pi}{(1-i)}$$
,

alors
$$\ln |z| + i\theta = \frac{\ln (4) + i2k\pi}{(1-i)} \times \frac{1+i}{1+i}$$
 donc $|z| = \ln 2 - k\pi$ et $\theta = \ln 2 + k\pi$.

2. Trouver les valeurs de : A) $\log (1-i)$, B) i^i C) $(-1)^{\sqrt{2}}$.

Solution:

(a)
$$\log(1-i) = \ln(\sqrt{2}) + i\left(\frac{-\pi}{4} + 2k\pi\right), \quad k \in \mathbb{Z}$$

(b)
$$i^i = e^{i \log i} = e^{-(\frac{\pi}{2} + 2k\pi)}, \quad k \in \mathbb{Z}$$

(c)
$$(-1)^{\sqrt{2}} = e^{\sqrt{2}\log(-1)}$$