
1

Exact Matching (Boolean Model)

Query DocumentsIndex

database

Mechanism for determining whether a

document matches a query.

Set of hits

2

Boolean Diagram

A B

A and B

A or B

not (A or B)

3

Adjacent and Near Operators

abacus adj actor

Terms abacus and actor are adjacent to each other, e.g.,

"abacus actor"

abacus near 4 actor

Terms abacus and actor are within 4 words of each other, e.g.,

"the actor has an abacus"

Some systems support other operators, such as with (two terms in the

same sentence) or same (two terms in the same paragraph).

4

Boolean Queries

Boolean query: two or more search terms, related by

logical operators, e.g.,

and or not

Examples:

abacus and actor

abacus or actor

(abacus and actor) or (abacus and atoll)

not actor

Find all documents that

contain the exact words

abacus and actor

5

Evaluation of Boolean Operators

Precedence of operators must be defined:

adj, near high

and, not

or low

Example

A and B or C and B

is evaluated as

(A and B) or (C and B)

6

The Term Vector Space

t1

t2

t3

d1

t13

t12
t11

Let n the number of distinct terms

in the corpus.

The terms in a document can be

represented as vectors in an

n-dimensional vector space.

(In the figure n = 3.)

7

Term Vector Space

document text terms

d1 ant ant bee ant bee

d2 dog bee dog hog dog ant dog ant bee dog hog

d3 cat gnu dog eel fox cat dog eel fox gnu

In this corpus there are eight different terms. Therefore

the term vector space, T, has 8-dimensions.

8

Term Vector Space

d1 d2 d3 d4 d5 d6 d7

ant 1 1 1

bee 1 1 1 1

cat 1 1 1 1

dog 1 1

eel 1 1

fox 1 1

gnu 1 1

hog 1 1

tij = 1 if term i is in document j and zero otherwise

Each

document is a

vector in the

8-dimensional

term vector

space T

9

Term Vector Space with Weighting

Term vector space

n-dimensional space, where n is the number of different terms

used to index a set of documents (i.e. size of the word list).

Vector

Document j is represented by a column vector. Its magnitude

in dimension i is tij, where:

tij > 0 if term i occurs in document j

tij = 0 otherwise

tij is the weight of term i in document j.

10

Sparse Matrix

The term vector space is a very sparse matrix.

An inverted file is an efficient way to represent a term vector

space. It also provides a convenient method to store additional

data.

Most methods of storing sparse matrices are designed for either

row processing or column processing. An inverted file is

organized for row processing, i.e., all the information about a

given term is stored together.

11

Inverted File

Inverted file:

An inverted file is list of search terms that are organized for

associative look-up, i.e., to answer the questions:

• In which documents does a specified search term appear?

• Where within each document does each term appear?

(There may be several occurrences.)

In a free text search system, the word list and the postings file

together provide an inverted file system. In addition, they

contain the data needed to calculate weights and information

that is used to display results.

12

Inverted File -- Definitions

Word ant

bee

cat

dog

eel

fox

gnu

hog

The word list is a list of

all the distinct terms in

the corpus after the

removal of stop words

and stemming. This is

sometimes called a

vocabulary file.

13

Inverted File -- Definitions

Posting: Entry in an inverted file system that applies to a

single instance of a term within a document, e.g., there might

be three postings for "abacus":

abacus 3 "abacus" is in document 3

abacus 19

abacus 22

Inverted List: A list of all the postings in an inverted file

system that apply to a specific word, e.g.

abacus 3 19 22 "abacus" is in documents 3, 19 & 22

This is a sparse representation of a row in the term vector matrix

14

Use of Inverted Files for Evaluating a

Boolean Query

To evaluate the and

operator, merge the

two inverted lists

with a logical AND

operation.

Examples: abacus and actor

Postings for abacus 3 19 22

Postings for actor 2 19 29

Document 19 is the only document

that contains both terms, "abacus"

and "actor".

15

Enhancements to Inverted Files -- Concept

Location: Each posting holds information about the location of

each term within the document.

Uses

user interface design -- highlight location of search term

adjacency and near operators (in Boolean searching)

Frequency: Each inverted list includes the number of postings

for each term.

Uses

term weighting

query processing optimization

16

Inverted File -- Concept (Enhanced)

Word Postings Document Location

abacus 4 3 94

19 7

19 63

22 56

actor 3 2 66

19 64

29 45

aspen 1 5 43

atoll 3 11 3

11 70

34 40

Inverted list

for term actor

17

Evaluating an Adjacency Operation

Example: abacus adj actor

Postings for abacus

Postings for actor

Document 19, locations 63 and 64, is the only occurrence

of the terms "abacus" and "actor" adjacent.

3 94 19 7 19 63 22 56

2 66 19 64 29 45

document

location

within

document

18

Query Matching: Boolean Methods

Query: (abacus or asp*) and actor

1. From the index file (word list), find the postings file for:

"abacus"

every word that begins "asp"

"actor"

2. Merge these posting lists. For each document that occurs

in any of the postings lists, evaluate the Boolean

expression to see if it is true or false.

Step 2 should be carried out in a single pass.

19

Use of Postings File for Query

Matching

1 abacus

3 94

19 7

19 63

22 56

2 actor

2 66

19 64

29 45

3 aspen

5 43

4 atoll

11 3

11 70

34 40

20

Similarity Ranking Methods

Query DocumentsIndex

database

Mechanism for determining the similarity

of the query to the document.

Set of documents

ranked by how similar

they are to the query

21

Two Documents Represented in

3-Dimensional Term Vector Space

t1

t2

t3

d1 d2



22

Vector Space Revision

x = (x1, x2, x3, ..., xn) is a vector in an n-dimensional vector space

Length of x is given by (extension of Pythagoras's theorem)

|x|2 = x1
2 + x2

2 + x3
2 + ... + xn

2

If x1 and x2 are vectors:

Inner product (or dot product) is given by

x1.x2 = x11x21 + x12x22 + x13x23 + ... + x1nx2n

Cosine of the angle between the vectors x1 and x2:

cos () =
x1.x2

|x1| |x2|

23

Similarity

(No Weighting)

document text terms

d1 ant ant bee ant bee

d2 dog bee dog hog dog ant dog ant bee dog hog

d3 cat gnu dog eel fox cat dog eel fox gnu

How similar are the following documents?

24

Term Vector Space

(No Weighting)

d1 d2 d3

ant 1 1

bee 1 1

cat 1

dog 1 1

eel 1

fox 1

gnu 1

hog 1

tij = 1 if term i is in document j and zero otherwise

25

Example: Comparing Documents

No Weighting

d1 d2 d3

d1 1 0.71 0

d2 0.71 1 0.22

d3 0 0.22 1

Similarity of documents in example

sim(d1, d2) =
d1.d2

|d1| |d2|

26

Similarity between a Query and a Document

in 3-Dimensional Term Vector Space

t1

t2

t3

q d



cos() is used as a
measure of similarity

27

Similarity of Query to Documents

query

q ant dog

document text terms

d1 ant ant bee ant bee

d2 dog bee dog hog dog ant dog ant bee dog hog

d3 cat gnu dog eel fox cat dog eel fox gnu

28

Term Vector Space:

(Term Incidence Matrix: no Weighting)

q d1 d2 d3

ant 1 1 1

bee 1 1

cat 1

dog 1 1 1

eel 1

fox 1

gnu 1

hog 1

length 2 2 4 5

29

Calculate Ranking

d1 d2 d3

q 1/2 1/√2 1/√10

0.5 0.71 0.32

Similarity of query to documents in example:

If the query q is searched against this

document set, the ranked results are:

d2, d1, d3

30

Simple Uses of Vector Similarity in

Information Retrieval

Ranking

For query q, return the n most similar documents ranked

in order of similarity.

[This is the standard practice.]

31

An improved measure of similarity might take account of:

(a) Whether the terms are common or unusual

(c) How many times each term appears in a document

(d) The lengths of the documents

(e) The place in the document that a term appears

(f) Terms that are adjacent to each other (phrases)

Extending the Basic Concept with

Term Weighting

32

Weighting: Unnormalized Term

Frequency (tf)

d1 d2 d3

ant 2 1

bee 1 1

cat 1

dog 4 1

eel 1

fox 1

gnu 1

hog 1

tij = number of times that term i appears in document j

length 5 19 5

33

Example: Unnormalized Form of

Term Frequency (tf)

d1 d2 d3

d1 1 0.31 0

d2 0.31 1 0.41

d3 0 0.41 1

Similarity of documents in example:

Similarity depends upon the weights given to the terms.

[Note differences in results from previous example.]

34

Similarity of query to documents:

(Unnormalized Term Frequency)

query

q ant dog

document text terms

d1 ant ant bee ant bee

d2 dog bee dog hog dog ant dog ant bee dog hog

d3 cat gnu dog eel fox cat dog eel fox gnu

35

Term Vector Space: (Weighting by

Unnormalized Form of Term Frequency)

q d1 d2 d3

ant 1 2 1

bee 1 1

cat 1

dog 1 4 1

eel 1

fox 1

gnu 1

hog 1

length 2 5 19 5

36

Calculate Ranking

d1 d2 d3

q 2/√10 5/√38 1/√10

0.63 0.81 0.32

Similarity of query to documents in example:

If the query q is searched against this

document set, the ranked results are:

d2, d1, d3

37

Term Vector Space with Weighting

Term vector space

n-dimensional space, where n is the number of different terms

used to index a set of documents (i.e. size of the word list).

Vector

Document j is represented by a vector. Its magnitude in

dimension i is tij, where:

tij > 0 if term i occurs in document j

tij = 0 otherwise

tij is the weight of term i in document j.

38

Vector Similarity Computation

with Weights

Similarity between documents dp and dq is defined as:

 tiptiq

|dp| |dq|

Where dp and dq are the corresponding weighted term vectors

i=1

n

sim(di, dj) =

39

Choice of Weights

What

weights lead

to the best

information

retrieval?

q d1 d2 d3

ant ? ? ?

bee ? ?

cat ?

dog ? ? ?

eel ?

fox ?

gnu ?

hog ?

40

Evaluation

Before we can decide whether one system of weights is

better than another, we need systematic and repeatable

methods to evaluate methods of information retrieval.

41

Methods for Selecting Weights

Empirical

Test a large number of possible weighting schemes

with actual data.

Model based

Develop a mathematical model of word distribution

and derive weighting scheme theoretically.

(Probabilistic model of information retrieval.)

42

Weighting

Term Frequency (tf)

Suppose term i appears fij times in document j. What

weighting should be given to a term i?

Term Frequency: Concept

A term that appears many times within a document is

likely to be more important than a term that appears

only once.

43

Normalized Form of Term Frequency:

Free-text Document

Length of document

Unnormalized method is to use fij as the term frequency.

...but, in free-text documents, terms are likely to appear

more often in long documents. Therefore fij should be

scaled by some variable related to document length.

44

Term Frequency: Free-text Document

A standard method for free-text documents

Scale fij relative to the frequency of other terms in the

document. This partially corrects for variations in the

length of the documents.

Let mj = max (fij) i.e., mj is the maximum frequency

of any term in document j.

Term frequency (tf):

tfij = fij / mj

Note: There is no special justification for taking this

form of term frequency except that it works well in

practice and is easy to calculate.

j

45

Weighting

Inverse Document Frequency (idf)

Inverse Document Frequency: Concept

Some terms appear much more often than others across

the documents of a corpus.

A term that occurs in only a few documents is likely to

be a better discriminator that a term that appears in most

or all documents.

46

Inverse Document Frequency

Suppose there are N documents and that the number of

documents in which term i occurs is ni.

Simple method

We could define document frequency as ni/N.

A possible method might be to use the inverse, N/ni, as a

weight. This would give greater weight to words that

appear in fewer documents.

47

Inverse Document Frequency

A standard method

The simple method over-emphasizes small differences.

Therefore use a logarithm.

Inverse document frequency (idf):

idfj = log2 (N/ni) + 1 ni > 0

Note: There is no special justification for taking this form

of inverse document frequency except that it works well in

practice and is easy to calculate.

48

Example of Inverse Document

Frequency

Example

N = 1,000 documents

term i ni N/ni idfi

t1 100 10.00 4.32

t2 500 2.00 2.00

t3 900 1.11 1.13

t4 1,000 1.00 1.00

From: Salton and McGill

49

Full Weighting:

A Standard Form of tf.idf

Practical experience has demonstrated that weights of the

following form perform well in a wide variety of

circumstances:

(weight of term i in document j)

= (term frequency) * (inverse document frequency)

A standard tf.idf weighting scheme, for free text

documents, is:

tij = tfij * idfi

= (fij / mj) * (log2 (N/ni) + 1) when ni > 0

50

Structured Text

Structured text

Structured texts, e.g., queries, catalog records or

abstracts, have different distribution of terms from

free-text. A modified expression for the term

frequency is:

tfij = K + (1 - K)*fij / mj when fij > 0

K is a parameter between 0 and 1 that can be tuned for

a specific collection.

51

Structured Text

Query

To weigh terms in the query, Salton and Buckley

recommend K equal to 0.5.

However, in practice it is rare for a term to be repeated

in a query. Therefore the standard form of tf can be

used, i.e., with K = 0 and m = 1.

i

