Mercredi: 31 Mars 2021

Module de Chimie 02

Année : 2020/2021

Série № 03 (Premier Principe de Thermodynamique)

Exercice 1:

Un compresseur formé par un récipient, fermé par un piston mobile, contient 2 g de l'hélium (G.P, monoatomique) dans les conditions (P_A , V_A). On opère une compression adiabatique, de façon réversible, qui amène le gaz dans les conditions (P_B , V_B), sachant que P_A = 1 atm, V_A = 10 L et P_B = 3 atm. Déterminer :

- 1 Le volume final V_B?
- 2 Le travail reçu par le gaz?
- 3 La variation d'énergie interne du gaz?
- 4 En déduire l'élévation de température du gaz, sans calculer la température initiale T_A.

On donne : Le rapport des chaleurs massiques à pression et volume constants: $\gamma = C_p/C_v = 5/3$; Constante des gaz parfaits : R = 8,32 S.I.

Exercice 2:

Une ensileuse* fonctionne selon un cycle $A \rightarrow B \rightarrow C \rightarrow A$ décrit comme suit :

- 1 Le gaz parfait est amené de l'état A (P_A , V_A , T_A) à l'état B (P_B , V_B , T_B) par une transformation à volume constant, sachant que P_B = 2 P_A , calculer T_B en fonction de T_A ?
- 2 Le gaz subit ensuite une détente isotherme qui l'amène à un état C (P_C , V_C , T_C) de telle sorte que $P_C = P_A$. Calculer V_C en fonction de V_A ?
- 3 Le gaz revient alors à son état initial A par une transformation à pression constante.
- a Faire un schéma du cycle ABCA dans le diagramme de Clapeyron.
- b Calculer le travail total (W) échangé par le gaz pendant le cycle ABCA avec le milieu extérieur.

Exprimer ce travail en fonction des variables P_A et V_A. Conclusion?

* Ensileuse: Machine fixe servant au remplissage des silos à fourrage. Machine tractée fauchant, hachant et chargeant dans une remorque les fourrages verts (herbe, maïs ou céréales immatures (blé, triticale...).

Exercice 3:

En hiver et afin d'éviter le gel, on chauffe une serre contenant 812 g d'air (gaz supposé parfait) dont la température s'élève de 2° C à 16°C. Calculer :

- 1 La variation d'énergie interne de l'air au cours de cet échauffement?
- 2 La quantité de chaleur reçue par le gaz (en Calorie), si ce dernier a fourni un travail de 846,4 joules.

On donne: La masse molaire de l'air M = 29 g /mole, R = 8,32 S.I; 1 cal =4.1855 J.

Le rapport des chaleurs massiques de l'air γ = C_P / C_v = 1,4 (supposé constant dans le domaine de températures étudié).

Exercice 4:

L'état initial d'une mole de gaz parfait est caractérisé par $P_0 = 2.10^5$ Pa, $V_0 = 14$ L. On fait subir successivement à ce gaz:

- ✓ une détente isobare, qui double son volume,
- ✓ une compression isotherme, qui le ramène à son volume initial,
- ✓ un refroidissement isochore, qui le ramène à l'état initial (P_0, V_0) .
- a A quelle température s'effectue la compression isotherme ? En déduire la pression maximale atteinte. Représenter le cycle de transformation dans le diagramme de Clapeyron P = f(V).
- b Calculer le travail, la quantité de chaleur et la variation d'énergie interne échangés par le système au cours de chaque transformation ?.

Faire le bilan du cycle ?. Conclusion ?

Exercices pour les étudiants

Exercice 1:

Pour vérifier que la quantité de chaleur est une fonction qui dépend du chemin suivi, on considère un gaz parfait diatomique ($C_V = 5/2$ R, 1mole) qui est porté réversiblement d'un état initial (i) à un état final (f) par deux chemins différents :

Chemin 1:

 $\underbrace{\text{isochore}}_{\text{isobare}} \underbrace{\text{A}}_{\text{f}} \underbrace{\text{isobare}}_{\text{f}}$

Chemin 2:

 $\underbrace{\text{isobare}}_{\text{bothore}} \underbrace{\text{B}}_{\text{isochore}} \underbrace{\text{f}}_{\text{f}}$

Calculer la quantité de chaleur échangée dans les deux cas en fonction de la température de l'état initial T_i sachant que : P_f = 2 P_i et V_f = 2 V_i . Conclusion ?

Exercice 2:

Un récipient cylindrique fermé par un piston contient 25 mL d'azote à 10°C sous la pression de 1,4 atm. Par enfoncement du piston, le volume du gaz est réduit à 1/20 de sa valeur initiale.

- a) La pression finale (en Pa).
- b) La température finale (en K).
- c) le travail dépensé (en J).
- d) La quantité de chaleur mise en jeu (en J et cal).

Si la compression s'effectue de façon : 1) Isotherme.

2) Adiabatique.

On donne: $\gamma = 7/5$

Exercice 3

Transformation d'un gaz hydrogène supposé parfait d'un état initial (i) $T_A = 25$ °C à un état final (f) s'effectue selon quatre chemins différents (voir le diagramme de Clapeyron),

- 1. Quel est le type de chaque transformation que subit le gaz selon les chemins du diagramme de Clapeyron P = f(V).
- 2. Calculer la quantité de gaz d'hydrogène
- 3. Calculer VB, PB, VB, PC, VC, VD et PD.
- 4. Calculer pour chacune des transformations (en Joules) : W, Q, ΔU , ΔH .
- 5. Indiquer la différance entre la température (T) et chaleur (Q).

On donne: $C_v = 5 / 2R$

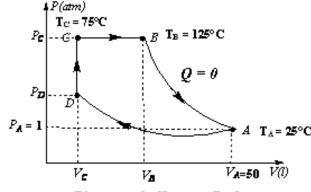


Diagramme de Clapeyron P = f(v)

Exercice 4:

Une mole de gaz parfait à une température initiale de 25°C se **détend** d'une pression de 5 atmosphères à une pression de 1 atmosphère. Dans chacun des cas suivants :

- i. Détente isotherme et réversible ;
- ii. Détente isotherme et irréversible :
- iii. Détente adiabatique et réversible ;
- iv. Détente adiabatique et irréversible.

Calculer:

- 1. La température finale (T_f) du gaz en degré Celsius (°C).
- 2. La variation de l'énergie interne du gaz (ΔU) en Joule.
- 3. Le travail effectué par le gaz (W) en Joule.
- 4. La quantité de chaleur mise en jeu (Q) en Joule et calorie.
- 5. La variation d'enthalpie du gaz (ΔH) en Joule.

On donne: Cv = 3R/2 et Cp = 5R/2, 1 cal = 4,1855 J

Remarque : Pour les cas des transformations adiabatiques réversibles et irréversibles (cas iii et iv), on établira les relations servant aux calculs.