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SUMMARY
This dissertation is concerned with some of the many applications of

the MAXIMUM PRINCIPLE .

In the first two chapters , we discuss and prove versions of the
maximum principle first for Ordinary Differential equations, then for elliptic

Partial Differential Equations , including some improvements due to Serrin .

In Chapter (III) , we study in detail symmetry properties of positive

solutions of second order elliptic equations of the type
Au+ fu) =0

in a domain  with zero boundary conditions. This follows the important
article of Gidas, Ni and Nirenberg and shows that the problem cited has radial

solutions in a spherically symmetric domain, no matter what the function f is.
We give extensions of these results to certain systems of second order
elliptic equations in Chapter (IV) .
Chapters (V) and (VI) contain applications of different type. In
Chapter (V), we study solutions of the equation
Au+ fw) =0

with either Dirichlet or Neumann boundary conditions, and obtain bounds for

various quantities determined by a solution of A u + f(u) =0 .

We show that it is possible to find functions g, f so that the

function
P = g(u) 1grad u1?2 + h(u)

satisfies an elliptic inequality and , by an application of the maximum principle,

P either attains its maximum on the boundary of @ or at a critical point of u.




We study particularly the case h™(u) = ¢ f(u) g(u) where ¢ is
a constant. For ¢ < 1 we show that , under suitable assumptions , the
maximum of P occurs on of), whereas for ¢ > 2 the maximum occurs at

a critical point of u« .

In the last chapter, we illustrate these results by giving some
applications to the torsion problem , the efficiency ratio of a nuclear reactor

and the free membrane problem .

Vi
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INTRODUCTION

The MAXIMUM PRINCIPLE is one of the most valuable tools in the
study of second order Partial Differential Equations . This principle
is  a generalization of the elementary fact of calculus that any function
f(x) which satisfies the inequality f" > 0 on an interval [a, b] attains

its maximum value at a or b .

In general, functions that satisfy elliptic inequalities on a domain
1 in n-dimensional Euclidean space take their maxima on the boundary of Q .

This is the simplest form of the maximum principle .

Maximum principles for solutions of second order elliptic equations
(and inequalities) have been used in the mathematics literature since the
early ninteenth century . These principles have been refined and extended by
various authors (see e.g. references cited in the book of Protter and

Weinberger [141]).

One of the more important refinements , known as the Hopf
maximum principle , asserts that at a maximum on the boundary , the outward

normal derivative is positive (unless the function is identically constant).

This dissertation is concerned with some of the many applications of
the maximum principle . There are three main parts . The first one consists
of two chapters where we discuss and prove versions of the maximum principle
first for Ordinary Differential Equations , then for Elliptic Partial Differential

Equations

We follow fairly closely the book of Protter and Weinberger [14]
but we also include some results due to Serrin [17], including a maximum
principle for a domain with a corner. We give new proofs of some of the

older results using those of Serrin .




The next part concerns symmetry properties of positive solutions of
elliptic partial differential equations. This follows the paper by Gidas, Ni

and Nirenberg [5] and an earlier one of Serrin [17].
This deals with equations of the type
Au+ fu) =0 1)

in a domain {} with zero boundary conditions . For f(u) =1 ,'Serrin proved
that if one has over—determined boundary conditions with also the normal
derivative constant, then the domain  on which the solution of (1) is
defined is necessarily a ball and the solution is radially symmetric. Later,

Gidas, Ni and Nirenberg [5] showed that for a ball , positive solutions of the
elliptic equation (1) are radially symmetric. This points out that on

a symmetric domain, symmetric equations have symmetric solutions . The
important point is that the results do not depend on f . We explain parts of

this paper in much detail .

Chapter (IV) contains extensions of the results discussed in Chapter
(III) to certain systems of second order elliptic equations, as given by Troy
[23] In some places we use a slightly different argument to deduce the same

results of Troy in an easier way .
In the third part we consider solutions of the equation

Au+ fu) =0

and obtain bounds for various quantities associated with this problem. We
show that (following work of Payne [9] and Sperb [21]) it is possible to find

functions g , & so that the function
P = g(u) 1grad w12 + h(u)

satisfies an elliptic inequality and, by an application of the maximum
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principle , P _ either attains its maximum on the boundary of { or at

a critical point of u

The cases h” =2 f g and " = (2/n) f g (for Q@ ¢ R® ) have
been of considerable use in obtaining bounds and are well covered in the book

by Sperb [21].

We follow the procedure from Sperb's book but we study the more
general case h” =c f g . We see how ¢ = 2, 2/n arise in a natural way
but that other choices may be possible. We show that for ¢ < 2/n , the
maximum occurs on of} whereas for ¢ > 2 , under conditions related to the
curvature of &) , the maximum occurs at a point where grad « = 0 . Some

~

of these results seem to be new for ¢ # 2, 2/n .

We illustrate these results by giving, in Chapter (VI), some
applications to the torsion problem , the "efficiency ratio” of a nuclear

reactor and the free membrane problem .




Chapter (1)

MAXIMUM PRINCIPLES IN ORDINARY DIFFERENTIAL
EQUATIONS
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CHAPTER (I)
MAXIMUM PRINCIPLES

IN ORDINARY DIFFERENTIAT, EQUATIONS (O.D.E.s)

SECTTON 1

THE ONE —~ DIMENSIONAL MAXTIMUM PRINGIPLE

The maximum principle in Ordinary Differential Equations
(0.D.E.s) is a generalization of the simple fact that any
function £ which satisfies the inequality f" > 0 on an interval
[a, b] attains its maximum at one of the endpoints of [a, b].
This is obvious from the fact that f" > 0 is equivalent to

convexity of f.

If £ > 0 on [a, b] the same conclusion may be drawn but
now it is possible that f is constant on [a, b]. We follow Protter
and Weinberger [14]. The prime denotes differentiation with

respect to x . We shall always assume in this Chapter that
the function u is in the class C2(a, b) 0 C°[a, b1

THECREM 1.1
Let u be ¢? function on the interval (a, b), let g(x) be

a bounded function on (a, b). Suppose u satisfies the

differential inequality
L{u]=u" + g(x) u” 20, x e (a, b). ...... (1.1)

Then u attains its maximum M at either a or b. Moreover if

u(c) = M for some interior point ¢ of (a, b) then
u=M on [a, b].

REMARK 1.1

If u satisfies the strict inequality
u" + g(x) u” >0 x ¢ (a, b) veven (1.2)

Then u cannot have an interior maximum. Because if u has a maximum




at an interior point ¢ in (a, b), then by elementary calculus,
we must have u'(c) =0 and u'(c) < 0, which contradicts the
strict inequality above. It is important for applications to

consider the mnon - strict inequality.

PROOF OF THEOREM 1.1

The idea of the proof is to construct an auxiliary

function z such that
Lfu+ez]>0 for all ¢ > 0 ,

so that Remark 1.1 applies to u + ¢ z. The proof is by

contradiction.

Suppose that u assumes its maximum M at an
interior point ¢ in (a, b), but u # M in (a, b). Then there
is a point d of (a, b) such that u(d) < M. We suppose that
d > c.

Define the auxiliary function z by

al(x - ¢)

z(x) = e -1,

where «a 1is a positive constant to be prescribed. By a simple

calculation one gets

I[z] = 2" + g(x) z = ofa + g(x)] ea(x - )

Choose « that o > ~ g(x) for x ¢ [a, b]; this can be done

since g 1s bounded. Then
I[z] >0 on (a, ). Lo (1.3)

Therefore, for any ¢ > 0, by (L.1) and (1.3) we get

If[lu+ e 2z]>0 on (2, b) and a fortiori on (a, d).




Now 2z(x) >0 fora<x<c, so u+ez<Mforax<x<c and
u+ ez =M at c,
u+ ez <M at d,

for ¢ < [M - u(d) }/z(d)

Therefore u + ¢ z must attain its maximum ( > ¥ ) on
[a. b] at an interior point of [a, b]. This contradicts Remark
1.1 above and therefore the assumption that u(d) < M must be

false. We conclude that u=M on [a, b].

If d < ¢ an exactly similar argument applies taking the

auxiliary function z(x) = e alx - c) -1 with o > g(x) on
(a, b). O

zﬁ\ x(x-C)

[ e —1
> X
0 d b
v e e o - m— - ———t ——'—_—JL-——.——-
FIGURE [1.1]

REMARK 1.2

The boundedness assumption on the function g(x) in
Theorem 1.1 may be weakened. It suffices that g(x) be bounded

on every subinterval [a', b'] completely interior to (a, b).

This observation is useful since it allows the
coefficients of Differential Equations to become unbounded at

the endpoints.This occurs in many of the equations arising in

mathematical physics.




EXAMPLE 1.1 :

The differential equation

Q)
N

o

+

=0, for the disk 0 < r <1,

i
OJIO)
IS

Q
b
N

is Laplace's equation in polars for radially symmetric solutions.

Theorem 1.1 tells us that a non - constant function
which satisfies the inequality

1]

u + gx) u >0 in (a, b)

attains its maximum at either a or b. In fact u decreases
strictly as one moves into the interior of the interval [a, b],
that is the directional derivative of u in the direction pointing

interior to [a, b] is negative.

More precisely we have the following result .
THEQOREM 1.2

Let u ¢ C2(a, b) satisfy the inequality
u" + g(x) u” 20 in (a, b)

with g(x) bounded on every closed subinterval [a’, b’] of
(a, b). Suppose that u attains its maximum M at ome of the
endpoints of [a, b], u # M in (a, b), and has one — sided

derivatives at a and b,

If u(a) =M and g 1is bounded from below at x = a,
then u”(a) < 0. If u(b) =M and g 1s bounded from above at

x = b, then u"(b) > 0.

PROOF:

Suppose that the function u attains its maximum at the

endpoint b of [a, b]. Then u(b) = M, and u(x) < M for x ¢ [a, b].




Suppose that at an interior point ¢ ¢ (a, b), we have u(e) < M.
Consider the auxiliary function

- o(x - b)

z(x) = e -1 with @« > 0

Note that z(e) > 0. By choosing «a such that o > g(x) for

c <X b, we have

1A

- a(x — b) - af{x - b)

L{z) = a’ e -0 gx) e > 0.

Now, we consider the function

w(x) = u(x) + ¢ z(x), where 0 < e < [M - u(e))/z(e).
Then we easily get
L{w) = L(u) + ¢ L{z) > 0.

Hence w attains its maximum at one of the endpoints ¢ or b of

the interval [c¢, b]. By the choice of ¢, above, we have

w(c) = u(e) + ¢ z(c)
< ue) + M - ule)

= M

Therefore the maximum of w occurs at b, and then w

has a nonnegative one — sided derivative at b

w'(b) = u’(b) + € z°(b) > O
but z7(b) = - o < 0, so that u”"(b) > 0. The result follows.O
REMARKS 1.3

(I If u attains its maximum at x = a, then the argument is

similar. In this case, we choose the auxiliary function

Z(x) = ea(x -a 1




with o > 0 and we select o > — g(x) on an appropriate interval.

(1T) The boundedness of g is essential for the conclusion of

Theorems 1.1 and 1.2 . To see this , we consider the 0.D.E.

-3/x for x# 0
u" + glx) u =0 with g(x) =

f

0 for x = 0.
We see that u =1 - x% satisfies our problem . Now , if we take
X € [—l, 1] then u attains its maximum at the interior point

x = 0 . Hence Theorem 1.1 is violated on [-1, 1]. Also if we

take x ¢ [0, 1] , them u”(0) = 0 . So that Theorem 1.2 is

violated on [0, 1].

MORE GENERAL DIFFERENTIAT, ITNEQUALITIES
We want to consider inequalities with zero order terms
(L + h)[u] = u" + g(x) u” + h(x) u z 0
By virtue of an idea of Serrin's [17],we are able to prove the
following :

THEQREM 1.3
Suppose that the function u satisfies

(L + W)[u] =u" + g(x) u” + h(x) u >0 on (a b),

........ (1.4)
with u <0 on [a, b]. Then
(i) if u(c) = 0 for some ¢ ¢ (a, b), u=0 on [a, b].
(ii) if u(a) = 0, u’(a) <0 [ u(b) =0, u’(b) >0 ]
where h is bounded below , g 1is bounded on every closed

subinteravl of (a, b).




PROOF:

Take v(x) = e ox u(x). Then

o]
A

< (L + B)[u] = ™ [vh + (g + 2a) V'] + ™ [a2 +ag+hlv

= ™ [L,v + H V], say,
where L,v=v" + (g + 2 o) v’ céntains no zero — order terms,
and H =a° + o g + h.
For o« sufficiently large, H(x) > 0 on (a, b) so we have
Lyv>z-Hx)v 20, since v < 0.
By Theorem 1,1, v attains its maximum (M = 0) at a or b and

(1) holds. Now, since

ax

u (x) = e (v + a v),

and if u attains its maximum at a we get

oaa

u(a) = e v’ (a)

<0

Similarly, we apply the argument above to obtain

u”(b) > 0 if u(b) = 0. This gives (ii).O

The following example illustrates that the hypotheses

of Theorem 1.3, above,cannot be discarded .

EXAMPLE 1.2
The function u(x) = sin x is a solution of the

equation

u + u =0 on (0, =)

But u assumes its maximum at x = r/2, so there is no analogue




of Theorem 1.1. Here u is positive on (0, ) and h(x) > 0.

u £ 0 does not hold.

THEOREM 1.4

Suppose that g , h are as in Theorem 1.3 , that
(L + h)[u]lz20 on(a b)) ... (1.5)

and that u attains a positive maximum M > 0 on [a, b]. Then
if h(x) <0 on (a, b), we have u attains its maximum M at
a or at b.

Moreover

fil
=

(i) if u(e) =M for some ¢ ¢ (a, b), then u

(ii) if u(a) = M, then u’(a) < 0 wwnlyy w= M

[ If u(b) =M, thenu'(b) >0 uwlg w=M7].
Thus maximum always occurs at an endpoint and either

u = constant or (ii) holds.

PROOF:
let v(x) = u(x) - M, then v £ 0 and v = 0 at some point

in [a, b]. Then

(L + b)[v]

(L + h)[u] -hHM

- h M

v

v

0 , since h < 0,
So Theorem 1.3 applies to v and the procf is complete.O

EXAMPLE 1.3

The differential equation

u" — u =20 on the interval (-1, 1)

has the solution




u(x) = = { et + &8 } = - 2 cosh x.

Obvious, u attains its maximum M = - 2 at x = 0. Here

h(x) = 0, but u has a negative maximum.

REMARK 1.4:
If h(x) is negative somewhere in (a,.b) then part (i) of

Theorem 1.4 can only occur if M = 0.

This is the well — known version of the Hopf Maximum
Principle, as found, for example in the book of Protter &

Weinberger [14]. We believe that our method of proof is new .

COROLIARY 1.5
Suppose that (L + h) [u] 20 on (a, b) with h(x) < 0.

If u 1is continuous on [a, b], and u(a) <0, u(b) =0, fhen

il
o

u(x) < 0 in (a, b) unless u =

By hypothesis, u attains its maximum M on [a, b].

If M < 0, then by (i) of Theorem 1.3, either
us=20 or u(x) <0 in (a, b).

If M > 0, then the maximum occurs at an interior point,

By Theorem 1.4 , this would imply

u =M, impossible since u(a) < 0, u(b) = 0.0

12




SECTION 2
THE_GENERALIZED MAXIMUM PRINCIPLE

Consider the differential inequality
(L+h)=u"+g(x)u +hi{x)uz0  ...... (2.1)

with h(x) not necessarily < 0. Assume that there exists a
function w ¢ €2 such that under some conditions, w satisfies the

following inequalities

w >0 on [a, B].  ...... (2.2)
(L + h)[W] <0 in (a, B ..., (2.3)
To see that such a function w can exist, suppose h(x) is

bounded and the function g(x) is bounded from below in [a, b],.

with [a, b] sufficiently short. Then take
T R e (2.8)
where o is a constant to be determined. We have by calculation:

a(x -

(L + h)[w]=-e a) [az +a g+ h]+2h....(2.5

By assumption there are constants & and H such that g > G and

h > H. Then ,if o« 1is sufficiently large, we have

e + g+ h>0
and

ea(x - a)

v

[2h /(a2 + g+ R)].

This can be done since h 1is also bounded above., From (2.5) we

get

(L + B)[w]

1A

0 in (a, b).

A

However (2.4) yields w > 0 on [a, b], if [a, b] is required to




be small enough such that

ea(x - a) <9,

NOTE:

One can also construct w of the the form

w=1- 8(x - a)2 , for suitable 8 .
{see for example Protter and Weinberger [14T}.
When such a function w exists, we define the new
dependent variable v = u/w , then one gets
(L+h)u]l=vw" +2 v w +v'w+gvw + v w) + h(vw) >0
Dividing by the positive quantity w we get

v+ [2 (w/w) + gt + (L/w) (L + h)[wlv 2 0. ...(2.6)

THEOREM 2.1

Let u(x) satisfy the inequality
(Z +n)fu]l=u"+gx) u + h(x) uzd

in a suitable domain (a, b). Assume that there exists a function
w(x) which satisfies conditions (22)Q@3) in [a, b]. Then results

of Theorem 1.4 hold for the dependent function v = u/w .

REMARKS 2.1:

(1) In any interval (a, b), where Theorem 2.1 holds, u can
have at most two zeros between which u is negative. If we call
these zeros x = A and x =B , if u > 0 at any point between A
and B, u/w would have a positive maximum between them which
contradicts Theorem 2.1, unless the distance between A and B

is so large that this theorem does not hold.




(II) If u 1is a solution of the equation
u' + g(x) u” + h(x) = 0,

the same reasoning can be applied to both u and (~u) to find
that u can have at most one zero in any interval (a, b) where

Theorem 2.1 holds,
Let r(x) satisfy the equation

r* + g(x) r’ + h(x) r=0, x € (a, b), ....(2.7)

with r(a) =0, r(x) # 0 in (a, b), and h(x), g(x) are bounded.

If r has any zeros to the right of a we denote the first one by

a*, and we call a* the conjugate point of a. If r has no zeros
to the right of a we set a¥ = « ,
NOTE:

The function r(x) does not change its sign in the

interval (a, a¥). TFor convenience we assume that r > 0 in the

interval (a, a¥).

Now, if &% is the conjugate point of a, we can find
a function w > 0 such that Theorem 2.1 holds for v = r/w on
the interval (a, b) if and only if b < &% . If w exists, then

v = r/w 1s positive on (a, a*) and =zero at a and a*, so v

has a positive maximum on (a, a¥). Then v would have to be
identically constant on [a, a*] {i.e. r = ¢ w, where ¢ is a

constant} contradicting w(a) > 0.
If b < a¥, we take the function w in the form

w=1r+ ¢ [2 - ea(x B a)]

for sufficiently small ¢ > 0. w is positive on [a, b] and we can




have, for suitable choice of « ,

@+ m[w]=@+h[2-2FT3 120 in(a, b).

Hence we have constructed w for which Theorem 2.1 holds.

(I1T) We remark that the boundedness of the functions g and h

is essential.

EXAMPLE 2.1.:

The function u(x) = x sin(l/x) satisfies the

differential equation

u" +x Tu=0 on (0, «)

Clearly u vanishes at x = 1/(ar) , n=1,2,..., and so a* is

not defined and no function w > 0 c¢an exist. The problem here

is that h 1is unbounded at 0 . O

16
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SECTION 3
UNIQUENESS RESULTS FOR INTTTAL AND BOUNDARY

VALUE PROBLEMS

One important application of the maximum principle is in
the discussion of uniqueness of solutions to initial and boundary

value problems.

INITIAL VALUE PROBLEMS (I.V.P.s):

Consider the initial value problem
u" + g(x)u” + h{x) u=£{x) ... (3.1)
with the conditions
u(a) = 4, u{a =8 ... (3.2)
where the functions h(x) and g(x) are bounded in the interval

(a, b), and A and B are prescribed constants.

THEOREM 3.1

Suppose u,(x) and u,(x) are solutions of (3.1) in (a, b)
and both of u,(x) and u,(x) satisfies the initial conditions
(3.2). Then

u, = u, in (a, b).
NOTE : We do not require h(x) < 0.

PROOF OF THEOREM 3.1 :
Let u(x) = u,(x) - u,(x), x ¢ (a, b). We want to show
that u(x) = 0 in (&, b). We have that u satisfies the equation
u" + g(x) u” + h(x) u=20
with the initial conditions

u{a) = u”(a) = 0.




Assume that u # 0 in (a, b). By Theorem 2.1 there
exists ¢ >0 and a function w > 0 on [a, a + s] such that u/w

attains its maximum at one of the endpoints of [a, a + ¢].

Since the same argument applies for - u, we observe
that either the maximum or the minimum of u/w must occur at a.

But

(u/w)” =u" w—-—uw =20 at x = a.
w2

Since Theorem 1.3 holds for the function u/w we find
that u/w is constant, moreover u/w = 0 at a since u(a) = 0.

Contradiction. Therefore u =0 on [a, a + s], in particular
u(a + ) =0, u“(a + ¢) = 0.
We may repeat the argument to conclude that u = 0 in

(a+ €, a +2¢g), with ¢ being unchanged since it depends only on

bounds for g and h in (a, b).
By employing the process above a finite number of times
we deduce that u = 0 in (a, b).O
BOUNDARY VAIUE PROBLEMS (B.V.P.s):
Consider the following B.V.P.
u" + g(x) u” + h(x) u=£f(x)  ...... (3.3)

with x ¢ (a, b) and g and h bounded, subject to the

boundary conditions
u(a) =8 , u(b) =R ... (3.4)

where § and R are prescribed constants.




THEOREM 3.2
Suppose that u,(x) and u,(x) are solutions of (3.3) and
satisfy the boundary conditions (3.4) . If h(x) <0 in (a, b)

then

PROOF :

Let u=u, —u then u satisfies

2
u* + g(x) u” + A u=0 ..., (3.5)
with the boundary conditions
u(x) =0, u(d) =0. veve. . {3.6)

Assume that u # 0. By Corollary 1.5 we know that u(x) <0 in

(a, b). Moreover, since the function - u satisfies (3.5)
together with the conditions (3.6), then Corollary 1.5 also
applies to - u . Hence, - u <0 in (a, b). Therefore u =0 in

(a, b). O

In the following, we prove a uniqueness theorem for
B.V.P. & without any restriction on the function h(x). Meanwhile
we put some condition on the required domain on which we wish to

prove our theorem.
THEOREM 3.3
let u,(x), u,(x) be two solutions of (3.3) satisfying

the same boundary conditions (3.4). If b < a¥*, where a* is the

conjugate point of a, then u, = u,.

PROOF :

Define a function v(x) by

vix) = u,(x) - u,(x).

19




Clearly v(x) satisfies the differential equation
v' + g(x) vi + h(x) v=20
with the conditions

v(a) = 0, wv(b) =0,

Since b < a¥

(L + h)[w] = 0 in (a, b). Applying Theorem 2.1

either
vix) =0 or vix) # 0 on (a, a¥)

which is impossible, since b < a*. o

, we can find a function w(x) > 0 such that

we get:

20
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SECTION 4
NONLINEAR OPERATORS
We have seen how the maximum principle can be employed to
give very important results in case of the linear operators. In
this section we show how the maximum principle is applicable to

some nonlinear operators.

Let u(x) satisfy the nonlinear equation

u" + H(x, u, v'y=0 ... (4.1)

on an interval [a, b], where H(x, u, p) is such that OH and OH are
ou op

continuous functions from [a, b] x R=2 to R. Let w(x) satisfy
the inequality

w" + H(x, w, w')=>=0 ..., (4.2)
in (a, b).
THEOREM 4.1

Suppose that the function v(x) = w(x) - u(x) satisfies

the inequality
v + H(x, w, w') - H(x, u, u") =20

in (a, b), where OH , 9 are continuous and J8H < 0

du du” du
If v(x) attains a nonnegative maximum M in (a, b), then

v =M,

PROOF :
By the Mean Value Theorem , for 0 < t <1

H(x, w, w’) - H(x, u, u’) =

oH

du - [W - ]
(x, u+ t(w-u), u + t(w” —-u’)) .

of wo — u”

op



=90H v + 0H v~.
du ou”

So v satisfies the inequality:

v + 9 v +9Hv >0
op du

which is linear, and hence the maximum principle as given in

Theorem 1.4 applies.O
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CHAPTER (II)
MAXIMUM PRINCIPLES IN ELLIPTIC PROBLEMS

SECTION 1
NOTATIONS AND SOME BASTC DEFINTTIONS

Let u(x) e €2(f)), where  is a bounded domain (open

connected set) in the Euclidean space RT.

DEFINITION 1.1

We call the operator (we use summation convention)

P = aij(x)_ﬁi___ S Rt 7 U B (1.
aXian
(i, j=1,2,...,n) , elliptic at x = (x,,X,,...,%,) if and only

if there is a positive constant pu(x) such that

ajj(x) ;€52 p(x) £ 85 ... (L.2)

for any vector § = (£,,£,,...,5n). The operator P is said to be
elliptic in a domain § if it is elliptic at each point of {, and
it is uniformly elliptic if (1.2) holds for each point of Q and

if there is a positive comstant p, such that pu(x) > p, for all

x in Q.

EXAMPLE

The Laplace operator defined by

A= _92 + _02 + ...+ _22
x,0x, Ox,0x, O0x,0xp,

is uniformly elliptic in any domain ().

DEFINITION 1.2

We say that the operator

(L+h) = ajj(x) 082 + bj(x) & + h(x)
axia}{j aXi




is (uniformly) elliptic in Q if its principal part

is (uniformly) elliptic in Q.
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SECTION 2
MAXIMUM PRINCIPLE FOR ELLIPTIC INEQUALITIES

We investigate maximum principles for inequalities
satisfied by operators L and (L + h). We follow Protter and

Weinberger [14]. We shall need the following lemmas.

DEFINITION 2.1 :
An n x n matrix A is called positive semidefinite, (or

negative semidefinite ), if
tT At > 0 (<0) for all ¢ in RO,

LEMMA 2.1
Suppose that A and B are symmetric n X n matrices

with A >0 and B < 0. Then
trace (A B) < 0,

PROOF : (Smoller [181))

There exist orthogonal matrices ¢ and D with
CAC'"=A,,DBD'"=A, where A, and A, are diagonal
matrices and A, has nonnegative elements and A, has

nonpositive elements.

By the fact that the trace of a product is independent of

the order of the factors, we have

tr(A By = tr(C AC' D B D7) = tr(A, 4,) < 0. O

DEFINITION 2.2
Let n be the unit normal vector in an outward
direction at a point Q on the boundary of), and let » be a

vector pointing outward from  at @, that is » .n>0 .,




We define the directional derivative of u at Q in the

direction », 1f it exists, as

du = lim u(Q - ¢ p) = u(Q) J.

dv -0 t

If u ¢ ¢, then
Qu = lim[v, Bu_+ ... + vy 3u_ ]
dr x-Q - Ox, oxp

NOTE :
A well known outward directional derivative is the

normal derivative.

LEMMA 2.2 (Elementary Calculus Lemma)

Suppose that the function u ¢ €2(Q U 3Q) and that u
attains its maximum at a point x ¢ 00 . Then the outward

directional derivative

du >0 atx . ... (2.1)
v

If grad u(x) = 0 , then

d2u < 0 atx .. (2.2)
or?
(v = outward direction).
PROOYF
By virtue of the Mean Value Theorem in the form
u(x + h) — u(x) = grad u{(x + s h) . h
we have

u(x - t v) —ul(x) = -t grad u(y) . v
= — t du(n) . . ..... (2.3)

ov

Therefore, as u(x) is a maximum , for t small ,

u{(x -t r) —u(x) <0
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If (2.1) is false we would have du < 0 at x, and therefore

(o))
-

Qu < 0 on a neighbourhood of x which gives a contradiction

av
to (2.3)
Suppose that grad u(x) = 0. We consider the second

order directional derivative :

. 3 ;
SE -5 - 508

= yil v
Z ax axl l} J
= Z Z _0%u vi vj (i, j=1,...,n)
ox lax
=T Hp

where H - [ 32u ] is the Hessian matrix .

axian
By Taylor expansion

u{x — t ») — u(x) = grad u(x). » + t2 »TH v,
2

hence »I H » < 0 , and the proof of Lemma 2.2 is complete.O

REMARK 2.1
If x is an interior point, where u takes its maximum,
then grad u(x) =0 and H 1is negative semidefinite as the

above applies to all directions »

NOTE : From elementary calculus we know that if a function

u(x) satisfies the strict inequality

u]=a;; d2u__ + b Bu >0 e (2.8)
* Bxsox; ' oox;

in Q, then u cannot attain its maximum at any interior point of Q.
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To see this, we assume that u ¢ C2(R U 32) has an interior

maximum at some point x e {. Then

Ju . 0 at x
an_

and the Hessian matrix

d
B = [ax:_ng ]

is negative semidefinite.

Let A denote the matrix (aij); i,j=1,2,...,n. Then by

virtue of Lemma 2.1 we have :
tr(A H) < 0 ,

since (aij) is positive definite. Therefore we obtain

a contradiction to inequality (2.4)

We now wish to extend the maximum principle to allow the

non — strict inequality. We will follow the proof given by Smoller
[18] .
THEOREM 2.3

Suppose u(x) satisfies the inequality

Lu] = a;; B2  +b; u >0  ...... (2.5)
8x1-8xj axj_

in Q, L being uniformly elliptic with aj i, b; uniformly
bounded. Then u cannot attain its maximum M at an interior

point of  wunless u =M in Q.

PROOF :
Suppose that u assumes its maximum M at some point x, in

Q, i.e. u(xy) = M. Then we will show that u = M.
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let S be the set of all points x in @ for which
u(x) = M, i.e. $S={x €0 : u(x) =M} Clearly S is not empty,
since x;, ¢ S . If x, ¢ O\S, we connect x, to x, by a curve v in
2. Since 4 1s compact, we can find & > 0 such that if a point

Q e 7,' dist (Q, o) > & > 0.

Since u(x,) < M, u(x) <M in some ball centred at x, of

radius at most §/2 . If x moves along vy towards x,, the

1
boundary of this ball eventually contains a point in S . Let X
be the centre of the first ball whose boundary meets $ . Thus
there exists a ball B whose closure is contained in (O for

which 0B N S # ¢ , (p = empty set), but B N § = o . Let y denote

the point where OB N S # p , see figure [2.1]

FIGURE [2.1]
Let B, ¢© B be a smaller ball of radius r, such that
y ¢ OB;. Then u < M in B\{y}. Let B, ¢ Q be a ball centred
at y and with radius r, <r, . If OB, =T, UT, where
Ty = 0B, N §1 , then T, is compact, so since u < M on T,,

u<M-c¢g on T for some ¢ > 0.

-— 1




We choose the centre of B, to be the origin of our

coordinate system, then we can define the auxiliary function z by
- or? - ar,?

z(x) = e _ e

. . 2 2 2
where a > 0 is to be prescribed, r" = |x1° = x| + X

= X .+ + Xp
By computation :
- 2
9z = - 2 a xX{ e or
ox;
- 2
92z =g (-2 axje o )
aX‘ian BXJ
—yp2 vy 2
= -2 6ﬁ e or + 4 azxi Xje o
where 85 is the Kronecker delta, (i,j =1,2,...,n).
Thus
- 2 - 2
L[z] = ajj (4 azxi Xj e or ) +aj; (2 ae or )
- 2
+ b; (- 2 a xje o
—_ 2 2
= 4 sz aij X3 Xj e oars 2 o (aii + bj_ Xj_)e_o(y
‘e s s . -Qr?
Dividing by the positive quantity e we get
2
e & L[z] = 4 o2 ajj Xj Xj = 2 a (aj; + by x3) ....(2.6)

Now since r, < r,, the origin of our coordinate system

0/ Ez , and by the ellipticity condition we see that
ainin20'>0 inEz,

where ¢ 1is a positive constant. Thus, for o sufficiently large,

L[z] >0 in Ez.

.
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We consider the new function :
w(x) = u(x) + &, z(x)
and we take k = max {z(x): x ¢ T,}. Then on T,

w(x) < M-¢e+ ¢, 2(x)

=M-e+ e K
< M
if e, < ¢/K .
Having chosen ¢, < ¢/k , we see that on T,
z(x) < 0 since Ix1 > r,.

Therefore

w(x) = u(x) + e, z(x) < u(x) 2= M.

Thus w(x) <M onT, 6 UT, =9B,. Since w(y) =M, w has

a maximum at an interior point x, in B,. But
Lw] = L[u] + &, L[2] > O in B,

since by assumption (Lu)(x) > 0 in . We have obtained

a contradiction to the previous comments.O

REMARKS 2.2
(1) Theorem 2.3 remains valid in case that Q is not bounded.
(1I) We can weaken the hypotheses in Theorem 2.3 by requiring

only that the quantities

aij(x) and b;i(x)

p(x) p(x)

with pu(x) > 0, are bounded on every ball contained entirely in

the domain Q.




(III) A minimum principle applies to functions satisfying

L[u] < 0 by applying the Theorem 2.3 to (- u).

Let u(x) be continuous and bounded function on . If
u(x) attains its maximum at a point Q e 0Q, then the outward
directional derivative of u at @ cannot be negative, by

Lemma 2.2

In fact we shall see that the directional derivative must

be positive unless u is constant,
THEOREM 2.4 (MAXIMUM PRINCIPLE OF E. HOPF)
Let u(x) satisfy the inequality

L[U]Eaij 22u +bi§!:l__ ?_0
an_an aXi

in , and suppose that u assumes its maximum M at a point Q ¢ oM.
Assume that u is continuous in @ U {Q} and 802 satisfies an
interior sphere condition at @. Then if » points outward from

Q at Q

ou(Q) > g

or
if it exists, unless u=sM .

PROOF : (Protter and Weinberger [147])

Since o) satisfies an interior sphere condition at Q,
there exists a ball B € @ of radius r, with 8B n Q = {Q}. We
construct another ball B

centre. (see figure 2.2 below)

, with radius r,,) and with Q as a
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FIGURE [2.2]

We proceed as in proof of Theorem 2.3, and we choose the

centre of the ball B to be the origin of our coordinate system.
Now we introduce an auxiliary function

or? —-ar, 2
- e

- 2 2 2
z(x) = e y D= X = X + X, + ...+

where o > 0 1is to be determined. We observe that
z>0 inB, z=0 onoB and z < 0 outside B.

By choosing a sufficiently large we obtain (see proof of Theorem
2.3.)

L[z]-—a_,-_j 32z +b;j 2z >0 in B,.
axiBXJ Oxj

Define the function

wix) = u(x) + ¢ z(x) , € >0,

If ug M inQ, then u <M in (BUSB)\{Q} , by Theorem 2.3 .
We choose & small enough to get w < M on BNSB,. Thenw < M
on the entire boundary of the region BNB, (see proof of Theorem

2.3). In this region we have also
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L[w] = L[u]l + ¢ L[2z] > O
since L[{u] > 0 and I[z] > 0. Thus w(x) attains its maximum at

Q, i.e. w(Q) = M, therefore

8w = Ju + & 9z
dr or or

v
=

at @.

We shall show that gz < 0 at @, this will jimply that

o
du > 0 at Q.
Sy
We compute
- ar?
8z = -2 axq{e ar
ox; , (L =1,2,...,n)
and we know that
9z = 3z _ . »vj ,
dr  Ox;
so if 7 = (9, M5,-.., W) 1is the unit outward pointing normal at
Q, then 79; = x; . Hence at Q

1

—r 2
,8__z_=—2ar1ear z_vi'r]j_<0 ’
oy 1

since r .9 >0 (i =1, 2,..., n)
This completes the proof of Theorem 2.4 .0O

NOTE :
The auxiliary function z(x) can be chosen in different

ways, for example as in Serrin [17], where it is defined by

_axz _.r2
z(x) = x, {e 1x - e }
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MORE GENERAL DIFFERENTTAL INEQUALITIES

We now consider the linear partial differential
inequalities in the domain {} with zero order terms. The following
results have been obtained by Serrin [17], see also Gidas, Ni,

Nirenberg [5].

THEOREM 2.5
Suppose that u e C2({l) satisfies (we use summation

convention)

(L+h)[u]Eaij d2u +bi du_ + hu >0
aXian aXi

in Q and u < 0 in §. Then
(I If u vanishes at some interior point in {2, then u = 0 in Q.
(II) 1If o0 satisfies an interior sphere condition at a point

Q e o0 with u(Q) = 0, then Jdu (Q) >0 unless u=0 in Q.

dv

[ » denotes a vector pointing outward from { at Q ]

PROOF :

We define a function v by

vix) = e “Fux)

where o > 0 is to be chosen.

Let u(x) = N fi(x) v (say). Then

of = 46,i @ %1

8x1-

2f = o? &*

e Kot N 6,5 611 (zero unless i = j = 1).
Ox ;0%




Now

Su  —9f v+ Qv

aXi axi aXi
d2u . Q2f v+ 2 3f dv + f 32y
axian axian Bxi an axian

and hemnce,

0 < (L + h)

f

an aXian

+ bj {511 a et v+ ™ v lene™™y
Ox
i

= ™1 {aij 82v__+ b;j 3v_ + 2 aa,; Qv }
aXian axi 8Xj

ox 2
+ e 1 [a a,,v+ab, v+hv ]

= ™1 I[v] + e [a,, a® + b, a+ h]v

where Lj is an elliptic operator containing no zero order
terms. If we denote the term [a,, «? + b, o + h] by H and

choose «a sufficiently large such that H > 0 , we obtain
Li[v]=20 inQ ,
since v <0 in Q.

(@) If u=20 at some point in , v = 0 at that point and
Theorem 2.3 applies to v to get v =0 in Q. This

completes (I1).

(11) If u=0 at a boundary point Q, v =0 at Q e of.

Then by applying Theorem 2.4 to v we get

gv > 0 at Q.
dr

aij{vaz eax151j 6,5 * 2511 o eax1 v + e&X1 d2v

!
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Now

ox ox
Qu=90u v;i=ae 'Vvoe;+e 'OV »

Jd» ox; ox;

b

Therefore at Q@ where v = 0,

u = ™1 v

A . O
This proves (IL). O

REMARK 2.3
It is interesting to note that Theorem 2.5 holds
independently of the sign of h(x). However the maximum of u must

be zero, otherwise the result may fail.

EXAMPLE 2.1 :
The function u = (-~ cosh x — cosh y) satisfies the

equation
Au-u=20

on a domain containing (0, 0). u attains its maximum at the

interior point (0,0) but is not constant. O
In the following, we study the well-known version of the
Hopf Maximum Principle where it is required that h < 0,

THEOREM 2.6

Let u(x) satisfy the differential inequality

(L+h)[u]=—=aij d2u +bi_a___u___+hu20
axiaxj aXi
with hix) < 0, where L is uniformly elliptiec and the

coefficients of L and h are bounded. We have the following:

(1) If u assumes a positive maximum M at an interior point

of , then u = M.




(ii) If u assumes a positive maximum M at a boundary point
Q, and?¥Q satisfies an interior sphere condition at @, and u is

continuous in QU{Q}, then ifV is the outward norml at Q ,

du (Q) >0

ov
unless u =M .

PROOF :

let w=u—- M, so that w < 0 in .

Now

(L + h)[w]

(L + h)[u] - R M

2-hM=>=0 , since h < 0.
Therefore Theorem 2.5 applies to the function w and hence
(1),(ii) hold.O

REMARKS 2.4

(I) We believe that our method of proof Theorem 2.6 is new.
(1T) Part (i) of Theorem 2.6 may fail if h(x) > 0.

EXAMPIE 2.2

Consider the differential equation
Au+2u=0
in the domain
D={(x, yJ: 0 < x, y <« }

where A 1is the Laplacian. We find that the nonconstant

solution

u(x, y) = sin x sin y

assumes its positive maximum (+ 1) at the interior point

(/2 , n/2) of D .
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(III) In general whether or not the outer normal derivative

exists, we get

lim inf w(Q) — u(x) > 0
x-Q Ix — QI

where the angle between the vector Q — x and the normal at Q is
less than /2 - 8 for some fixed & > 0 (see Smoller [18] and

Protter and Weinberger [14]).
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- SECTION 3
(THE BOUNDARY POINT THEOREM AT A CORNER)

Qur results, in Section 2, have required smoothness of
the boundary o{. Here we shall prove a boundary point Theorem at
a special domain with a corner, which is suitable for applications

to the non-linear elliptic equations.
We consider the results obtained by Serrin [17].

THEOREM 3.1
Consider the domain  with (¢2? boundary and let T be a
plane containing the normal to ©8Q at a boundary point @ . Let

0* denote the portion of { lying on some particular side of T.

Let u be a function in ¢2(0Q%) with u < 0 in Q%,

u{Q)= 0, satisfying the differential inequality

I[u]=a;; Q2 +bjdu 20 ... (3.1)

in 0% , with uniformly bounded coefficients. Assume that

185 j im0 = KQE o1 + Srad) e (3.2)
where K 1is a positive constant, § = (§,, {,,..., §) is an
arbitrary real vector, n = (%,, %,,..., 7p) is the unit normal
to the plane T , and d 1is the distance from T . Then if » is

a vector pointing outward from O at Q ,

either

du (@) >0 or 2%u (Q) <0

or Or?

unless u = 0 ,
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PROOF :

Since o is of class C2?, there exists a ball B,< V)
where §1n§ - {Q} and with radius r, . Construct a ball B,
centred at @ and with radius r, = N\ r, , where X 1is a

constant to be prescribed., Let X = B,NB,N ©* noting that B,,

B, are open balls. (see figure 3.1)

FIGURE [3.1]

Now we define the auxiliary function

z(x) = {e

—a{x _ 2 —ar? ~ar2 P
r ar

in ¥ , where a > 0 is to be prescribed. Let us choose the
centre of the ball B, to be the origin of our coordinate system

and let T be the plane x, = 0. For convenience assume that o*

is on the side of T where x, > 0. We observe that :

z >0 in H
z=0 on 0B, and on T

z < 0 outside B,.




—o(x,— r,)?2

To calculate L[z], we first denote e by £

2
and e 1 by ® . We compute
z = (f - w)(e - W)
Of =-20o (x;, -r;) £fd,;
ox;
- ? -2
8z = (f -~ w)(-2ax;e ) + 9L (e - w)
aXi aXi
2 —yr?
822 =9f (-2axje T )+ (F-w[-2ae ™ 55
aXlaXJ aXJ
2 —-ar? 2 —ar?
+4 a'x; xj e ] 82f (e - W)
axian
— 2
+ of (- 2 w Xj e or )
ox;
where
if 1 #1
92f =09 [af ] =70 ifi=1, j#1
dx;dx; Ox; Lox; 2 P s .
177 J 1 -~ 2af+ba? (x,-r))" £, 1fEi=j=1.

Then, from above we have

7 _ —ar? o —oa(x,—- r,)? —arf
[z]=e [e - e 4 @ ajj Xj Xj

-a{x,—- r )2 —or? —ar?
-2 o (ajj + bj x;j)] + e i 1 [e -e 1]

. { 4 o a,, (x, - r,)2 -2afa,, +b, (x; - r1)]}

+ 8 a’e ™ e o(xy 1) (x,— r;) a,j Xj.

Since r > (1/2) r, in H , we have by ellipticity

ajj X; Xjzpr 2z (1/4) pn rf inH, ...... (3.5)
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and also

ay, (x, —r)* 2 (1/4) pr} in H .

From (3.2) we get
a5 x50 = laz7 i x31 = KOx0 + 1x1)
since in the present case 5 = (1, 0,..., 0). Thus

1(x, - r;) a,;j xj1 = 2x,r, X in H.

—ax 2
Let g(x) = e ox , by the Mean Value Theorem we get
g(r1 - x1) - g(r1) = [(.Z'.‘ - X1) - r1]g’(5),

where § = t(r, - x,) + (1 - ) r, , 0 < £ <1, Therefore

glr, -~ x) —glr) = (—x)(-2at e )

— 2
=2ax, ke ok

Since & =r, -t x, , weget £2>r, - 1x,1 2r,(1L - X)) and

§ <r,, since I1xX,1 £ N r, inH , and x, >0 in H . Therefore

2
—0r

22ax, (L -X) r, e 1...(3.6)

2
e—oz(x1 -r,)? _ o O

—a(x, — r,)?

Using the fact that e <1 and X < 1/2

we get the inequality

2ax, (1-N)r, e

From (3.6) and (3.7) the following inequality is achieved

2 2
—ar, —20r, —a(x,-r,)

2 2
—(x,-r —or
Geymry) T e O 2 2ox,(1-Mr,e > ox,r,e

e
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Inserting the above inequalities into the expression
for L[z] , by virtue of the fact that the terms [aj; + b; x;] and
[2,; + b, (x;, — r;)] are bounded , and for «a sufficiently large

we have

2 2 2 .
L[z] > azx1r1e—a[r + (%, — x,) ] [(ayrf - 8) e—Zaxr1-463P< ]

2 2 2

2
-a(x, — r,) [ -art | -or, ] [a prn - S]

+ e

where S is an appropriate constant being chosen as the

following:
S = max [{aii + b; x;}, [a;, + b; (x, ~ r,)]] ..

We require I[z] to be positive in H . To see this, let A= 1/«

and choose o sufficiently large such that the quantities:

2 2

i —16K] and [a,ur,—S]

[(a m rf - 8) e ?

become positive. Hence we have constructed a function z(x) with

L[z] > 0 in H .

Suppose that u # 0 in Q%, then by virtue of

Theorem 2.3, u < 0 in the domain 0¥ and hence u < 0 in H.

We consider the part of the boundary of H lying on ©B,.
This set K; = OHMNOB,, say, intersects the boundary of Q% only
on the plane T. Furthermore the intersection set K(NT 1lies at

a finite distance from the corner of Q¥,.




Moreover
u<0 on OHNBB, and on GHNT.

2
Now let g(x) = e , then by the Mean Value Theorem,

exactly as above

glr, - x,) —glr,) <2 wox, §22axr,

2 2
—ar?]
e 1) <1, we have

and since [ e
z 22 arx, on Kj.
We define a function v(x) by

v(x) = u(x) + [e/(2ur,) ] z(x).

Then v<0 ondH and v=0 atQ , since z >0 1in H

and z =20 at Q . We observe that
L[v] = L[u + (e/(2ar,)) z]
= L{u] + (¢/(2ar;)) L[z]
>0 in H.
Therefore (by the remarks preceding Theorem 2.3) we get
v<O©O in # ,
and at Q , where v = 0 ,

dv >0 and 22v < 0, by Lemma 2.2 ,
ov Or 2

We need to calculate 9z explicitly at Q , at which
v

x,=0

Oz = grad z . »

or

-z 9z . rvj

i oxj
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2 2
S8 (T —w 4 ) (- (- 20 e xp

ox, i
But at Q , 0w =-=e and f = w , so we get
8z = 0 at Q .
or

If dv = 0 we should move to the second derivative with respect to

ov

», therefore we need to calculate @ (3z) at Q.

As earlier,

8y2 J.,j axiaxj
From earlier calculation
—ar’ 2 ~ar?
azfgx‘ = (f ~w)[-2ae 5ij + 4 o x5 xj e ]
1=
—ar? —ar?®
+ 32f (e -w) + 3 (-2ax;e ™ )
an_aXJ' aXJ
+0f (-2« Xj e o )
aXi
At Q , only the last two terms are non-zero, so

n - 2
2z = 2 F v (-2ae ™ x;vp)
8v2 i 8X1

[NOTE: The term i = 1 is zero, but this does not matter. ]
Now at the point @ we have the following:

Of =2 ar, f is positive, », <0, Z x; vy >0
axj_ i

where » is outward pointing vector to H at Q@ . Hence we have
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Then, since

0 2 8% . Jd%u ; _¢ 82z > Jd2u
or? Or?2 2ar, Or? o2
we deduce that
d2u < 0 at Q
op2

and the Theorem has been proved.O

REMARK 3.1 :

We remark that the same result holds if

by using the same procedure as
The following example

EXAMPLE 3.1
The function u(x, y)

elliptic equation
Au-2u=

on the square

D={(X.y):—

N

and u attains its maximum (zero)

, J

(L+h)uz=60,

in Theorém 2.5

illustrates the Theorem .

GO

= — cos X cos y satisfies the
0
fXssxr, —XTYy=srx ]
2 2 2
at all points of the boundary.
3%
(59

FIGURE [3.2]
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It is sufficient to calculate Zu at the right hand
ov
side of the square:
u, = sin x cos y , Uy = COS X COS ¥
Uy = cos X sin y , Uyy = COS X COS ¥
L~ Au=2cos xcosy>0 in the given square .
At the two right hand cormers grad u = 0 , but at other points
uy >0 and uy, =0 Therefore Zu = 0 at the corners and
O
du > 0 at other points.
o
Now we shall show that 92u < 0 at the corners.
or2
It is enough to show this at the top R.H. corner (=/2, 7/2):
Ou = u, », + uy v,
Sr
2
d2y = Uyy ¥, * 2 Ugy Pq ¥, + Uyy 7,
Or?
== 29, v, <0
since r,, v, >0 at the top R.H. corner., Hence
d2u < 0
or?
at the top R.H. corner .O
EXAMPLE 3.2
Let Q be the first quadrant in R2 . Let u(x, y) = - xy
in2. Thenu<0 inQ, u(0,0) =0 and A u=0 but
Ju(d) = lim u(x) =0
or x>0 x|
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Also we find that :

B2u = Uyy v, + 2 Ugy Vv + Uyy ¥y
or?
--2vp,r,<0 ,
since
Uy = -y Uyy = 0,

FIGURE [3.2]

A A

= I=
o o
~N
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CHAPTER (III)

SYMMETRY PROPERTIES VIA MAXTMUM PRINCIPLES

SECTION 1
INTRODUCTION

We investigate symmetry of domains and symmetry of
solutions of second order elliptic equations, in particular the
symmetry of positive solutions of elliptic equations. The results
are based on work of Serrin[17], Gidas,Ni,Nirenberg[5], Gidas[ 4]
and use certain forms of the maximum principle (from Chaptexr(II))
together with a device of A.D.Alexandroff ( Procedure of moving
parallel planes to a critical point). These techniques were
employed before by Serrin[l7] who treated solutions of elliptic

equations with over — determined boundary conditions.

PROCEDURE OF MOVING UP PARALLEL PLANES

This consists of moving up parallel planes perpendicular
to a fixed direction, and then showing that the solution is

symmetric about a limiting plane.

We assume that ) is a bounded domain in R? with smooth

boundary. Let vy be a unit vector in R and let Tk denote the

hyperplane & . x = A . For sufficiently large » > 0 the plane

TK does not intersect {§ since @ is bounded. Suppose that we

decrease N, ( i.e. we suppose this plane to be continuously
moved towards 1 , normal to itself, to new positions), until

ultimately TR begins to intersect O . We denote by N, the

first wvalue of N\ for which TR intersects .




From that value of A on , the plane Tx cuts off from {

an open cap X(\) ; that is , Z(\) will be that portion of {}

which lies on the same side of TR as TI .

Let Z’(x) denote the reflection of X()\) in the plane Tk'
Clearly Z'(k) will be contained in Q at the beginning as \

decreases, at least until one of the following occurs

() E’(L) becomes internally tangent to &1 at some point

P £ Ty
or

(1D Tx reaches a position at which it is orthogonal to 380

at some point @Q .

We denote by Tk :y . x =X, the plane Tk when it
1

reaches either one of these positions. Evidently, z’(x1) c Q.
It may happen that if we decrease X below X\, , the reflected

cap X7(\) of I(A\) in TR continues to be contained in {. In
that case I (M€ Q for X e [N,, A\;], where
N, = inf {X < A1 I°(0) €@ for X < A < N}

Then, X(M\,) is called the optimal cap corresponding to the

direction 4, and at A\, either (I) or (II), above, must occur.

{ see figure (1.1) below }

FIGURE [1.1]
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SECTION 2
MATN THEOREMS

In this Section we will be concerned with positive
functions u(x, Xoye o Xp) that satisfy the semilinear elliptic
t

equation:
Au+ f(u) =0 inQ (u>01in0)  (2.1)
with boundary condition
u=0 ondQ, (2.2)
where € R, f is assumed to belong to the space C,"(Q),fS bo“nded'

We first give a result of Serrin [17] which shows that
for an over - determined problem the domain  must be a ball in
R, We shall then give general results concerning symmetries of
solutions. In particular, if ) is a ball then the solution is

radially symmetric .

THEOREM 2.1 (Serrin [17])
Let @ be a domain whose boundary is of class €2 in RT.
Let u ¢ €2(Q) be a solution of the Poisson differential equation
Au=-1 in Q (2.3)
together with the boundary conditions

u =0, Ju = constant on a{ (2.4)
v

Then ! is a ball.
REMARKS 2.1

(1) By the maximum principle, we have u > 0 in (.

(I1) It will follow that u is radially symmetric (see Theorem

2.2), and in fact u must have the form (R? - r2?)/2n , where R is
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the radius of the ball and r denotes distance from its centre,

(see Serrin [171])

PROOF OF THEQOREM 2.1 :
We first follow, exactly as in Section 1, the procedure
of moving up parallel planes to a critical point. This will lead

to the assertion that {} must be symmetric about the plane Tx
1

To see this, we observe that for any given direction in

R0 there would then be a plane Tk with normal in that direction
1

such that 0 is symmetriec about T, and Q would have to be simply

)\1
connected.

Assuming that the assertion holds, and since this is true
for an arbitrarily chosen direction and since £ is simply
connected, then { must be a ball,

We choose an arbitrary direction, which we may assume to

be x, and move the hyperplane towards ( along the x,- axis.

In order to show that  1is symmetric about T we

A,

recall, from Section 1, the definitions of \,, ),;, Ty, I()\) and
Z7°(N) for X\ ¢ [)\2, }\U]. Now we define a new function v(x) in
L7(N) by :

M

v(x) = u{x ") for x ¢ Z°(N\,) ,

where x M is the reflected value of x across Tx . Evidently v
1

satisfies the differential equation:

Av=-1 in Z°(\,)

and the boundary conditions




v o=y on 8).".’()\1)1'121')\1

v =0, Jv = constant = ¢ on 82'(%1)H(Tx )C ,
1

v
where the constant being the same as in (2.4) and (Tx )C denotes
1
the complement of (Tx )
1

We now wish to consider a new function

w=1u-—yv in X7 = Z°(N\;) ,

since I7(\,) is contained in £ by construction. The following
holds :
Aw=20 in X7,
w =20 on 3L7ATy,
and w >0 on 82’0(Tk1)c ,

where the latter condition is a consequence of u > 0 in Q.

Applying the strong maximum principle as in Theorem 2.3

of Chapter (II) to the function w we get : either

w>0 in X7, (2.5)
or
ws( in ¥£7. (2.6)

Therefore if (2.6) holds, we get

u(x) = u(x M) for x ¢ T(\,)

Since u >0 inQ and u =0 on dQ, then the reflection of any
point x ¢ O can not lie inside  but along oQ. i.e. the
reflected cap I” must coincide with that part of {! on the same

side of T as L° , that is {) must be symmetric about T

A, A
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To complete the proof of the theorem we must show that
(2.5) is impossible,

Recall that for N = \i either

(a) Y7 is internally tangent to the boundary of I at some point
P/ Ik1 , or
(b) T)\1 is orthogonal to the boundary of  at some point Q .

Suppose that we are in case (a) , thenm w =0 at P . By virtue of

Theorem 2.5 of Chapter (II) we have

ow =3(u—-v) >0 at P .
ov dr

This contradicts the fact that

du = v = constant = ¢ at P.

oy or

Hence in case (a), (2.5) 1is impossible.

Thus we assume that there is a point Q ¢ &} where T

Ay

is orthogonal to 00 [i.e. case(b)]. That means Q 1is a right

angled corner of XL” ., Now we shall show that:
(1) u-v (=0 at Q) has a zero of order two ,
and

(ii) apply Theorem 3.1 of Chapter (II) to reach a

contradiction.

For (i) , let @ be the origin of our coordinate
system , with x,-axis being normal to T)\1 and xp—axis being
directed along the inward normal te 9 at Q . Since, by

hypotheses , the boundary of (] is of class €2 , u ¢ ¢c2(Q)) and

u=20 on &1, then we have the following representations:
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xn = ¢(X1rxz)~~~13n—1) ] (2-7)

u(x1:---rxn—1s1‘l’) =0 (2-8)

We also wish to establish a representation for the boundary

condition Ju/dr = ¢ on O in the light of the above coordinate

system and mnew representations (2.7), (2.8). To do that we
form, from (2.7) , the function :
F(x,,X,,...,Xp) = ¥(X,,X,,...,%n—y) — X = 0.

The direction numbers of the normal to the boundary can be

given by :

grad F E'{Qﬁ_ yeea, OV , —1} .............. (*)

ox, Oxp—

and the direction cosines »j of the normal by :

y = grad F
a 1grad Fi
Therefore
du_ By _ + ...+ du ol - du
du = grad u. » = ox, ox, OXp—, OXp—, Oxp
i b LT
. ax_,-_
i
where i =1, 2 ,..., n-1, Thus du/dr = constant = ¢ can be
written on 9 as
2 13
Z du_ By —8u=c[l+z [Qg,_]] (2.9)
; Oxj Oxy Oxy, i Bxj
(i=1, 2 ,..., n-1)
Differentiating (2.8) with respect to x; , i =1, 2,..., n-1, we
obtain
Su. + Zdu Y =0. (2.10)
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From (%) and the fact that » = (0,..., 0, -1) at Q , we have
oy/dx; =0, i=1, 2,..., n-1 . Therefore = at Q we have: from
(2.10),
Su =0,1i=1, 2,..., n-1, and from (2.9) Jdu = - ¢ .
aXi aXn
Next we differentiate (2.10) with respect to x;, j =1,2,...n-1.

This gives :

d2u _+ B2u 9y + Ju_ 22 =20
aXian aXnan aXi aXn aXian

and evaluating at Q@ we get:

02u . - ¢ _02% =0 at Q (2.11)
Ox ;0X Ox 10X j

Lastly differentiating (2.9) with respect to x ,

k=1, 2,..., n-1 , we get :
axl} z ; axlaxk
z 32u 9y + Qu_ 9%y - B%u =c¢
,  Oxi0xp Oxj Oxj OxiOx)  Oxpoxy { }
1,
J E {axl

and evaluating at @ gives :

d2u =0 (at Q)
Ox,0x

From (2.3) and (2.11) we obtain :

d2u _=c Ay -1,
OXpOXp,

We have now determined all the first and second order derivatives
of u at Q.
Since , by the definition , v(x,, X) = u(- x,, X),

(X=%x,, ... , X,), in T°(\,) we find that the first and second
2 p¢) 1
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derivatives of u and v agree at Q . This completes the

proof of (1)

Now for (ii) we apply the boundary point maximum
principle to the function w=u-v in X7(\;) . Since

w>0 in X°(\,) , and w=20 atQ , we get:

o(u — v) >0 or QJ2(u-v) <0 (at Q).
dv oy ?

This contradicts the fact that both u and v have the same
first and second partial derivatives at @ , and the proof of

the theorem is complete . O

REMARK 2.2

Serrin also gives a similar result for general elliptic
equations and also for over—determined boundary conditions where
du/dv = constant is replaced by Jdu/dr = c(K), where ¢ is a C?

non—-decreasing function of the mean curvature K .

NOTES :

In the proof of Theorem 2.1 we have applied the following

properties of the Poisson equation:

(I) The Poisson equation is invariant under the reflection
X — xM-

(1) The difference of two solutions obeys the strong maximum
principle.

The following theorem says that : if Q is a ball in RT,
then the positive solution of the elliptic equation
A u + f(u) = 0 is radially symmetric about the origin of (1.

Moreover Ou/dr < 0 for 0 <r <R .
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THEOREM 2.2
Let 0 be a ball of radius R in R , let u > 0 be

a positive solution in C€2(Q) of the differential equation

Au+ f(u) =0,
Supﬁose that

u=20 on 31 = {x ¢ R? : 1x1 = R}

and the function f 1is of the form f, + £, where £, ¢ C1' and

f, is monotonically increasing. Then u is radially symmetric

2

and Ju/dr <0, for 0 <r<R.

PROOF:

Here we use the maximum principle forms as in Theorem 2.5
(Chapter (II)) together with the procedure of moving up parallel
planes . We require, in addition, two technical lemmas to finish

the proof of Theorem 2.2 .

We pick an arbitrarily chosen direction, as in the proof
of Theorem 2.1 , which we may assume to be x, ; see figure (2.1)
below . We move a hyperplane T, along the x,- axis, normal to

itself, from the right towards the origin with x, positive . Let

1
v = (1,0,...,0) and recall from Section 1 the definitions of A\,

Nis Ay Ty, Z(N) and X7(N) for N e [A,, Al .

Let T, be the hyperplane x, = 0 . We define x Moo
be the reflection of x in the plane lT')\1 , where x ¢ X()\,) . Ve
will show that

u{x) = u(x x‘) x € Z(N,). (2.12)

Since the x,—- direction is arbitrarily chosen, (2.12) proves the

symmetry property .
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By employing the device of A.D.Alexandroff we will be

able to prove that , for x ¢ L()\)
u(x) < u(xM) (2.13)
where x M is the reflection of x in the plane Ty, for Ne(X;,\g).
Now for a given € > 0 and xu‘e o we define :

Q, =00 {1x - x51< €)
and
Se =N {1x ~ x,1< €}.
LEMMA 2.3
Let x, € &) with »,(x,) > 0 . For a sufficiently small
e > 0 , assume that u ¢ C2(5€) , u>0 inQ and u =0 on S5,.

Then there exists 6 > 0 such that

du_ < 0 in Q4.

ox,
S

FIGURE [2.1]
LEMMA 2.4
Assume that for N e [X\,;, \,), the function u satisfies

du_ <0

ox

L]
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and

u(x) < u(x™) but u(x) # u(xM) in T(O).
Then

u(x) < u(x) in T(\) (2.13)
and

du_<0 onQNTy. (2.14)

a}"".1

(Recall that x M is the reflection of x in Ty )

REMARK 2.3
The set of positive A for which (2.13) and (2.14) hold is

open .

Now we complete the proof of Theorem 2.2 . By Lemma 2.3
we remark that the set of positive A for which (2.13) and
(2,.14) hold is non empty . In light of Remark 2.3 these
properties, (i.e. (2.13) and (2.14)), hold in a maximal interval

(g, R) , R denotes the radius of the ball Q .
We claim that p =\, . To see this , assume that

’> N, Let x, ¢ OL(M\T). Then x#

o € 0 . Since

A
0 = u(x,) < u(xg) , u(x) # u(x ) in X(u). Therefore , Lemma 2.4

holds for u = N that is Ju/dx, <0 on QNT, and

u(x) < u(x#) in () . This and the continuity of du/dx,
imply that there is an e > 0 such that : Ju/dx, <0 on a

neighbourhood in the region between T and T

p p—e By

compactness there exists a strip Qn{x, > pu—e} on which

du_< 0 . (in ON{x, > p—e}) (2.15)
ox,

{Lemma 2.3 can be used to get neighbourhoods on the boundary}.




Then the definition of ¢ implies that there is an
increasing sequence (\j). € (p-e, p), with Iim XN; = p , such
J7 jeN j—e J
that for each j there is a point Xj € Z(kj) for which :
N 2,16
u(xj) 2 uGx; ). (2.16)

A subsequence which we still call (Xj) converges to a point

x e X(p) as j — « , then XjJ — x” and u(x) > u(x#) . Since

Lemma 2.4 holds for pu =\ we must have x e JL(p) . If x is

not on Tﬂ , then Xﬂ lies in 0 , hence 0 = u(x) < u(x#) a
contradiction . Therefore x ¢ Tp and x“ = x ., On the other
Aj

hand , for j large , the straight line segment joining X to
Xj is contained in 2 . Therefore, from (2.16) and the Mean
Value Theorem it follows that there is a point y; in this
straight line such that :
N
u(x;”) — u(x;) = 38u_ (y;) . tx (t < Q)
J J Fo J 1

X

Since the left hand side is < 0, this implies

du_ (Yj) > 0.
ox,
Since Iim yj ==x , we get du (x) >0 , a contradiction
J— ox,
with (2.15) . Thus we have proved that u = X\, and so far

Remark 2.3 . This completes the proof of Theorxem 2.2 .O
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To prove Lemma 2.3 we need a preliminary result.

LEMMA 2.5

INVARTANGE OF THE LAPIACTAN UNDER ORTHOGONAT.
TRANSFORMATION

- If y = A x where A is an orthogonal matrix [ay] then,

-

n
du = au ,i=1,2,...,n,
ox; j=l ayJ

and

Axu=Ayu.

PROOF :
By the chain rule we get

du = du ayj

—_— - L =1,2,...,n,
=2 @pjBu. L =1,2,...,1 ..., (2.17)
J 9y j

Differentiating (2.17) with respect to xj we get :

_Q?2u = i au {-
ox;joxy XJ aib 2 — ]

- 92
Z 2 af_, ik oy j S.Yk

Thus

o L e e

= d2%u = A
X Ek ay aYk Jk y U

since z @fj @ik = bjk where §jp is the Kronecker delta.O
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PROOF OF LEMMA 2.3 :

Since ) is an open connected subset of R® and u > 0 in Q,
then du/3r < 0 on Q.. By hypothesis »,(x,) > 0 implies that
v, >0 on S, for small ¢ > 0. Therefore du/dx, < 0 on S,.

If the Lemma was not true, there would be a sequence

{xj} € Q. such that xj—e Xo, with au(xj)/ax1 > 0. For j large the

interval in the positive x,- direction from x)  intersects S, at

a point zJ where Ou/dx, < 0. Thus, since lim 7 = x,, we conclude
J—0
~ that
du_ (x,) =0 and _02u (x,) < 0. (2.18)
ox, ox,0x,
case: (1)

Suppose £(0) > 0 {we mean by £(0) the function f(u(x,)),

where u(x0)= 0 ). Then
Au+ £,(u) - £,(0) = fz(O) - f,(u) =0

since £, 1is increasing. By the mean value theorem there exists

a function &h,(x) [whose sign is undetermined], such that
Au+ h(x)u =< 0.

Applying the boundary point theorem (Theorem 2.5, Chapter (II)) to
the function -~ u we find

du (x,) < 0, and therefore gu_ (x,) <0
v ox,

which contradicts (2.18)
case: (ii)
Suppose f(0) < 0. Then at x; ¢ o we find

Au=-Ff(0) >0 (at x,) (2.19)
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Since u > 0 in Q, and u = 0 on 32, we always have du/dv(x,) = 0

at x, € oQ. Now if Bu/dr(x,) < 0, we are finished.

0
Suppose Ou/dr(x,) = 0. This implies grad u = 0 at x,.

We take a rotation of axes, that is a transformation from x to y

given by :

y=4x

where A is an orthogonal matrix.

Choose A so that y,— axis is along r at x, ¢ 90, i.e.

S0

vi = z S j § 61j = oj, ,i=1,2,...,n.

Then y; = Ljojj Xj and by Lemma 2.5 (setting j = 1) we get

@E_.“’ _.aLai1-
ox, L 3y;

Since u = 0 on o0, all tangential derivatives of u are zero on

oQ [c.f. argument in Serrin's proof (Theorem 2.1)]. In particular

au/Byj =0, for j=2,3,...,n, and therefore
du = gu_ oaj, =r, 0u_ =y, Ju (=0 at x,).
ox, 9y, oy, or
Next we have :
d2u = d%2u  wj, ojy , as in Lemma 2.5,
ox,ox, i,j O9yioyj

= d%u o, o,, at x; e oQ .
9y ,9y,

since all other derivatives of u with respect to y are zero at Xx,.

We get at x,

32u = 02y vy ¥

ox,dx, Jy,dy,
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Since the Laplacian ‘is invariant under rotation of axes,

A u(x,) = 92u .

oy, 9y,
From (2.19) we have
0 <Au=_0% (at xg)
dy,9y,
Thus we conclude
22u__ >0 (at x,)

ox,0x,
which contradicts (2.18). The Lemma is proved. O

PROOF OF LEMMA 2.4

Let x ¢ Z°(\). Define the function v(x)= u(xM). Then
vix) £ u(x) (v(x) # u(x)) (2.20)
and v satisfies
AV + f(v) = 0. (2.21)
Let w = v — u. Then
w <0 (2.22)
and satisfies
Aw+ £.(v) - £,(u) > £,(u) - £,(v)
>0

since f, is an increasing function. By the mean value theorem,

there exists a function c,(x), whose sign is undetermined, such

that

Aw + ¢, (x) w>0 for x ¢ L°(N). (2.23)




Applying Theorem 2.5 in Chapter (II) to inequalities (2.22) and

(2.23) and recalling that w =0 on QNT, we get :

A
w <20 in X°()\) (this gives u(x) < u(x ), x ¢ L(\))
and

ow >0 Ol’lQ,nT)\.

But on Ty

9w =90v_-9du_>-2 du_ .
ox, Ox, ox, ox,

Thus , du/dx, < 0 on QAT, and the proof of Lemma 2.4 is

complete . O

REMARK 2.3

The function f(u) is of the form
f(u) = £,(u) + £,(u)

where f, ¢ C'(Q) and f, is monotonically increasing if f is
locally Lipschitz continuous , as stated in Gidas, Ni, Nirenberg

[5]. This follows from the following facts.

DEFINITION :
The function f£(u) is called locally Lipschitz on R if

for all M there exists a constant K = K(M) such that
1£(u) - £(v)1 £ Kiu = viif lul <M and vi =M,
where K 1is called a Lipschitz constant.

LEMMA 2.6
If u €C%(Q) then there exists a positive constant M

such that :

lu(x)) < M for each x ¢ Q.
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LEMMA 2.7

If on a neighbourhood B, £ R"

(£(u) — £{v)1 < Kiu - v|

then

f(u) = £,(u) + £,(uw)
where £, is C' and f, is monotonically increasing function.
PROOFE

Take ¢ > K and let
f,(u) = f(u) + ¢ u+m. (m= an arbitrary constant)
Then for u > v

£o(u) = £,(v)

f

f(u) — £(v) + £ (u - v)

v

- K (u—-v) +¢0 (u-vwv)

= (2 - K)(u~v) >0.

So £, is monotonically increasing. Also f(u) = £,(u) + (- Qu- m)

2

and f,(u) =~ Qu - m 1is certainly (7 0

In the following theorem we investigate the symmetry of
positive solution of the elliptic equation
Au+ f(u) =0
in a domain {1, not necessarily a ball. We require ( to be bounded
and with smooth boundary d&Q.
THEOREM 2.8

Let u satisfy the differential equation
Au+ f(u) =0 in Q

with the conditions

u>0 inQ and u=20 on o0 .




69

Let N € (N\;, A\g). Then

Bu_ <0 and u(x) < u(x") (2.24)
ox,

for x ¢ L(\). Moreover, if Ou/dx, = 0 at some point in O N T,,,
then u is symmetric relative to the plane T), and

Q=132 UX U (T),NQ)

NOTE:
The definitions of X, Ny, N, Ty, Tny» ZOND), Z7(N), T\

and I"(\,) are as before. We define ¥ = Z()\,) and I” = T7(}\,)

PROOF OF THEOREM 2.8

Take x, e¢ 90, such that »,(x,) > 0. Then by Lemmas 2.3

and 2.4 we have,for sufficiently small A\, - N\ > 0,

du_ < 0 and u(x) < u(xd) Vx e I(\). (2.25)
ox,

Decrease A until a critical wvalue pu 2 A is reached, beyond

1

which (2.25) no longer holds . Then (2.25) holds for N > y,

while for X = p , by continuity, the following happens :

Q)

u <0 and u(x) = u(x# ) for x e L(w) (2.26)
X, :

03]

The same argument as in the proof of Theorem 2.2 applies to show

that p =\,
Now, since p = N,, it follows that (2.24) holds for
A >\, . By continuity,

du (x) <0 and u(x) <u(x'') in X()\,).

ox,




Next suppose that there is a point x e QNTy, at which

du/9dx, = 0. Then Lemma 2.4 implies that

A
u(x) = u{x 1) in T(N)).

Therefore u is symmetric in Ty, . Since u > 0 1in I(\;) and

u=0 ondQ, we conclude that
Q=xuzx uT,NQ).

This completes the proof of Theorem 2.8 . O
REMARK 2.5
A positive solution of A u + f(u) = 0, u =10 on 00

satisfies grad u # 0 on the maximal cap Z(\,).
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SECTION 3
MORE GENERAIL RESULTS

We show how Theorem 2.2 of Section 2 can be proved as

a consequence of Theorem 2.8 (Section 2)

PROOF OF THEOREM 2.2 USTING THEOREM 2.8

For an arbitrarily chosen x,- axis, we apply Theorem 2.8

to the function wu on the positive side of x,— axis. Then we
see that

du < 0 (for x, > 0).

ax,

Similarly, applying Theorem 2.8 to u in x, < 0 gives

Ju_ >0 (for x, < 0).

ax,
Hence , Qu/dx, = 0 on x, =0 . By the last assertion of
Theorem 2.8 we infer that u 1s symmetric in x; . Since the

direction of x,- axis is arbitrarily chosen, it follows that u is

radially symmetric and 8u/dr < 0 for 0<r<R.O
Theorem 2.2 suggests the following theorem. We shall
use Theorem 2.8 in its proof.

THEOREM 3.1 (Gidas, Ni, Nirenberg [5])

Suppose that u satisfies the equation :

Au+ f(u) =0

in a ring-shaped domain R’< x| £ R , with
u>0 in R"< 1x1 £ R,
u=20 on |x] = R ,

ue C2(R°< 1x1 < R)
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Then

du <0 for R+ R < Ix| < R.
or 2

This means that u has no critical points in the larger half of
the ring .
PROOF:

Take the direction v , arbitrarily chosen, as positive
x,— axis. Let X denote the maximal open cap corresponding to

Y

v ., and Z; the reflected cap of XL (see figure 3.1). It

v
follows from Theorem 2.8 that

¥ . grad u < 0 in EY .
Since 4 1is arbitrarily chosen , then the union of the maximal

caps 1ls the region (R"+ R)/2 < |x] < R .

Suppose that there is a point y with 1yl = (R"+ R)/2, at
which OJu/0r = 0 . Then with + = y/iy1 , the last assertion of

Theorem 2.8 implies that

Q= ZT u Z&

which is impossible . O

REMARK 3.1 :

If in addition to the hypotheses of the theorem above we
assume that u =0 on |X] =R and u ¢ C2(R™ < |x] < R), then
one might think that wu is radially symmetrie . Using an example

by Schaeffer, Gidas [4] shows that this is not true in general.




FIGURE [3.1]

COROLLARY 3.2 (Gidas [4])

Let  be a convex domain in RT. If a function u satisfies
the hypotheses in Theorem 2.2 of Section 2, then there exists a
neighbourhood of 90 in { where u(x) cannot have critical

points .

EXAMPLE 3.1
We take an ellipse as an example of a convex domain. We

find that the critical points of u ( if any ) lie in the shaded

region in Figure (3.2) (the origin alone in this example) .

A

o

FIGURE [3.2]
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PROOF OF COROLLARY 3.2 :

Applying Theorem 2.8 implies that u has no critical
point in any maximal cap . The union of the maximal caps covers

all of Q@ except for a small region about the origin , see Example

3.1 above . O
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CHAPTER (IV)
SYMMETRY PROPERTIES OF SOLUTICONS OF SYSTEMS

OF ELLIPTIC EQUATTONS

SECTION 1

ANTRODUCTION

We shall see in this chapter how the previous results

can be extended to certain systems. This was done by Troy [23].

We shall be concerned in this chapter with solutions of

systems of the form
Au; + £f5(u,u,,...,up) =0 in Q, i =1,2,...,m (1.1)
where  is a domain in R, with the condition |
u; >0 inQ and u; =0 ondR V i. (1.2)
The functions f; are assumed to be C' and satisfy the condition

of; >0 for i#j, 1 < i,j < m. (1.3)
Buj
We wish to determine a class of domains {2 for which the
solution of the problem (l1.1), (1.2) is symmetric about a point in
Q. In particular, we shall show that the solution is radially
symmetric in case {} is a ball. However, if ) is not given but we
add the condition Ju;/0y = C; on O}, i = 1,2,...,m, where G; is a
constant and » is the outer normal to 9(, then  must be a ball in

RD and the solution is radially symmetric.
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MAXIMUM PRINCIPLE AND THE RETATED
BOUNDARY POINT THEOREMS

Here we discuss the extension of Theorems 2.5 and 3.1 of

chapter(II) from the scalar versions to systems.

We define the operators :

i i
L; = z ajp(x) 082  + bj(x) 8__ (1.4)
j , k anan J aXJ
i=1,2,...,m and 1 £ j, k < n, where each L; 1is uniformly

elliptic .

The following theorem is an extension of Theorem 2.5 of

Chapter (II) to systems.

THEOREM 1.1

Let uj(x) e c2() n co(Q) satisfy the system of

differential inequalties

Li[uz] + Z hij(x)Qj >0 v (1.5
g
in a domain Q € R® with u; <0 inQ for all i =1,2,...,m.
Suppose that the cogfficients a}k, bj, hij are uniformly
bounded in {1, and that for x ¢ Q,
hij(x) >0, i#j,1<1i, j=m ...... (1.6)
(i) If for some k, ugp vanishes at an interior point of {1,

then

up =0 in Q.

(ii) If 30 satisfies an interior sphere condition at a point

Q e o with ug(Q) = 0 , for some k, then we have




dug(Q) > 0
ov
unless up =0 in (), where v denotes the outward normal to o0

at Q.
PROOF :
From (1.5) we have

Lifu + h uy = - z
xluk] + Bre ug ok

hkj uj 2 0,
1l < k,j<m since uj < 0 and hkj > 0 for k#j. Therefore
Theorem 2.5 of Chapter (II) applies to ug , and the proof is

complete .0

REMARK 1.3 :

This is a shorter proof than the one given by Troy[23].

THEOREM 1.2
Let @ € R? be a domain with €2 boundary and let T be a
plane containing the normal to 3 at a point Q ¢ Q. Let 0 denote

the portion of  lying on some particular side of T.

Let uj; e c2(@*y, i =1,2,...,m, satisfy the system of
differential inequalities (1.5). Assume that u; < 0 in 0* for
all i and that there is j such that u j < 0 in 0% with uj(Q) = 0.

Then either :
3uj(@) >0 or 3%u;(Q) <0,
dar Ov?2

unless uj = 0.
Here » denotes the outward directional normal at Q e o0,
also the coefficients of L; with hij(x) in (1.5) are assumed to be

uniformly bounded.
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PROOF :
We proceed as in Serrin's proof of the Hopf boundary

point theorem at a corner (Theorem 3.1, Chapter (II)).
We define the region H by :

H = B, NB,nQ%,

where B, € 1is an open ball with radius r, and internally
tangent to Q at Q, B, is an open ball centred at Q and with

radius r,. We take r, < } 5.
Define
Xy
i

Vi = e

Then v; satisfies
m 1
0 < Li[ui] + Z' hij UJ = Li [Vi] + (az a,y + o b1 + hii) vi
J
m
+ zj Bij Vi, e (1.8)

1 . . . PR
where L; 1is an elliptic operator containing no zero — order

terms . For large o and all i ,
a? a,, +ab, + hj; >0
b

since a ; and hj; are bounded , and a,, 1is positive .

11

By (1.6) , it follows from (1.8)
Li [vi] 20 inQ , i=1,...,m
and v; <0 in O .

Applying Theorem 3.1 of Chapter (II) to v for some j,

the result follows .01
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SECTION 2
MAIN RESULTS

The following is a generalization to systems of the

result in Section 2 of Chapter (III) . Our work is based on Troy
[23].
THEOREM 2.1

Let @ € R™ be a ball of radius R. Let u; ¢ C2(0) satisfy

the differential equations:

Au; + £3(u,,u,,...,ug) =0 ,i=1,2,...,m, 2.1
where f; is €' and satisfies the condition
of; =20, i#zj, 1 <i,j<m (2.2)
Buj

Suppose that
u; >0 in® and u; =0 on of2 for all i. (2.3)

Then for each i, u; is radially symmetric and du;/dr < 0 for
0 <r <R,
PROOF :
We require three technical lemmas which are extensions of
Lemmas 2.3, 2.4 and Theorem 2.8 of Chapter (III) for the scalar

problem to systems.

We pick an arbitrarily chosen direction which Wé may
assume to be the x,- axis and move a hyperplane I, from infinity
towards { retaining its normal in the positive x,- direction. In
our construction of the caps, let 4 be the unit vector (1,0,...,0)

and recall from Chapter (III) the definitions of Aj, N,;, A,, Ty,

Z(\), Z°(N), Z(\,) and I7(\;) for X\ e [XA,, Ag].




Now for a given & >0 and x, ¢ 30 we define :

an {ix - x50 < e} , x ¢ RO,

Qe =
and
Se=00n {ix - x;1 <e} , x e RO
LEMMA 2.2
Let x, ¢ o0 such that v, (x;) > 0 . Choose ¢ > 0
sufficiently small so that », (x) > 0 , for each x € S.. Assume

that for each i, 1 < i <m , uj e Cz(ﬁé), u; > 0 in Q. and u; = 0
on dQ.. Then there exists § > 0 (independent of i) such that

au_,-_ < 0 in ‘Q(S'

3x,

LEMMA 2.3
For N e [A,;, N\,) and some i,(l < i < m), assume that the

function u; satisfies :

du; =<0 , X e L(N), (2.4)

ox,
and

X\ A .
u;(x) < uz(x) but u;(x) # uj;(x’) in X(N). - (2.5)
Then
A

ui(x) < u;(x) in (N},
and

du; <0 on {} n Ty.

ax,
LEMMA 2.4

Let u = (u,,u,,...,uy) satisfy the differential equations

Au; + £i(u,,u,,...,up) =0 in 0.

g0
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Suppose that
u; >0 inQ and u; =0 on oQ.
Then for N e (\,, N\g),

duj < 0 and uj;(x) < ui(xx) for x ¢ T()\).
ox, (2.6)
If for some i, duy/0x, = 0 at some point in 2 N Ty,, then

u; is symmetric in the plame Ty, and Q = E(X,)UZ"(X)U(T),NQ).

We now complete the proof of Theorem 2.1 assuming Lemmas
2.2, 2.3 and 2.4. We may assume without loss of generality that
the ball 1 is centred at x = 0 in RD,
By Lemma 2.4 we have, for any choice of the x,— axis and
each i,
du; < 0 for x, > 0.
ox,

Also, by the same lemma it is easy to see that

du; >0 for x, < 0.

ox,
Furthermore we get

du; = 0 at x

5,

= 0,

since wuj € ¢c2(Q). Therefore Lemma 2.4 implies that u; is
symmetric in the x,- axis. Since the x,— axis is arbitrarily
chosen, it follows that wu; is radially symmetric for each I and

du;/ox, <0 for 0 <r <R .O




We now turn to the proofs of Lemmas 2.2, 2.3 and 2.4 .

PROOF OF LEMMA 2.2
Assume that i has been chosen and is held fixed. Since Q)
is an open connected subset of R™ and u; > 0 in ., then
du; <0 on of,.
or
Also, »,(x) > 0 dimplies that »; >0 on S, for small ¢ > 0.
Therefore

ou; <0 on Sg.

ox,
If the Lemma were false, then there would be a sequence

{xj} z € Q. such that Xj — X, as j -~ ®» and aui(xj)/axl > 0.
Je

On the other hand, for each _j, the interval from xJ in the

*

positive x,— direction intersects S, at a point 21 such that

J

z2 — x;, as j — o,

Since aui(zj)/ax1 < 0, we conclude that

duj(x,) = 0 and 0%u; (x,) =< 0. 2.7)
5;: ox,0x,
case(i):
Assume that £3(0) 2 0 [£;(0) = £3(u,(xg),...,up(xy))

with u;(x,) = q]. Then in Q., u; satisfies
Au; + £i(uy,...,up) - £;(0) <0 .

hence, by the mean value theorem there exist functions

7,(x),...,np(x) defined for x e (I and with values in R such that




A u; + z orf; [n,(x)] uj < 0. (2.8)
j ooy

Applying Theorem 1.1 (Section 1) to =-u; implies

Juj(x,) < 0, hence Quj(x;) < 0
v ax,

contradicting (2.7).
case(iiy:

Assume that fi(ﬁ) < 0. Then at x, we get
Au; = - £;(0) > 0.
Applying Lemma 2.3 , Chapter (III) , the result follows.O
PROOF OF 1EMMA 2.3

Let N € [N, Ay). For each i = 1,...,m, we define the

function
N -
vi(x) = uj(x") for x € T7(\).
Then v;(x) satisfies
Av; + Fi(vy,...,vp) =0 in Z°(N).

Define the function

wi(x) = vij(x) — uj(x) inX"(\), 1 <i=<n.

Applying Lemma 2.4 , Chapter(III), the result follows.O

PROOF OF LEMMA 2.4

Since v,(x) > 0 for x ¢ 30 N 3(X(N)), then by Lemma 2.2

we have

Bu; < 0 and  uz(x) < uz(x") at all x ¢ £(\), (2.9)

ax,

for Ny - x>0 sufficiently small.
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Decrease \ below A\, until a critical value pu > A\, is
reached beyond which (2.9) nc longer holds for some uj. Then

(2.9) holds for uj; for N\ > p, while for N = pu

BUJ <0 and uj(x) < uj(xj) for x ¢ T(\).

Theorem 2.8 of Chapter (III) applies to uj and the result

follows.O

THEOREM 2.5
Let @ € R be a domain whose boundary is of class CZ2.
Suppose that u;, i = 1,2,...,m, satisfies the system of

differential equations
Au; + Fi(u,,u,, ..Uy =0 in Q (2.10)
with the condition

u; =0 ondl at all l<i=<m, (2.11)

where f; is assumed to be of class C' and satisfy the condition

of; >0, i#j, 1<i,j<m (2.12)

auj
Further we assume that

aui = Cj_ on of} (213)
O

where C; is a constant and » denotes the outer normal to 3.

Then { must be a ball.

PROOF :

We use the same device of moving parallel planes as in

Section 1, Chapter (III), and adopt the same notations.
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Define the function v; by

A

vix) = ujp(x'1) for x e Z°(\,), 1L = i =m ...(2.14)

where Xk1 is the reflected value of x in the plame T),. For each

i the function v; satisfies the differential equation
Av; + £;(v,,vy,...,vp) =0 inQ ..., (2.15)

with the boundary conditions

vy = uj On 82‘(7\1)DT)\1,
vi =0 and an_ = Cji on a):'()\])ﬂ(T)”)c ,
dr

where the constant C; being the same as in (2.13) and (T)n)C

denotes the complement of (T),). Further we define the functions

Wi = Vi — ujy in Z°(ND). 0 aaala (2.16)
Then, by the mean wvalue theorem, there exist functions
E,(x),..., £n(x) defined for x ¢ 0 and with values in R such
that
Awp+ ) R0 wy = 0.
'j awj
Therefore ,

Awy o BE(EL(0) vy = - ) BEs (yGw).
ow; J owj

Since Of;/dw; > 0 for i # j and by virtue of Lemma 2.3 , (2.16)

implies wi > 0 in X7(N,). It follows that

AWJ-_ +hj__1'_ Wi

1A

0 in I7(\,) e (2.17)
wi =0  on 9L (\,)NTy, ... (2.18)

G

wi 20  on 9L (N)N(Ty,) ,....(2.19)
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Applying Theorem 2.3 of Chapter (II) (as in Theorem 2.1

of Chapter(IIl) ) the result follows.O

REMARK 2.1

The proofabove is similar to Troy's one .

EXAMPIE 2.1 :

STEADY STATE SOLUTIONS OF SOME
REACTTION-DIFFUSION EQUATIONS

The following model represents a system which satisfies

the essential condition (1.3) of Section 1.

The Belousov — Zhabotinskii reaction in a capillary tube

leads to a system of equations, given by Field and Noyes [2],

Qu =932u_  + F(u, v), ..., (2.20)
ot ox9dx

v = G(u, vy, L. (2.21)
ot

where

Flu, v) = s (v-uv+u-qu2) |,

G(u, v) = (1/s)(— v ~-uv+ fu,,

s is a given constant (s = 77.27 in the application), q is a

small constant (q = 8.375 x 107%) and £ is a numerical parameter

taken in the range (l+Jr5, w) (Field and Troy[S]), (u,, v,) are
the unique positive constant solutionsof (2.20) and (2.21) given
by

gy = {1-f-q+[L-f-2+4qA+DHJ Y20




and

vy = fuy/(L+ug). (2.23)

Here we show that u, > 1. Since (L - £ - q) <0 for £ > 1, then

u, = 1 {(1 —f-q) + 11~ £ - qil + 4ql + £) '5}
2q (L-£-q)2 |
=1 {(1 _f-q) + 11~ Ff~-qi|l+2qL + £ '}
2q (1-£f-q¢2|

(using (1 + x)% =1+ 4 x for small x)

-1 [(1 _f-q) + 1l ~f - qi + 2q(L + £) }
2q 11 - £ ~ qI

= 1+ F , since 11 -f-q1 =—-(1-f-q)
1L - £ - qli

=1+ f =1+ 2/(f-1)

£-1

sou, >1 for £>1 (and q small). Note that this gives

u, = 2.414  for £=1+J2 .

REMARK 2.2
One can, of course, calculate u, using a calculator for
the given values of f and q. This gives the answer very close to

that above (= 2.41433).
Now, It is reasonable to consider diffusion in v also.
Then (2.21) gives

dv = A v + G(u, v).
ot




Then steady state solutions satisfy the second oxder elliptic

system:
Au+ Fu, vy =0, ..., (2.24)
Av+ Gu, v)y =0. oo (2.25)

By changing variables to

one gets:
Au, + F(u, +uy, vy —v,) = 0,
-A v, + G(u, + u,, vy - v,) =0,
or
Au, + F(u,, vi) =0, ... (2.26)
Av, -G (u, v;) =0, ... (2.27)
where
F, =s[vy ~ v~ (u, v —u, v, +u, vy — ug v,) + (u;+ ug)

—q i+ 2u, u,+und], (2.28)

G, =1/s [-(vy = v)) = (u, vy —u, v, +ug vy = ug vy) ],

Note that for physical reasons, (Troy [23]), (u, v) are

constrained to satisfy the inequalities

u, 2u<l/g, O=v=v,,  ...... (2.30)

so (u,, v,) satisfy the inequalities

1A

u,+ u, < l/q, 0<v, 2v,.

Differentiating F, and G, with respect to v, and u,,

respectiv ly, we get
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oF, =s [(u, +uy) - 1],

ov,

9(~G,) = 1/s (v, — v,).
du,

From (2.22),(2.23) and (2.31) we have :

oF, >0 and 3(-G,) > 0.
5;: du

1

Therefore, we conclude that Theorems 2.1 and 2.5 apply to
equations (2.26),(2.27) and hence to the Field - Noyes model

(2.24),(2.25) .0

REMARK 2.3
Example 2.1 is a complete version of the one given by

Troy [23]

NOTE :

Ee—

A thorough treatment of system (2.20), (2.21) can be

found in Field and Troy [3].
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CHAPTER (V)
THE P — FUNCTION FOR SOLUTIONS OF

Au + flu) =0

INTRODUCTION

The elliptic partial differential equation A u + f(u) = 0
has been of much interest because of its many applications. The
maximum principle is an excellent tool for the study of

properties of its solutions

The papers by Stakgold and Payne [22], Payne, Sperb and
Stakgold [12], Schaefer and Sperb [16], Payne [9] and the recent
book by Sperb [21] show applications of different kinds of maximum

principles to solutions of A u + f(u) = 0.

In Chapter(III) we have seen how maximum principles can
be used to show some symmetry properties of positive solutions of
A u + f(u) = 0. In the present chapter we follow Sperb [21] and we

study the function P defined by

P(x) = g(u)igrad ul? + h(u),
where u(x) is a solution of A u + £f(u) = 0 in Q.

We shall show that P satisfies a maximum principle if the
functions g(u) and h(u) are chosen appropriately. This will lead
to a derivation of useful bounds for all kinds of quantities that
are of interest in problems governed by this equation as will be

illustrated by some examples.
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SECTION 1

THE ONE —~ DIMENSTIONAT, PROBLEM

It is comvenient to start with the simplest cases and

then proceed to more complicated situatioms.
we consider the differential equation
u" + f(u) =0 in (a, b) (L.1)

where £ > 0 and u is a function of one variable x ¢ (a, b)

and the primes denote differentiation with respect to x. For
practical reasons we introduce a numerical parameter M\ which we
may assume to be positive, since we are iterested in positive
solutions, and take X\ f(u) in the place of f(u) in (1.1). Also for
convenience we assume that the interval under consideration is

finite and take the interval (0, 1).

Adding the boundary conditions u(0) = u(l) = 0 to (1.1)

brings us to the problem :

u" + N f(u) = 0 , u{0) = u(l) = 0. (1.2)
REMARKS 1.1 :
(D The nonlinear problem (1.2) arises as one of the physical

problems involving the steady state temperature distribution in a
material bounded by two finite parallel planes which lead to the
problem of determining those positive numbers N for which (1.2)

has a positive solution u(x) in the interval (0, 1).

(1I) All nonzero solutions of (1.2) for N > 0 are strictly

positive and have exactly one maximum on (0, 1) {Laetsch [6]}.
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u
Now we let F(u) = J f(s) ds and multiply (1.2) by u”:
0

u" u” + » f(u) u” =0, (1.3)
which, on integration, gives

1l (u”)2 + N\ F(u) = constant, (1.4)
2

Therefore, in the case of (1.1), the function
P=(u"’)2 + 2 F(u) (1.5)

is just a constant.

From <lf3> one ¢can derive an implicit representation of
the solution as follows :

Let x, ¢ (0, 1) be the point at which some solution of

(1.2) assumes its maximum u, = u(x,), then u’(x) 2 0 on [0, xo]

M

and u”(x) < 0 on [x,, 1]. From (1.4) we get

1L (2 + NF(u) =\ Fuy), (1.6)
2

and integration gives :

[“Fp - Fe)THds = x, (20f, x5 ¢ [0, x,], (1.7,
8]

j: [Fu) - F()THds = (1 - @0, x e [x,, 1] (1.7

Setting x = x, and u(x) = u, , we see that x; = 1 and
2

u(x) = u(l - x); that is any solution of (1.2) is symmetric about

x = 1 .{This was shown by Laetsch [6 ]}
2

Therefore, equations (1.7) may be used to comstruct the

solutions of (1.2). Similarly, different boundary conditions for




93

u(x) can be treated provided that condition (1.7) is modified

(see Sperb [21])).

For equations more general than (1.1) we may take, for

example, the equation
h(u2) u" + g(u) = 0, (1.8)

where h is a function of (u”?2). Introducing { = u”? and using

the fact that

df{ = dt du” =2 du dZ3u

— —_— _—

dx du” dx dx dx?2
we find that

constant, (1.9

1 Hu"2) + G(w)
2

where dH/ds = h(s) and dG/ds = g(s). From (1.9) one can construct
an implicit representation of the solution of (1.8) following the

above procedure.

Considering problems such as (1.1) and (1.8) gives an
idea of what type of P ~ functions one has to look for in the

n - dimensional case.
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SECTION 2

DETERMINATION OF P — FUNCTIONS FOR

SOLUTIONS OF A u + f(u) = 0

Let u ¢ C2(Q) N C3(Q) satisfy the elliptic equation
Au+ flu) =0 in & (2.1)

where (! is an open connected subset of RM. We shall be concerned-

with positive solutions of (2.1).

We aim to find conditions under which the function P,

defined by :
P := g(u)igrad ur? + h(u),

satisfies a maximum principle, u(x) being a solution of (2.1).

According to Section 1, the function

P = |grad u|2 + 2 F(u)

is a possible candidate. Recall, from Chapter (II), that if a

function u satisfies an elliptic inequality :

L[“]=z a;j(x) Blu o+ bj(x) du_ >0 in Q

i,j axian i aXi
(i,j=1,...,n), then the following helds
(I) If u assumes its maximum value M in Q, then u =M
throughout Q-
(ID) If u assumes its maximum value M at a point Q e 30, then

either

usM in{l or du (Q >0
or

where » is the outward normal to 3 at Q.
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Going back to our function P = i(grad ut? + 2 F, it
will follow that P satisfies a maximum principle if P satisfies
an inequality of the form L[P] >0 in Q.

LEMMA 2.1

For any sufficiently smooth function u : R® — R' and

for n > 1, the following inequalities hold :

Q% 3
) [a;aczng]z 2“; [5;1%,(—!{]2 > Aw?

i,j
PROOF :
By Schwarz's inequality
2 _J2u 2 82u 2 z 92u _1?
@w? - / axiaxl / axlaxl =n/ [axian]
1 1 J-JJ

(the last term contains more positive terms).O

At this stage, we would like to split Section 2 into

three subsections.

2.1 UPPER_AND LOWER SOLUTIONS AND EXTSTENCE

OF SOLUTIONS OF A u + £(u) = 0

The formalism of upper and lower solutions is of

importance in the following sections.

DEFINITION 2.1:

An upper solution to the boundary value problem
Au+ £f(u) =0 in D
u=20 on of,

where f e C'(Q}), is a function uM(x) satisfying




1A
(=]

A Uy * f(uM) in Q

uy 2 0 on d(.

A lower solution um(x) is a function that satisfies

Au + f(u) >0 in Q
m m

u =<0 on aQ.

LEMMA 2.2

Let um(x), uM(x) be lower and upper solutioms,
respectively, and suppose that
um(x) < uM(x) , x ¢ {1.

Then there exists at least ome solution u(x) of (2.2) satisfying
the inequality

um(x) <u (x) < uM(x) , X ¢ 0.

NOTE : The proof of Lemma 2.2 can be found in Smoller [18], or
Sattinger [15]. Stakgold and Payne [22] use this result to

discuss the above equation in the special case that
f(s) = Ns - h(s), N>0,

where h(s) ¢ €2(- », ) and h(0) = 0, h(s) > 0 for s > 0.

2.2 REMARKS ON CURVATURE

Let ! be a domain in R" having nonempty boundary df.
Let 80 € C?. For a point Q ¢ 80, let »(Q) and T(Q) denote
respectively the unit outer normal to dQ at Q and the tangent

hyperplane to 8Q at Q.
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The curvatures of 80 at a fixed point Q, ¢ OQ are
determined as follows. By a rotation of coordinates we can assume
that the x, — coordinate axis lies in the direction of the inner
normal at Q,. In this frame we can represent the boundary of o
locally by the equation :

Xp = ¥(x7) , v e C2?, (2.3)

where
X" = (X,,...,Xp—y) and D ¢(Qy) = 0, (2.4)

where D denotes derivative.

The curvature of o&f at Q, is then described by the
orthogonal invariants of the Hessian matrix [D?y ] evaluated
at Qy. The eigenvalues, k,,...,kp_,, of [D2y(Qy) ] are called the
principal curvatures of O at Q, and the corresponding
eilgenvectors x,, X

23+ ++1%pn.-, are called the principal directions

of 00 at Q,.

DEFINITION :
We define the mean curvature (or the average curvature)

of o0 at Q, by :

11
K(Qy) = _1 z ky = _1 _A¢Qp. ...... (2.5)

IMPIICIT REPRESENTATION OF THE BOUNDARY
If the surface o is given by an equation
F(x,,...,%Xp) =0 with DF#0 on o2, then

OF/3x; is the unit normal to 30 directed towards positive F.
1D Fi
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It can be shown that the matrix 3 [BF/BXi] evaluated

axj D Fy

at a point p e 9Q has eigenvalues -k,, -k -kp—,,0.

210
So the mean curvature is given by

R(p) = =1 [a_ [aF/an_] <p>].
n-1 an D F1
EXAMPLE 2.1
We compute the curvature at the "north pole" of the
sphere of radius R as an example. First we use the implicit

. 2 2 2 2
representation. Let F(x,,...,%Xp) = R'— x] —x; - ... = Xp

where the x, — axis lies along the inner normal, so that D F

1D F]
is the inner normal.
Then, OF = - 2 x; ,i=1,...,n.
an_
and
8F/8x1==— Xi
ID Fy sz 3
[, ]
so that
3 [aF/aXl = — 5@' + Xj XJ
Ox; LiD F| ] 3 '
J 2 13 Z 2 3
D)t Ok ]
At the north pole, p = (0, 0,..., -R), then
-1 0 . 07
R
a_ [BF/axi]-- §+R 8ipdjp = [0 -1 0...f-
axj ID F) R R3 R.
-1 .
R
0 0l
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So

I

—_L_(n—Dfl]=$
n-1 R R
EXPLICIT REPRESENTATION :

From the equation of the sphere we have

2 2 2

2
X, +t X, *t ...+ Xy = R™.

Then, near the north pole, we can represent the boundary 0Q as

2 2
-~ [Jp2 _ ¥-2 . T2 =
Xn R X ;X X, + ...+ Xpoy.

Thus
Y(x,,...,Xp) = - / R? — x;x; .
Then
oy - X;
aXi /‘RZ —_ X‘Z
and
32y = 85 + Xj Xj
aXiaXJ'

JExr [re - X'z]%

At the north pole x” = 0, and we get

.l o
R
[D2 ¥(p)] :[_iﬁ } = 10 % 0
R
1
. 0 2
KR =1 .
R
REMARKS 2.1
9] If x, was chosen along the outer normal one gets the

opposite signs in above calculations.
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(11 The implicit and explicit representations are related. If

we have
Xp =V (¥,,...,%X5-,) on 00 where grad y =0,

one can take
F(x,,....Xp) =Xp — ¢ (Xy,...:Xpq)-
In the following lemma we shall use the term "normal
coordinates”, by which we mean that we take the X 5.4 ,Xp_, axes
along the principal directions corresponding to k,,...,k; , at

a point Q e 9.

LEMMA 2.3
Let u e C2({]) be a function vanishing on o0 where 90 is
to be of class €?. Then A u can be represented at Q ¢ dQ by the

identity

Au=292u+ (n - 1)X du (2.6)
or2 oy

where » is the outward normal to o0 at Q ¢ 90, and K denotes the

mean curvature of o at Q.

PROOF : (we use summation convention)

Following the argument above, we get
Xnm’#(x’) ' 1}”602: Xlﬂ(x*]s'-"Xn—-g):

where we use normal coordinates at Q . Since u is in c2({]) the

condition u = 0 on ol can be expressed as a twice differentiable

identity
u (x°, ¢y) =0, X7 = (X, Xp—1)- (2.7)
Differentiating (2.7) with respect to x;, i = 1,...,n-1, we get
Ju + du_ oYy = 0. (2.8)

aX i aXn ax i
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Differentiating (2.8) with respect to x;, j = 1,...,n"1,
and evaluating at Q, where dy/dx; = 0 (by (2.4)) and bhence

du/ox; = 0 (by (2.8)), yields

92u__ + du 9%y =0 (at Q). (2.9)
axian aXn aXian

Considering the coordinate frame above at Q ¢ 90, we get

Ju_ = - Jdu and _0J2%2u _ = 92u . (2.10)
ox, or Ox,0x, Or?

Since we have, from (2.9),

d2u = — du 92y , i=1,...,n-1
Ox;0x; ox, Ox;ox;

then
Au=2030u _32y + 9d2u .
Ovr 0OxjOx; Or?

Finally, by (2.5), we get
Au=092u + (n - 1)K du .00
Op 2 v

2.3 PRELIMINARY CALCULATIONS

In many calculations the case n = 2 (i.e. the two -
dimensional case) allows a somewhat different treatment than that
of n > 3. Also the difficulties that one encounters depend for a

good part on the boundary conditions imposed on u.

As we mentioned before, the function

P = |grad ur? + 2 F(u)

is a possible candidate, therefore we consider the more general

form

P = g(u) igrad u|® + h(u) (2.11)

where u is a solution of (2.1).




Differentiating (2,1l) with respect to X j gives

9P = g (u) Igrad ui® du_+ 2 g(u) _B%u__ du_ + h”(u) du_
aXJ BXJ‘ axiaXJ' an_ aX

where the prime denotes differentiation with respect to u, and we

use summation convention.

At this stage some simple notation will be convenient;

thus

. 2 S U o= 3
uj d2u_ ; ujjj d3u ,

ox; axiaxj SxiaxiSXJ

Now differentiating (2.12) with respect to X;j gives :

AP = Pjj=g" 1grad o+ 2 g" uj uj ujj
+ g7 |grad uy? ujj + 2 g° uj uj ujj
+2 g ujjj oui + 2 g ujj ujj + h"|grad up?
+ h” ujije
L AP =g" |grad ut? + tgrad ur? (g~ ujj + h"™)
+ 4 g7 ujy uj ujj o+ 2 gu; ujjj t 2 g ujj ujj
+ h~ Ujie e (2.13)

Using (2.1), it is easy to see that

ujjj = uji; o= - £ u;. L (2.14)

The third term on the right in (2.13) can be expressed, using

equation (2.12), as

4 g~ uj uj ujj = 2 g uj [Pj - g igrad ui? uj = h” uj]
&

Thus we can rewrite (2.13) as
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AP = |grad u|4 (g" - 2 glz)
g

+ 1grad u1> (h" - fg~ - 2 f°g - 2 h'g” )

NOTE :
Up to equation (2.16) the calculation is the same in any

number of dimensions.
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SECTION 3
MAXIMUM PRINCIPLE FOR THE P - FUNCTION

OF THE FORM P(x) =~ g(u)igrad ur? + h(u)

Equation (2.12) of Section 2 shows that P may assume its
maximum at a point at which grad u=20 (i.e; at a critical point
of u). A second possibility is that P assumes its maximum
somewhere on the boundary 0. The third possibility is that P
assumes its maximum at an interior point of {2, not a critical

point of u, but a point where the determinant of the matrix

Cij = 2 g ujj + (h” + g7 1grad ur? ) 83j
vanishes.
The latter possibility does not help us to achieve our
aim, so we shall try to choose P in such a way that one of the

first two possibilities mentioned above occurs.

The following illustrates a maximum principle for the

P —- function defined by :

P(x) = g(u) igrad ul’ + h(u)
where u is a solution of the differential equation

Au+ f(u) =0 in Q. (3.1)

Our work is based on Schaefer and Sperb [16], Sperb [21]

and Payne [9].
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THE _TWO — DIMENSIONAL CASE

We start with the case n = 2. We recall from Section 2

equations (2.12) and (2.16) which are just

Pj g’_(grgd ur? u; + 2 g uji uj + h” u; ....(3.2)

and

lgrad ui® (g - 2 g2*)
g

>
g
i

+ 1grad ul> (h" - £ g~ - 2 f'g - 2 h'g”)
+ 2 g ujj Uiy - h" £+2 g u; P; . ..... (3.3)
g

In order to eliminate the texrm ( 2 g uj g uij>» we use the
following identity which only holds in two dimensions. For any

sufficiently smooth function u, we have (for grad u # 0)

ujjuij = (A u)? + 2 Uj Ujp Uj Ujg — 2 Au uj uj ujj
Igrad uj? igrad u]?

while the simple,form of (3.4) is :

ujjujj = (A u)? + 2(u;y - Ugy tyy)
which is easily seen. From (3.1), we may rewrite (3.4) in the
form
ujj uij = fz + 2 Uj Ujp uj Ujp + 2 f uj uj ujjg

tgrad u|? 1grad uy?

and we see that
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AP = |grad u[4 (g" - 2 giz)
g

+ lgrad ur? (" - fgo -2 f'g -2 h’gl)
g

+2gf2+ _b4g  uj;ujp uj ujg
lgrad u|?

+ 4 g f u; u; u;; — h°f + 2 g7 u; Pj.
i UjUij g.uj ¥j

lgrad ul? g
....... (3.6)
Using (3.2), we can write
2 g uj ujj = P; - g7igrad ul® uj —h” u; ... (3.7)

The combination of (3.6) and (3.7) gives :

A P = |grad ul? (g" - 2 giz)
g

+ jgrad ui2 (h" - fg' -2 £fg-2hg’)+2gf?
g

+ 1 [(Pk - g up lgrad ul® - n’ ug)
glgrad u)?

- 2
X (P - & U grad ut - h” “k)]

+ 2_f u; (P; — g~ u; 1grad ul? - m” uj)
lgrad ul?
-h" £+2g u; P;. o (3.8)
g
The product term
1 (P — g~ up ligrad ui? - h” up)

gigrad u|?

x (P — g°ug 1grad ui? - h” uy)

can be estimated as follows




2 Pr(—~ g° up lgrad ur? - n° up)
gigrad u]?
+ 1 Py Py + g-ligrad u1® + h°% + 2 g7 h” igrad ul’.
glgrad u)? g g g
> 2 Pir(— g° uy 1grad ur? - h” up) + g% 1grad u’
glgrad u|? g
+ h°? + 2 gh” 1grad ul’.
g g
The fifth term in (3.8) is
2 £ u; (P; — g~ u; 1grad ut? - b~ uji)
1grad ut?
- __2°f u; P; - 2 £ g° (grad ut> - 2 £ h” .
igrad uy?

2 AP > 1grad ut? (g" - g2 + 1grad u1® (" - 2 £ g -3 £ g7)
g

+ uy Py 2 f - __2h” +2 g Ff°+ h°?
lgrad u)? glgrad u|? g

-3fhHR. L, (3.9)

Inequality (3.9) may be written in the form

AP+ _ 1 y; P; 2> g (log &" igrad ui®
igrad u)|?
+ ((h" -2 £ g)y- — £ g')igrad u)’

+tl @ -fg) -2 1fg
8

where vi= L[ 2u; (b - f g ]
g
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Since we want to apply the maximum principle, we shall
restrict our choice to functions g(u) and h(u) such that the right
side in (3.10) becomes nomnegative. This will lead to the following

result,

LEMMA 3.1

Let u ¢ C3(Q) satisfy (3.1) in a plane domain O ¢ R2, If
g(u) and h(u) are chosen such that the coefficients of |grad u|®
and |grad ui? and the constant term in (3.10) are nonnegative, then

the corresponding function
P(x) = g(u) tgrad ui? + h(u)
attains its maximum either on 90 or at a critical point of u.

PROOF':

Suppose that P attains its maximum at an interior point

Q of Q, where grad u(Q) # 0. Let
Q" = {x e Q: grad u(x) # 0}

an open subset of @ and Q 1is an interior point of Q7.

Then, by the above calculation, P satisfies

AP+ 1 vi P; =20 on Q7.
tgrad uj?

By the maximum principle, either P = constant on {7

or P attains its maximum on the boundary of 7. The second
possibility cannot occur since P attains its maximum at Q.
Therefore, P is constant on ° and therefore also on §°, so P

attains its maximum at a point where grad u = 0. This completes the

proof of Lemma 3.1 .O
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In the applications, important choices of h are h" = f g

and h” =2 f g . We shall study here the more general case
h™ =c¢ f g, for ¢ ¢ R.
Hence h" =c [f'g + £ g”], and by substituting into (3.9) we get

-2

AP > Igrad u gt - g2 ?)
g

+ |grad ui’(e £° g+cfg -2f g-3°f¢g")

+ up Pp 2 £ - 2cf
tgrad u]? Igrad u)?

+ (e = 2)(c-1) gf%2 . ool (3.11)

Inequality (3.1l) may be written in the form :

AP+[2(C—-1) f] up Pk > igrad U|4 (gn _g:_z)

Igrad ui? &

+ 1grad u’ [(c = 2) f" g+ (e - 3) £ g]
+[(e - L(c-2)]g £2 . ..ol (3.12)
As the constant term in (3.12) must be nonnegative, we must

have either

c<1 or ¢ > 2.
We consider the special cases ¢ =1, ¢ =14%, ¢c¢=2, ¢=3.
CASE ¢ =1 :

If ¢=1; h  =fg then from (3.12) we get

AP > igrad ui® (g" - g-%)
g

+ 1grad ut? (- £° g-2fg ).
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Therefore with the assumptions :
(1) (log )" 20, g=>0,
(ii) £ g+ 2 fg =0

(or in other words (log £)” + 2 (log g)~ <0 ),

AP >0

hence Lemma 3.1 is applicable to the function

u

we get

|

? P(x) = g(u) 1grad u|2 + I f(s) g(s) ds in Q.
0

CASE ¢ < 1:
As an example of the case ¢ < 1, we take ¢ = 4 . From

(3.12) we get :

AP - £ up Pr > 1grad up? (g" - giz)
tgrad uyl? g

+ |grad ulz[%(— 3f'g-5£fg)]

+2?3g £z,
Therefore, with the assumptions
(i) as above
(ii) 3f " g+5fg <0,
we get
AP - £ ur P =2 0 .

lgrad u|?

So Lemma 3.1 applies to the function

u
P(x) = g(u) 1grad ut? + % J £(s) g(s) ds.
0




CASE ¢ .= 2 :

If ¢=2; h" =2 f g then from (3.12) we get

AP+ 2_f up Pp > 1grad w? (g" - g2%)
jgrad ul? g

+ |grad ui?(- £ g")
Therefore with the assumptions

(i) as before

AP+ 2 £ ur P =20
Igrad u)?

and Lemma 3,1 applies to the function

u
P(x) = g(u) |1grad u|2 + 2 J f(s) g(s) ds in Q.
0

An interesting consequence of this case (when ¢ = 2)

holds if we take g =1 ; h” = 2 f, then we get the inequality

AP+ 2 f ue P 20
tgrad u)?

directly without putting conditions on £(u). Clearly we get the
function P(x) in the form

P = j1grad ul® + 2 F(u)
which we have conjectured on the basis of Section 1.

CASE ¢ > 2 :
As an example of the case ¢ > 2, we take ¢ = 3 ;

h” = 3 £ g. From (3.12) we pet




.2

AP+ 4 £ up Pp > 1grad ur? (g" - g- ).
igrad u|? g

+ |grad ul 2(£” g + 2 g fz,

With the assumptions :

(i) as before
(ii) £ >0 (i.e. f(x) monotonically increasing)
we get
AP + 4 £ up Pp = 0.

lgrad u|?

Therefore, Lemma 3.1 applies to the function

P(x) = g(u) lgrad ul® + 3 [u f(s) g(s) ds .
u}

EXAMPLE 3.1

ou

For the case ¢ =1 , one can take g(u) = e , o> 0.

Then Lemma 3,1 applies to the function

u
P(x) = l1grad uj]? e ¢ 4 I f(s) e ¥ ds
0

provided f” < 2 o f (so that f£(u) < £(0) e®™ ). Note that

the equality sign in assumption (i) 1is admissible since

(log e ) =0 .0

EXAMPLE 3.2 : (Sperb [21])

The following example is given in the case c¢ = 2.

Take g(u) = e Ot , oa>0,

and

u
h(u) = 2 I e ™ f(s) ds; h" =2fg
0
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so that

u
P(x) = e % jgrad ui’ + 2 J e % f(s) ds .
0

Assumptions (i), (ii) in the case ¢ = 2 above are satisfied

and again the equality sign in assumption (i), for c¢ = 2,
admitted.O
EXAMPLE 3.3
ou
For the case ¢ = 3 , one can take g(u) = e , @ > 0,

Then Lemma 3.1 applies to the function

u
P(x) = 1grad u12 e + 3 J £(s) e*° ds
0

provided f° > 0 . Note again that for ¢ = 3, the equality sign

in assumption (1) holds since

(log M =0 .0

THE N — DIMENSTONAL CASE

The main problem which one encounters is the elimination
of the term ujj ujj in equation (3.3) as we have seen in the
Two — dimensional case above. Since the identity (3.4) is only

valid in two dimensions, we use Schwarz's inequality.

Now, from (3.2) we have
(Pj - g 1grad UIZUj ~ h~ uj) (Pj - g 1grad "k uj = h” uj)

-4 g ujj uj Ugj up <4 g’ ujj ujj lgrad uy®

is




AP > 1grad ut® (g" - 2 g2? ) + igrad ui*(h" - £fg" - 2 £'g
g
- 2h7 g’) -h” £+ 2g u; P +[ . S
g g 2gigrad u|?

x (P; — g'lgrad ul2 u;j — h” u;) (P; - g'igrad ul2 u; - h” ui)].

The last term on the right side of (3.15) can be estimated as

follows
1 Pj (- g° uj lIgrad ul2 - k- uj y+ 1  P; Pj
glgrad u|? 2gigrad uj?
+ 1 (g” uj lgrad ul®+ h” u; Y(g~ u; lgrad u12 + h7ujy)
2g1grad u)?
> 1 Pi(- g uj l1grad ut? - n° u;) + glz lgrad ur?
glgrad u)? 2g

-~

+ Q:z + g~ h” |grad ul? .
28 g

~ AP > jgrad w? (g -

N J
i
~

+ 1grad u|> (4" - f g~ -2 f'g - h” g~ )

g
+ h:z + g; ujg Pi - h” £ ~ h” u; Pi )
2g g glgrad ul?
....... (3.16)
So (3.15) can be written in the form
AP+ __ 1 y;P; 2 igradul’(g" -3 g%
lgrad u|? 2 g
+ 1grad ul’[(h” - 2 £g)” + g~ (fg - h")]
g
+h” (" -2 fg) il (3.17)

2g
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where ¢; =1 (A" u; ~ g° u; \grad ur? ).
g

The analogue of Lemma 3.1 in the n - dimensional case is:

LEMMA 3.2
Let u e C3({l) be a solution of (3.1), Q ¢ R, n > 2.
If g(u), h(u) are chosen such tﬁat the coefficients of |grad ui?
and 1grad ui? and the constant term in (3.17) are nonnegative, then

the corresponding function
P = g(u) tgrad ui? + h(u)

must assume its maximum value either on 80 or at a critical

point of u.

PROCF :

The proof is the same as for Lemma 3.1 .0

NOTE : This calculation allows somewhat different results from

those of Lemma 3.1 when n = 2,

At this stage we consider h”(u) in the form
h =c fg; ¢ ¢ R (real number).

Therefore, from (3.17) we get :

AP+ 1 ¥i P; > 1grad ur? (g" - 3 giz )
Igrad u|? 2 g

+ 1grad ul’ [(c - 2)f"g - g~ ]

where y; =1l [c g fu; - g u; I1grad ui?] .
g




Recalling-Lemma 3.2 , we shall discuss the required
hypotheses for different values of ¢, for which Lemma 3.2 is

‘applicable to the function

P(x) = g(u) 1grad ul® + h(u) ; h” =c f g.

REMARK 3.1
(@) From (3.18) it is clear that the admissible choices of
¢ are

c > 2 or ¢ < 0,

(1D) Since the coefficient of |grad ur? , (g" - 3 glz), does
2 g

not depend on ¢, then the variety of the hypotheses will rest in the

coefficient of |grad ut? and in the constant term only.

CASE _e¢ = 2 :

For ¢=2; h"=2fg , we get , from (3.18),

AP + 1 vi P; = 1grad ul? (g" - giz)
4

lgrad u|?

N Jwo

- (grad w’ fgo,

where Y3 =1[ 2 f gu; - g" uj I1grad u|?].
. e ¢

Therefore, with the assumptions
(i) (g"-3g% 20, g>0,
2 g
(ii) fg <0

we get

AP+ 1 ¥v;i P; 20
lgrad u|?
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Then Lemma 3.2 applies to the function

u
P(x) = g(u) 1grad ul’ + 2 I £(s) g(s) ds in Q.
2]
REMARK 3.2

For n = 2 , the previous result is less restrictive .

CASE ¢ > 2 :
As an example, we take ¢ =3, h” =3 f g . From (3.18),

we get

AP+ 1 ¥i P; > 1grad ui® (g" - 3 g%
jgrad ui? 2 g

+ |grad ul? (£ g.— fg') +3g £z,
2

where y; =1 [3 g f u; — g7 u; 1grad ui?]
g

Therefore with the assumptions
(i) as above
(1) £ g-£fg 20
we get
AP+ 1 Yi P; 20 .

lgrad ul?

Therefore Lemma 3.2 applies to the function
u
P(x) = g(u) Igrad ul® + 3 J £(s) g(s) ds in Q.
0
CASE ¢ =0 :

For e =0 ; h” =0, we get from (3.18)

AP+ _ 1 y; P;xigradur” (g" -3 &%)
Igrad u)? 2g

+ 1grad u|® (- 2 f'g - £ g°)
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where y; = 1 (~ g~ u; 1grad ul?)
g

With the assumptions

(i as before
(ii) 2 f g+fg <0
we get
AP+ 1 vi P; =20,
tgrad u)?

therefore Lemmma 3.2 applies to the function

P(x) = g(u) igrad ur? in Q.
CASE ¢ < 0 :
As an example we take ¢ = -1. From (3.18), we get
AP+ __1 Yi P; 2 2

lgrad ui® (g" - 3 g2*)
lgrad u|? 2 g

+ 1grad ui® (- 3 £° g~fg )+3g £2,
2

where ¢; = 1[- g f u; - g" uj 1grad ui?].
8

Therefore with the assumptions
(L) as before
(ii) 3f " g+£fg =20 ,
we get

AP+ 1 v; P; =20
lgrad u|?

Therefore, Lemma 3.2 applies to the function

u
P(x) = g(u) lgrad ui? - J f(s) g(s) ds in Q.
1}




REMARK 3.3
The case ¢ = 2 1is useful because no hypotheses are needed

on £, only on g .

The following theorem is based on arguments given by
Payne [9] for the case ¢ =2 only . It gives somewhat different

results to the ones above.

We shall, first, introduce the following calculations.

Consider the function P(x) inQ c R, n > 2, in the form :

u
P(x) = g(u) tgrad u]2 + ¢ [ f(s) g(s) ds
0

(thus h" = c f g ) and ¢ ¢ R. From (2.12) and (2.16) of Section
2 we get :

Pp =2 guj ujp + gllgrad ui?2 up + ¢ £ g ug (3.19)
and .

~AP=2g¢g ujj ujj + lgrad ur? g"
+ tgrad ui? [-2gf" -fg +cfg+c fg’]
+4g’ uj !.IJ‘ uij—cgfz v s e seees (3.20)

Suppose that P(x) takes its maximum at an interior point Q -
where grad u # 0 . At Q we can orient our axes such that uj(Q) =0,
for j #1 and u,(Q) # 0. Since, by assumption, Pp = 0 at Q, it

follows from (3.19) that :
2gu, +g ul+tegf=0 ... (3.21)

and

Therefore




We will use the inequality

5 n 2
Ujj Ujj =2 Ugk Ukk = Yqq * Z Urk
k=2

n-1
by Schwarz's inequality. L (3.23)
So
2 gujju;j2 2g[ufy, + L (F+u)f]....(3.20)
(n-1)
From (3.21) we have
. 2
uy, =-c¢cf - g _u
2 2 g
and
fHu,=(l-ec)f-g ul. ... (3.25)
2 2g

Inserting from above Into (3.20) we get :

AP22g[cf+gl_ul)y+_1 (-

YE - g7 ul}? ]
2 2 g n-1

2g

N0

+ |grad u1? g" + i1grad u’ [-2 g £ +c f'g- fg" + c £fg7]

-

W (-egf-gul)-crflg.
2 2g

+4 g

= 1grad w1’ [g" + g2t + __g’? -4 =27 ]
28 2g(n - 1) 2¢g

2

+ |grad up? [c fg - 2[1 - g] g f-2gf +cf'g
(n - 1)

—fg +cfg -2cgf|-cfig+cig £+ 2g (1 -¢e)f.
¢ 2 s 1 2
n—




~ AP > \grad ur? [g" - (3n - &) glz ]
2n-1) g
+ |grad I [(c - 2)g £7 - [1 + (2 - cz] g £ ]
(n -1)
+ 2 g £2 [-e(m-1)+ (n-1) gz + (1L - ¢ )2 ]
- n-1 2 i : 4 2
....... (3.26)

We shall restrict our choice to functions g(u) and f(u)
such that the coefficients of 1grad ui4 and 1grad ul? and the
constant term are nonnegative and one of these is strictly positive

to get a contradiction.
We note that the coefficient of |grad ul? does not
depend on ¢ . So we want

g" — (3n - 4) glz >0
2(n - 1) g

Also we want the coefficient of [grad ui?

(c—2)gf’—[1+(2—-c)]g’f > 0.
(n - 1)

THEOREM 3.3

Let u e¢ €9(Q) satisfy (3.1) in Q ¢ R®, n > 2. If g(u)
and f(u) are chosen such that the coefficients of |grad u14 and
Igrad ui? and the constant term in (3.26) are nonnegative and one

of these is strictly positive, then the corresponding function

u
P(x) = g(u) |grad ut? + ¢ l f(s) g(s) ds
Q

attains its maximum value either on the boundary of {} or at a

critical point of u.




If the hypotheses above are satisfied, then by the above
calculation, if P attained its maximum at an interior point Q where

grad u # 0 , we would have
AP>0 at Q
which is impossible. This completes the proof of the Theorem 3.3.0

REMARK 3.4

The constant term is,ifh fact,

2gf[@-De-1+-1"]
(n - 1) 2 2 2

= 2gf [(e-W(n-1].
(n - 1) 2 2

Therefore the constant term is zero when

c =2 and when ¢ = 2/n ,

and positive when

c > 2 and when ¢ < 2/n

(negative in between).
Therefore the admissible values of ¢ are :
c>2 and c<2/n , n>x2,
SPECIAL CASES OF THEOREM 3.3

CASE ¢ = 2 :

For ¢ = 2 ; h" = 2 f g we get from (3.26)

APz igrad u1® (g" - 3n = &) g°%)
2n-1) g

+ 1grad ut? (- f g7).
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Therefore, with the assumptions

(i) [g" - Gn -4 g°?] 20, g>0,
2(n - 1) g

(ii) g £=<0,
and if one of these inequalities is strict, Theorem 3.3 applies

to the function

u
P(x) = g(u) 1grad ur? + 2 I f(s) g(s) ds.
0

CASE ¢ > 2 :

As an example we take ¢ = 3. From (3.26), we get

AP > I1grad ur? [g" - (3n — 4) giz
2(n-1) g

+ 1grad ul’ [g £° - (n=2) g’ f]l+ _gf [3 n-1]
(n - 1) (n - 1)

Therefore, with the assumptions :

(1) as above

(i) gf 2 (n=-2) g £,
Theorem 3.3 applies to the function

u
P(x) = g(u) 1grad ul? + 3 J f(s) g(s) ds.
0

CASE ¢ = 2/n !

For ¢ = 2/n (h” = (2/n) £ g) we have from (3.26)

AP > grad ui® [g" — (3n = 4) g ]
2(n - 1) g

+ Igrad ul2 [2 (L -n) gf - (n+2)g f 1.
n n
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Therefore, with the assumptions :

(i) as before

(ii) 20 -y gt =2 f g,
(n + 2)

and if one of the inequalities in (i) and (ii) is strict ,

Theorem 3.3 1s applies to the function

u
P(x) = g(u) 1grad ui’® + 2 I f(s) g(s) ds .
nJ,

REMARK 3.5 :
Since we must have ¢ < 2/n or ¢ > 2 we remark that the
case ¢ = 1 (h™ = f g) is admissible only for n=2 i.e. for

a plane domain Q < R? .

CASE ¢ < 2/n

As an example we shall take e =1/n (" = (1/n) £ g).

From (3.26) one gets

AP > igrad ui’ [g" - (3n = 4) giz]
2n-1) g

+ 1grad u1’ [(1-2) g £~ - (L +n - (1/n) g £]
n (n - 1)

+_g£2 (1-_1.)
(n-1) 2n

Therefore, with the assumptions :
(i) as before

(ii) @B -A/Mm) -2 gf > g° £,
(1 - (1/n) + n)

Theorem 3.3 applies to the function
u

P(x) = g(u) Igrad ui’ + (1/n) J £(s) g(s) ds .
0




NOTE : We note again that for ¢ = 2 , no hypotheses are needed
on £.
EXAMPLE 3.4

IfQcRP , n> 2, we consider the function

P(x) = g(u) I1grad u|2 + h(u)
where h” =2 fg and g(u) = (u+ B8) S , B> 0.

To apply Lemma 3.2 we need :

1) " - 3&£H =w+p ¥ (@ ra-3a")20
2 g 2
i.e. a2 -2 =<0,
and
(i) g =-au+p) <0,
that is 0O<a=<2,.

To apply Theorem 3.3 to P(x) as above, we want (the

coefficient of jgrad ul?),

(1) (@ +a-3n-4a’) (u+p ¥ >0
2n —- 2

Hence ,
a (d—-—2n-2 ) <=0

n-— 2

Also we want (the coefficient of |grad ui?),

(11) =~ @@+ ¥ 20
with one of (i) and (ii) strict .

Therefore, we need

O<@<2n ~2 =2+ _2 )

n-2 n- 2
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so Theorem 3.3 can be better .

However, for g(u) =1, if ¢ = 2, Lemma 3.2 can be

applied but Theorem 3.3 cannot.O
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SECTION 4
THE MAXIMUM OF P ON_gQ

We study the second possibility of the maximum of the
function P in which P assumes its maximum value on the boundary
of 1. For these, the calculations as given by Sperb are

appropriate.
THE TWO — DIMENSTIONAL CASE
We start with the plane domain case.

THEOREM 4.1

Let u be a solution of the elliptic equation
Au+ f(u) =0 (4.1)
in a plane domain Q, with u Su Uy, where uy and uy are
lower and upper bounds respectively. Suppose that for u < s < uy
the following conditions are satisfied :

(1) (log g(s))" 20, g(s) >0,
(ii) (c-2) f g+ (c-3)Yfg = 0, ecx1.
Then the function
2 u
P = g(u)grad ui +CJ g(s) f(s) ds
0

assumes its maximum on OQ.

PROOF :

First suppose that ¢ <1 ., By Lemma 3.1 , Section 3, P
assumes its maximum either on 3! or at a critical point of u

At an interior point of u , from (3.3) of Section 3, we get :

AP=2¢g ujjujj-cg £2
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Using Lemma 2.1, Section 2, we find that
AP>(L-¢)ygf?2 >0, since ¢ < 1.

Therefore P cannot take its maximum at an interior

critical point of u when ¢ < 1 .

For ¢ = 1 , from (3.9) of Section 3 we have ;

AP > |grad u? (g" - glz)
g

+ 1grad u®> (-2 fg -f g . ... (4.2)

Note that inequality (3.9) 1is derived assuming that
grad u # 0 . So at a point Q where grad u # 0 , there is a
neighbourhood of Q on which grad u # 0 , and the above

calculation gives
AP>0C at Q.
Also, if grad u = 0 at a point Q°, then as above

AP

v
o

at Q”

Therefore

AP>0 in Q,
and hence P attains its maximum on 00 and

P > 0 there ,
Jr :

unless P = constant in Q .0O

REMARK 4.1

Sperb [21] only considers the case ¢ = 1 ; moreover we

believe that his proof is incomplete .




COROLIARY 4.2
For ¢ <1, if u is a positive solution of (4.1) with

u=0 on o) and P attains its maximum at a point Q omn 9Q ,

dP >0 at Q
dr

unless P = constant mnear Q .

From (3.12) of Section 3,
AP+¢kPIC>O

at a point in 0 where grad u # 0 , where yp = 2(c - 1) £ ug .

lgrad uj?

From Remark 2.5 of Chapter (III), u has no eritical point in any
maximal cap . Therefore grad u 1s bounded away from zero in
a neighbourhood of Q and the maximum principle in Theorem 2.4

of Chapter (II) applies .0

REMARK 4.2
If )} is convex , Corollary 3.2 of Chapter (III) gives

grad u # 0 on a neighbourhood of 80 .

EXAMPLES 4.1 : (Sperb [21])

(a) Take g(u) = (F(u)) 2 if £(s) >0
and
(log f(s))" < 0 for u S8 <uy,
Then
P = (£(u))? [ \grad u)? + 2 £ (u)]
(b) Choose g(u) = P , & > 0, then the equality sign

in assumption (i) is admitted , and (1i) is satisfied provided




(log £f(s))” 2 2 w for u = 8§ Uy

Then

u
P=c o u | grad u|2 + J e s f(s) ds
0

assumes its maximum on dQ.

THE N - DIMENSTONATL CASE

Now we give a theorem which applies to Q ¢ R®, with
n > 2 . Note that for m = 2 the hypothesis (i) is changed from
that of Theorem 4.1 .
THEOREM 4.3
Let u be a sufficiently smooth solution of (4.1) with

n S U S Uy Suppose that for u =8 < uy the following

assumptions are satisfied

(1) g>0, (L/gy" <=0,
(ii) (c —2) f  g>fg°
(c + 1)

Then the function

u
P = g(u) |1grad ul? + ¢ l f(s) g(s) ds , ¢ £ 2/n
0

assumes its maximum on Jf.

PROOFE :

We have taken h so that h™ = ¢ £ g. By substituting

into (3.2) and (3.3) of Section 3, we get

Pr = gligrad ui? up + 2 g ujp u; +c¢c £ g ug
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A P = |grad uy)? [g" -2 giz ]

+ |grad up? (¢ frg+tefg —-fg —-2f g-2f g’]

+ 2 gujpujp—-cf2g +2g up Pp.
g

Exploiting Lemma 2.1 of Section 2 for the n -
dimensional case we get

2 gujpuse 2 28 Bw'= 2gf°
n n

Thus

AP -2 g° up Pr > 1grad ul” [g“ -2 glz ]

g g

+ lgrad u|2[(c -2 f " g—-(c+1) £ g ]

+@2-cygf2z. L (4.4)
n

Now, assumptions (i) and (ii) state that the
coefficients of I1grad ul? and lgrad ui® in (4.4) are nonnegative,
for ¢ < 2/n , noting that :

g" -2 (g2 =- (L) @)
g g 8

Hence P satisfies

AP -2 (log g)" up Ppp =20 in Q,

and the result follows.O

REMARK 4.3

Sperb[21] only considers the case ¢ = 2/n .




For ¢ < 2/n a different argument &ields the following

result which appears to be new .

THEQREM Q.h
Let u be a sufficiently smooth solution of (4.1) with

u <u=x<u . If for u susu the following assumptions

m = M M

are satisfied

(L) g" - [iﬂ_:_é] g? >0
2n - 2) g

(ii) (e - 2) g £ + [c -2 - 1] g £f>20, ¢c<2/n
n -1

then the function

P(x) = g(u) 1grad ui? + ¢ Ju f(s) g(s) ds
0

attains its maximum on oQ .

PROOF

By Theorem 3.3 of Section 3, either the maximum of P

. occurs on the boundary or at a critical point of u .

At an interior critical point of u , from (3.3) of

Section 3,

AP=2g ujj ujj — ¢ g £2 |
Using Lemma 2.1 , Section 2 , we find that

AP>(((2/n) —¢c) f2 g >0, since ¢ < 2/n ,
impossiblé . O

REMARR 4 .4

A similar result to Corollary 4.2 holds
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Also for ¢ < 0 another variant is possible .

THEOREM 4.5
Let u be a sufficiently smooth solution of (4.1) . If,

for u 2 U< Uy the following assumptions are satisfied

v

(1) g" -3g % >0,

(ii) (e-2)f g-£fg =20, <0,

then the function
u
P(x) = g(u) 1grad w12 + ¢ [ £(s) g(s) ds
0

takes its maximum on 3Q .

PROOF :
By Lemma 3.2 , Section 3, either the maximum of P occurs

on 3 or at a critical point of u .

At an interior critical point of u , from (3.3) of

Section 3 ,

AP=2guijuij~cf23.
Using Lemma 2.1 of Section 2, we find that

AP > ((2/n) —¢c) £f2 g >0, since c < 0 ,

impossible .0

REMARK 4.5

A similar result to Corollary 4.2, again, holds .

EXAMPLE 4.2 : (Sperb [211])
Take g(u) = 1/(a u+ @), >0 ,8 > 0. Then (1/g)" = 0.
Assumption (ii) of Theorem 4.3 for ¢ = 2/n requires that for

u <u=x<u we have :
m M
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n+2
cu+B>0 and f(u) <C (xu+ T ? |, where
C = £(ugy)
nt2
(qug + ﬁ)zn—z
REMARK 4.6 :

In Sperb [21] , the inequality for f(u) in the example

above seems to be incorrect.

SPECIAL CASE OF THEOREM 4.3

With somewhat more restrictive assumptions on f(u) it

is possible to obtain upper bounds for |grad ur? as we shall see

later. Choosing g(u) = 1, the following demonstrates our aim.

COROLIARY 4.6
let u e C3(Q) satisfy equation (4.1). If f"(u) =< O

in @, then the function

2 u
P(x) = lgrad ui” + c I f(s) ds
0

where ¢ < 2/n , attains its maximum on (.




SECTION 5

THE MAXIMUM OF P AT A POINT WHERE grad u = 0

We study the maximum of P at a critical point of u under
some conditions on o). Recall that we choose our functions g(u)
and h(u) such that the corresponding function P(x) assumes its

maximum either on 8@ or at a point where grad u = 0.

To achieve our goal, mentloned above, we must select the

functions g(u) and h(u) with appropriate conditions such that the

normal derivative JP/dr , where » is an outward normal to oQ,
is nonpositive at a point on 30 which contradicts the strong
maximum principle,. In such a case P must take its maximum at

a point where grad u = 0.

We shall be concerned with positive solutions of the

elliptic equation

Au+ f(u) =0, in Q (5.1
where £ ¢ C' 1is positive in 2. Also we shall confine ourself
to convex domains for which the mean curvature K 1is nonnegative
at eacﬁ point of oQ2. We shall denote by K, the nonnegative lower
bound of K ; often we shall assume K, > 0. In addition to the
convexity of 00 we require 00 to be C2. we shall use the symbol

7 defined as

T = max igrad up . (5.2)
o

Now we shall seek conditions so that the maximum of the

function P defined by
P(x) = g(u) tgrad uj’ + h(u)

cannot occur on of).
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To accomplish this, we assume that u satisfies
Au+ f(u) =0 in 0
u=0 on &

which is known as Dirichlet Problem (D P).

LEMMA 5.1

Let u(x) be a sufficiently smooth solution of (5.1)
vanishing on the boundary of . The normal derivative of the
function

P(x) = g(u) 1grad ui? + h(u)

can be represented at a point Q e o) by the identity

8P = - 1grad ul (g7(0) 1grad ui® - 2 £(0) g(0)
A

+ 2 K(n - 1) g(0) 1grad ul + h”(0) ] ........ (5.3)

where » is an outward normal to of] .

PROOFE :

The boundary o0 can be represented locally by the

identity h

Xp = ¥(xX,, X,, ..., Xny) ., Y e C?

where grad ¢y = 0 at Q e on,

FIGURE [5.1]
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By a rotation of coordinates, we assume that the x, -

coordinate axis lies in the direction of the inner normal at Q.

The outward normal »(x) is given by

r(x) = (@, -1
aXi ) [ (5.4)

(1 + 1grad ¢|2)ﬁ

The condition u = 0 on 30 can be expressed as a twice

differentiable identity

U(X,, Xop vov » Xpoy, ¥) =0 on ol. ..... (5.5)
So

uj; +uy Y; =0 onofl, i=1,...,n-1.
Then

uij + unj ¢i + Uup wij = ( on o ’ j = l,..., n.

At Q

uji = —up ¥ij since grad y =0 at Q
and

Au=uy, —uy ¥j; . veen...(5.8)

Note that grad u points into , so

lgrad ul = Ju_ (at Q) and 1grad ul = - gu .
ox,, d»

Therefore, from (5.6) we have

Au=u,, + du (n- LK

O

where K 1is the mean curvature ; see Section 2. So

Upp =—- £ - gg (n-1) K (at Q)  ..... (5.7)
»
Now

OP =g" uj 1grad ui2 + 2 g ujj uj + b7 uy
ox;
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So

QP = P; v; =g igrad ul? Qu + h” Ju + 2 g ujj uj vj
dr or or

= g7 1grad ul?2 du + h™ 8u + 2 g uy,, du (at Q)
o dv ov

since at Q , uj = 0 for j#n and r; =0 for i # n.

From (5.7) we get (at Q)

9P = g” 1grad ul? u + h” du + 2 g [~ f - 3u (n - 1)K] 8u
Ov Ay v v o

= — 1grad ui [g"(0) 1grad ui? - 2 g(0) £(0)
+ 2 g(0) (mn - 1)K (grad u| + h’(O)] P
since u =0 on ofl. O

REMARR 5.1

This direct proof is not the one given by Sperb [21] who

uses some tensor analysis .

Our work is based on Sperb [21], Payne, Sperb and
Stakgold [12], Stakgold and Payne [22], Schaefer and Sperb [16],
Sperb [20] and Payne [8]. We discuss the Two -

dimensional and the N - dimensional cases separately.
THE TWO — DIMENSTONAL CASE

In (D P), if by appropriate choice of the functions f(u)
and g(u) on & , the term between braces in the right side of

(5.3) becomes nonnegative, for n = 2, we get

JdP < O at Q ¢ oQ.
or

We know by the maximum principle that if P has a maximum

at Q on 0, then 8P/dr > 0 at Q unless P is a constant in {J.




Consequéntly‘we arrive at the following result
THEOREM 5.2
Let u € C3(Q) be a solution of (5.1) in a convex plane

domain @ with u =0 on o2 and u fusu Suppose that for

M

this range of u, we have

(i) (log g(u))" >0, ¢ 22 and (¢ — 2)f"g + (¢ - 3)fg” > 0,
g(u) > 0,
(ii) g7 (0) r + 2K, g(0) >0, R >K, >0.

Then the function
2 u
P(x) = g(u) igrad ui’ + e j f(s) g(s) ds ...(5.8)
0
assumes its maximum where grad u = 0.

PROOF

From inequality (3.12) of Section 3 we have,for

h =cf g

AP+ 2(c = 1) £ up P 2= 1grad up® [g" - g’ ]
lgrad u| g

+ 1grad ul’[(c - 2) £'g + (e - 3) £fg7)]
+ (e - 1)(e - 2) g £2 . e (5.9)

We know that P attains its maximum either at a point
where grad u = 0 or at an interior point where grad u # 0 or

somewhere on d{) where grad u # 0.
Let ” be the subdomain of {} defined by :
Q" ={x e Q: grad u # 0} .

Iif P attains its maximum at Q in {1° then by the maximum

principle, P = constant in Q° . Therefore P is constant on Q-
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and also attains its maximum at a point on the boundary of Q-

where grad u = 0 .

Suppose P attains its maximum at Q, e O° where
grad u(Q,) # 0 . Then Q, e &0 and by the maximum principle
either P = constant or OP/3r (Q,) > 0 , where » is the

outward normal at Q,

Q4

FIGURE [5.2]

If P = constant on {}” , as before P attains its
maximum where grad u = 0. Suppose that P # constant on {7

Now, for h" = ¢ £ g and n = 2 -equation (5.3) can be written in

the form :
OP = - \grad ul [2 g(0)igrad ui K + g”(0)1grad ui?
or
+ (¢ - 2) £(0) g(O)] .
We note that if P takes its maximum on a? it must be
where

lgrad ul = r := max \|grad ul.

o
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Therefore, at Q, we get

<~ 12[2g(0) Ky + g (0) 7 ],

g

since (¢ - 2) £(0) g(0) > 0 . By assumption (ii) then

= 0 at Q, e oQ,

et

a contradiction. Hence P attains its maximum at a critical

point where grad u = 0.0

REMARK 5.2
Sperb [21] only gives the case ¢ = 2 when the

conditions are independent of £ .

REMARK 5.3
If ¢ < 1 , the function P(x) as defined in (5.8) is
unlikely to assume its maximum where grad u = 0 , but to take

its maximum on the boundary of Q ; ¢.f. Theorem 4.2 ,

EXAMPLE 5.1
Let u(x) be a sufficiently smooth solution of Poisson
equation
Au+1l=0 inQ
and

u=20 on of)

with {} as above .

We find that the function P(x) , with g(u) = 1 , defined
as

P(x) = 1grad ut2 + cu , ¢ =<1

takes its maximum on o2 , by Theorem 4.2
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I

In Payne [10], the author states that for ¢ < 1 , there

is no region ' on which P(x) = constant .

REMARKS 5.4

(I) For a convex {1 , Sperb [20] shows that for a class of
functions f(u) the convexity of O implies that the solution
of (5.1) with zero - boundary condition has only one critical
point in Q. If f(u) 2 0 and u > 0 then u has exactly one

maximum in Q.

(1IT1) let g(u) =1, h” =2 f. The function

2 u
P = |grad uj” + 2 I f(s) ds,
0

where u =0 on o) and u satisfies (5.1), takes its maximum at
a point where grad u =0 if Q is convex. This was first found
by Stakgold and Payne [22], and it marked the beginning of
a series of papers that were concerned with wvarious
generalizations and applications of maximum principles for such
a function associated with the solution of some boundary value

problems,

EXAMPLE 5.2

Let  be a simply connected cross section of a
cylindrical bar that is twisted by terminal couples. If the angle
of twist per unit length is sufficiently small, one is led to the
Saint Venant torsion problem. It can be formulated mathematically
as follows :

We seek a solution u(x) of

Au=-2 in ¢ R2

u=0 on 9oQ.




The components of the resulting stress are then given by :

T, = u 0 Ju and 7, =- p 6 Ju
oy ox

where p is the shear modulus and 6 1s the angle of twist per
unit length. The function u(x) is called the stress function.

The magnitude 7 of the shearing stress is given by :
T =p 6 (grad u| ,

where the torsional regidity of Q defined as
S = jgrad u|? ds ,
lo

that is the Dirichlet integral of u . For more details omne is

referred to Payne [8] , Weinberger [24] and Sokolnikoff [19].

In the Saint Venant torsion problem the assumptions (i)

and (ii) of Theorem 5.2 are satisfied with
glu) =1, h(u) =4 u .

We shall come back to the torsion problem in Chapter (VI), where

we seek bounds for the magimum stress T

REMARK 5.5

There is some thing interesting about Payne [8], that
is the author makes wuse of the maximum principle for elliptic
equations to compute upper and lower bounds for the maximum stress
T in the Saint Venant torsion problem in terms of geometric
properties of the cross section of the beam. That is the cross

section {2 is assumed to be a bounded two - dimensional simply

connected region.
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These bounds are claimed to be better than those obtained
by making use of "sub" and "super" solutioms, which are often too

crude to be of practical value.

EXAMPLE 5.3

The assumptions (i) and (ii) of Theorem 5.2 are satisfied

with
glu) = 1 . h(u) = 2 Ju £(s) ds,
(u + )2 o (5 + a)?

in the nonlinear Dirichlet Problem (Payne, Sperb and Stakgold

[12]), where a 2 7/ K, .
We may also take (Schaefer and Sperb [16])
gw) =e P hry =2 PY s,
where § = 2K,/
THE N — DIMENSTONAL CASE

Let us now consider a domain in n - dimensions with
n >7 . The following is an extension to the result in the Two -

dimensional case to the n — dimensional case.

From Lemma 5.1, we recall that at Q e o0 :

8P = - igrad ui [2 g(0) (n - 1) K 1grad u1’ = 2 g(0) £(0)
o

+ 1grad wi® g7 (0) + 7(0) ] ...l (5.12)
since u = 0 at Q ¢ of.
As in the two—dimensional case we shall take P(x) to be

2 u
P(x) = g(u) 1grad 1% + ¢ j £(s) g(s) ds
0




Therefore, equation (5.12) can be written in the form :

OP = ~ 1grad ul [ 2 g(0)igrad ut (n - 1) K + 1grad ui? g”(0)

or
+ (e =2) £(0) g(OO)]. ... (5.13)
THEOREM 5.3
Let u e C3()) be a solution of (5.1) in a convex domain
1 with zero boundary condition and let u S u U . Suppose

that, for this range of u, we have
(1) g >0, [fw] <0, c22and (¢ - DEE-gE20,

(i) 2 g(0) (m -~ 1) Ky + 7 g7(0) 20, K=K, > 0.

Then the function

2 u
P(x) = g(u) tgrad ui” + ¢ I f(s) g(s) ds
0

assumes its maximum where grad u = O,

PROOF :

We proceed as in Theorem 5.2 . For h™ =c¢ f g ,

inequality (3.17) of Section 3 can be written in the form

AP+ 1 z,bi}?iztgradul4 [g"—_l’_'giz]
lgrad ul? 2 g

+ 1grad ui? [(c - 2)f g~ - £ g7)]

+lec(-2)gf2, ..., (5.14)
2

where y; =1 (¢ £ gu; — g" u; lgrad ui?)

|

g

g

N |

.2

"
Since [g“% ] = g - g ], the coefficients
g

N =
Mo Jwo
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of 1grad ul? and |grad ul? in the right side of (5.14) are
nonnegative by assumption (i). We know that P takes its maximum
either at a point where grad u = 0 or at an interior point where

grad u # 0 or somewhere on the boundary where grad u # 0.

If (i) is satisfied, then by the maximum principle P can
not attain its maximum at an interior point where grad u # 0.
Suppose that P attains its maximum at Q ¢ 802 where grad u = 0,

and let ° be a subdomain of ) defined by :
Q" = {x ¢ O : grad u(x) # 0}.

So there exists Q, ¢ oQ” such that grad u(Q,) = 0. OnQ” P

satisfies (5.14), so by the maximum principle either

P = constant or OJP/3r (Q ) >0 .

FIGURE [5.3]
If P = constant on Q° , then P(Q) = P(Q,) and
therefore P attains its maximum where grad u = 0. Suppose that

P # constant on 7. From (5.13) we get at Q




< - igradui? [ 2 g(0) (n-1) Ky + 7 g(0],

<vFv"
- |

veees (5.15)

since (¢ — 2) F(0) g(0) > 0 (for ¢ = 2). By assumption (ii)

then we have

9P <0 at Q e 2Q,
d»
contradiction with the strong maximum principle. We deduce that

P(x)assumes its maximum value at a critical point of u where u

is a maximum,O

REMARKS 5.0
(I Again Sperb [21] only gives the case ¢ = 2 when the

hypotheses do not depend on £
(II) The function

2 u
P(x) = 1grad ui’ + 2 j £(s) ds
0

where g(u) =1 , h” =2 f , satisfies the assumptions of

Theorem 5.3 . This proves the fact noted in (II) of Remarks 5.4~

COROLLARY 5.4  (Payne, Sperb and Stakgold [12])
Let u(x) be a positive solution of (5.1) vanishing on

o). For 0O <w=<2 and B > o7 , where K, > 0 1is the
2(n - 1) K,

lower bound of the mean curvature K of dQ, the function

u
P(x) = tgrad u|2 + 2 f(s) ds ..... (5.16)

(u + g™ o (s + B

assumes its maximum value where grad u = 0.
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For 0 <a=<2, g(u) = (u+ BSN satisfies (i) of

Theorem 5.3 and (ii) is satisfied by the choice of £ .0

REMARK 5.7
If o =0, in (5.16) then we are left with the function

2 u
P(x) = (grad ul” + 2 I f(s) ds
0

which satisfies the required result.

P(x) as defined in (5.16) is claimed to be more powerful
than that used by Stakgold and Payne [22], in particular to get
“bounds to the gradient of u via the maximum principle (see Payne,

Sperb and Stakgold [12]).
NEUMANN BOUNDARY CONDITION

We study the maximum of P where u satisfies (5.1)
and

du =0 on aQ,
o

which is known as Neumann boundary condition.

LEMMA 5.5
Let u(x) be a sufficiently smooth solution of (5.1),

and let P(x) be defined as
P(x) = g(u) i1grad ui? + h(u)

The normal derivative of P, OP/dr , can be represented at a

point Q ¢ 2 by the identity

n—
@=-—2g§:1 kj ui (5.17)

o i=r
provided that Jdu/dv = 0 at Q ¢ 0, » is the outward normal at Q

and kj; are the principal curvatures of dQ at Q.
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It is possible to represent the boundary o locally by

Xp = Y(Xyy.00y Xp—y) , Y € c?
where grad y = 0 at Q ¢ dQ. We choose the x, — coordinate
axis to be inner normal and the x,,..., X, axes to be along

the principal directions corresponding to the principal curvatures

koo kpoy
The outward normal at x is given by

l'_(x) =. (Q‘L y 1)
ox; , i =1, 2, ..., n-1,
(1 + 1grad y12)32

and the components are

Vi(X) = a¢/aXi , i=1,..., n-1,
(1 + 1grad y12)2

and
vp(x) = -1 .
(1 + 1grad y12)2

Now

Ju = grad u(x) . r(x) = [— du_ + du_ dyY ] .
or ox, Oxj; Oxj;

(1 + 1grad ¢12)§

On o0, where OJu/dr = 0 , we get

up(x”, ¥) = uij(x", ¥) ¥i , (X7 = X,X,, 0000 Xp),
(1 =1,2,...,n-1)
Note that this gives u, = 0 at Q (as it must since u, = - du/0»
clearly)
Differentiating with respect to Xj J=112,...,0-1 , gives

Unj(X’, v) + Unn(xf; ¥) wj = [Uij(X’, ¥) + Uin(X', $)ﬂ wi

+ ui(X', V) wij e e (5.18)




At Q , where grad ¢I— 0, we find
Upj = uj ¥ij
Now

Ql}_nPi l'i=2gUiJUJ vi+|gradu|2g’§_g_+h’ﬁ1_,
P ov o

(i:j =1,2,...,n)

At Q , we get

oO°P =2¢g Upj uj (J=1,2,...,n)
o
=-2guy,u, - 2¢g Upj uj - (j # 1)
=-2guj ¢ij uj since up = 0 at Q .

This last is the quadratic form in (n - 1) variables wuj;

relative to the matrix ¢ij . Since we have chosen coordinates so
that the matrix ¢ij is diagonal , and its eigenvalues are
ky,...,kp., we get

-1
P =-2 g Z ki ui 0
dv =1

REMARK 5.3

Our proof differs from that of Sperb [21] .

The following theorem illustrates a maximum priciple for

the function

P(x) = g(u) 1grad ui? + c Ju f(s) g(s) ds , c¢ ¢ R,
0

where u satisfies (5.1) and the Neumann boundary condition

du =0 on of
ov

with » is the outward normal at Q e oQ.
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THEOREM 5.6 :

Let u(x) be a sufficiently smooth solution of (5.1) in a
convex domain £ € R , n > 2 , with du/or = 0 on J8Q. Suppose
that the hypotheses of Lemma 3.2 , Section 3, are satisfied ,

then the function

P(x) = g(u) 1grad 12 + ¢ Ju f(s) g(s) ds ,
1]

where ¢ > 2 or ¢ < 0, takes its maximum at a critical point

of u .

PROOF :
The proof is obvious (c¢.f. arguments in Lemma 3.2 of

Section 3). Only we need to show that

Q)

P<0O at Q ¢ 90 .

»

Q

Since for a convex domain , the curvatures k; are

nonnegative , then by Lemma 5.5 we get at Q

Therefore , P cannot assume its maximum on 90, and the proof is

complete .01
REMARK 5.9

Results in Theorem 5.6 extend those of Sperb [21] who

took ¢ = 2,

remarK 5.10
Take g(u) =1 ; h" = 2 £ , them we arrive at an

analogue to Remark S.ES, that is : if the function

u
P(x) = 1grad ui? + 2 j f(s) ds
0
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satisfies the hypothesés in Theorem 5.6 , then P takes its

maximum where grad u = 0 .

Using Lemma 5.5 we can also prove the following result

given by Payne [9] for n = 2,3 .,

PROPOSITION 5.7

Let v(x) be any c2(Q) function satisfying oOv/dr = 0
on a strictly convex portion TI' of 0of. Then , if 1grad vi?

attains its maximum on I' , it follows that v = constant .

PROOF

Suppose that u = |grad v12 takes its maximum at a
point Qon I' . Then OJu/dr > 0 by elementary calculus lemma.

Taking g=1 and h =0 in Lemma 5.5 we have

—1
du = - 2 k; VE <0 , if v; # 0, for any i
or L=

Therefore we must have

vi =0 for all i ,

grad v. =0 at Q.
Thus Jgrad v12 =0 on{l and v = constant .O

NOTE : For m =2 , k; 1is to be replaced by the ordinary

curvature of 2Q.
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CHAPTER (VI)
APPLICATIONS

SECTION 1
TORSION _PROBLEM

We consider the classical torsion problem, that is
Au=-2 inQ L. (1.1)

with zero boundary condition

u=20 ona, ... (1.2)
where  1is a convex plane domain.

We are mainly interested in obtaining information about

the maximum stress 7 defined by
T = max |grad ul ... (1.3)
which is known to occur on the boundary.

Here we wish to employ the results in Theorem 4.1,

Section 4 and Theorem 5.2 , Chapter (V)
First we shall make use of Theorem 4.1 which, for
P(x) = jgrad w12 + 2 u , L. (1.4)
states that P takes its maximum on 00 , at Q say. That is,

igrad ul? + 2 u < max |grad ui?2 =712 ..,... (1.%)
o

where u satisfies (1.1) and (1.2)
Then we have, by the maximum principle ,

9P =3 (i1grad ut2 + 2 u) >0 atQ,
dv  Or

where »r denotes the outward normal at Q , unless P = constant.




Exploiting Lemma 5.1 , Chapter (V) , we get :

9 (igrad ui? + 2 u) = — |grad ul[2K jgrad ul - 21> 0

Ov
veees . (1.6)
where X denotes the curvature of o0 . From (1.6) then one has
K igrad ul <1, atQ
that is ,
Kr <1 (at Q) . oo (L.7)

Note that K is the curvature of o) at Q where |grad ul =7
Now , if K > K, > 0 , we get
<L/, . (1.8)

REMARK 1.1 :

If Q is a disk , then the equality sign holds in (1.8),

and P(x) becomes a constant . To show this , we proceed as
follows

On the basis of Chapter (III) , u is radially symmetric
in our disk , so that u is independent of the angle in ) , and

then the polar form for the Laplacian of u is just
Au=u,,. + (1/r) up = - 2
By elementary calculus , one gets

u=R2 ~ r2 )

2
R  denotes the radius of the disk, since u(R) = 0 (by (1.2)).
We have then
grad u = U, = — r

and therefore

T = max |grad uy =R .
o0
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Thus 7T = 1/K, , since for a disk K - 1/R .0O
Starting with (1.5), one can obtain other information
on 7 . We define

e 2
S : [Q igrad u| ds

as the torsiomnal rigidity of O . Then , integrating (1.5) over

Q1 gives

S + 2 j udc< 72 A, ceee i (1.9)
Q
where A denotes the area of 0 .
Using Green's identity , yields
2 u dx = tgrad ui?2 dx = § .
IQ IQ

Thus (1.9) gives

72 >28 . . (1.10)
A

A combination of (1.7) and (1.10) then gives

K(Q) < / A/2s L. (1.11)
where K is the curvature at a point Q where jgrad ul =7 . Also

a combination of (1.8) and (1.10) gives

Finally , evaluating (1.5) at a point where u takes its

maximum uy gives

2> 2w . (1.13)
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We want to find a lower bound for uy . The following

application of the maximum principle achieves this aim .

LEMMA 1.1
Let ) , Qp be two domains with {1 ¢ Qg and let uj
satisfy
A uj + f(uz;) =0 in Q; (i =1, 2),
u; =0 on 00y (i =1, 2),

where f(u) > 0 and £"(u)

1A

0 foru>0 . Then uj <up in 0.

PROOF :

By the maximum principle , u; > 0 in {; (unless
£(0) = 0).
let w=u} —up . Then w <0 on 303 and

Aw = f(up) - £(uy)
= - (¢)w |,

by the mean value theorem , so
Aw+ £ (E)yw=20 in 9 .

If w has a positive maximum in {7 , by Theorem 2.6 ,

Chapter (II), w would be identically comstant . Therefore
w<0 inQy .DO

For the torsion problem , f(u) = 2 so the above applies.

Let D, be the largest disk inside @ and let v be the

solution omn Dy - Then v < u in Dp - If v attains its

maximum at M we have

Viax = v(M) < u(M)

S0 u > v
max — max




By the calculation of Remark 1.1 | v = p2/2
max
Therefore
uy = p2%2/2 . e (1.14)

A combination of (1.13) and (1.14) gives

S« (1.15)
Similarly , if Dp 1is the smallest disk containing {}, we have

uy < R2/2 . L. (1.16)

We now take ¢ = 2 and using Theorem 5.2, Chapter (V),

we see that the function

P(x) = 1grad ui? + 4 u
attains its maximum at a point where grad u = 0 that is ,

lgrad ui? + bu<bduy. ... (1.17)
On 30 this gives

72 < 4 uy . vens. . (1.18)
S0 a combination of (1.18) and (1.13) yields

2ug<7t2<buy , L.l (1.19)
which gives an upper and lower bound for 7

One can also use the above inequality (1.17) to get an

upper bound for uy in the following way :

Let M be the point where u = uy , Q a point on o
nearest to M and r measure the distance from M along the ray

connecting M and Q . Since - du < 1grad ul we have :
dr
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Taking ﬁa = p , where p denotes the radius of the largest

inscribed circle we get
uy < p2 . e (1.20)

This can be a better inequality than uy < R?/2 , for

example , when ()} is an equilateral triangle .

Now , we wish to employ Theorem 5.2 of Chapter (V)

which, in an inequality form, states that

g(u) 1grad ui? + h(u) < h(u) (h" =2 Ffg). .v.n. (1.21)
max

Now, our aim is to choose g(u) and h(u) optimal in the sense

that:

(I) (1.21) 1is as sharp as possible at every point of QUBQ

and for any f(u) > 0 .

(11) (1.21) becomes an equality in the limit as the domain

shrinks to a narrow strip.

Inequality (1.21) , for h~ 2 £ g , can be written as

1A

"M
2 [ f(s) g(s) ds

u
g(u) i1grad ui? + 2 [ f(s) g(s) ds
0

0

where uy 1s the maximum of u . According to Schaefer and Sperb

[16] the optimal choice of P(x) in the sense of (I) and (II) is

u
P(x) = 1grad u)? A I e P s y B = 2R,/
0
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(where in the torsion problem f = 2), where K, > 0 1is the lower

bound to the mean curvature K to 3Q.
REMARK 1.2
P(x) as defined in (1.23) satisfies the assumptions of

Theorem 5.2 of Chapter (V).

Therefore, from (1.22) and (1.23) we get

u
\grad uj2 < 4 MY ] Mo 4o -4 - Plary)
u g8

B =2K,/ry. (1.24)

Thus, on 8 where u =0 and 7 = max (grad ul, we get :

é-l_ [1 _ e(‘"ZKUUM/T) ]
2K,

72

{A

From (1.25) we have :

r o+ 2 o (2K gup/7) <2
Ko Ko
Setting x = 2 K, uy y di.e. T =2RKju 0 ...l (1.26)
T x
we get
2 RKyuqy+2x e X < 2 x
Ky Ko
X - X e >Kyguy . (1.27)
Taking X such that
¥ (L-e ) =K uy

then
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(since the left side in (1.27) is increasing in x).

Therefore , from (1.26) , we arrive at

T =< 2 Ko umM . (1.28)

X

Inequality (1.28) gives upper bounds for the maximum

stress 7 when uy and K, are given explicitly.

Employing a similar technique as described in Payne

[8], we can also obtain an upper bound for 7 . We proceed as
follows

Let M be the point where u = uy , and Q@ a point on
o0l nearest to M . Let p measure the distance between M and Q and

let r ©be the distance between M and a variable point in Q.

Certainly — du < tgrad ul , and therefore from (1.24)
dr

we get |

~ du < 2 __[1- e—ﬁ(uM—u) ]%, B = 2K, /7

dr / 6}

el (1.29)
: Integrating along the ray from @Q to M‘ gives
M Uy
2 J dr > [ [1 - e—ﬁ(uM_u) ]_% du
/B Q 0
Uy '
J [L- oAl ]_% du < P e (1.30)

2.
0 /6
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By change of variables, the left hand side of (1.30)

can be integrated as follows :

—B(up-u)

. .2
Write e = gin“x , so that we have

du = 2 sin x cos x dx = 2 cos x dx .
B sin2x B sin x

Substituting inte (1.30), we have :

| B
' 2 J 1 . cos x dx < 2 p,
g A J 1l - sin2x sin x J B
B B
J 1 dx < p ] B i.e. J csex dx <p /B
sin x
A
B B
. log (ecse x — cot x) < pJB i.e. log [1 - cos x] <p / g8 .
A sin x A
....... (1.31)
We have :
sin?B = 1 , sinB=1, cos B=20
and
sin?A = e_ﬁuM , cos A= (1 - sinzA)%
Then (1.31) becomes
log sin x, <p / B , setting sin?x, = e_ﬁuM .

{1 - (1-sin2x,)?}

This implies , after some steps

o =20/ B

0 Z , B = 2K /7 . ....(1.32)
[T+ (l-sin?x)? ]

sin?x

Now , we let y = (1 - sin3?x )% . Then (1.32) can be written as

0
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1+ y)2
So
l1-y2>4 ie. y<1l-4 = tanh(erE )
1 +y 1 +A
Using (1.25) we get
7T < 2 (1-sin2x,)?2 < 2 tanh?(p/ B )
Ko Ko
i.e.
7 2 2 tanh?(p/(2K,/7))
Ko
Let v = /(7K,/2) . Then v2 < tanh?(pK,/v)
and so
v < tanh(pK,/v) . ... (1.33)

Since, Vv - tanh(pK,/v) 1is an increasing function of v , taking ¥

such that ¥V = tanh(pK,/ ¥) , we finally get

T X vz (1.34)

2
KO

where ¥ is the positive solution of
V artanh V= pK, . ... (1.35)
A series expansion in (1.35) leads to the following :

First we arrange the identity in (1.35) to the form :

-2z/ ¥ y =1 - e—zz/ v ’ z = oK, ,

which can be written as :

e—zz/ v _ 1 -

<l

1 +

<




N =

1-¥
The right side in (1.30) is just :

S ... for -1l <v¥ < 1.

Therefore (1.36) gives for ¥ small ,

Set u = ¥v? , then approximately we have

u+ u? =z i.e. u2 +3u-3z=20.
3 )
Then
u=_-3 ¢ j 9 + 12 =z , 2 = pK,
2
i.e.

2 = J9 + 12 pKy) - 3
2

Substituting into (1.34) one gets :

K,

which is an improvement of the result given by Payne [8].

log (L+% . oo

T < (J 9+ 12 pK, - 3 ...
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SECTION 2
A BOUND FOR THE "EFFICIENCY RATIO"

In the steady — state operation of a bare, homogeneous,
monoenergetic nuclear reactor, the neutron density w(x) satisfies

the boundary value pl'oblem
Aw+gqw=0, xeQ; w=0, xeo...(2.1)

where {} is the domain occupied by the reactor , o0 its boundary,
and n 1is a positive parameter. In the linear problem , where 7y
does not depend on w, 7n = \, , where X\, 1is the first (positive)

eigenvalue of
Au+Nxu=0, xeQ; u=20 on 0. (2.2)

In (2.2), N\, 1is simple and positive with an associated

positive eigenfunction u (see Stakgold and Payne [22]).

The Efficiency of the reactor is given by :

where u is the first eigenfunction in (2.2) and A 1is the area

of 0 ¢ RZ .

We investigate an upper bound for E . To achieve this,

we use Theorem 5.2 , Chapter (V) , with P(x) defined by :
u
P(x) = igrad u|? e"6u + 2 )\, J e_ﬁs . s5ds , ...... (2.4)
o

where @ = 2K /7 (K, 2 0 is the lower bound of the mean

curvature K), 7 = max |grad ul and u > 0 satisfies (2.2).
o0

The function P assumes its maximum where grad u = 0. Therefore
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u uy
|grad u)? ePU Lo A, J e P, 5 ds < 2 N J e P sas .
0 0
Evaluating on o2 , where u = 0 , one gets
u
2 M —Bs
1grad ul? < 2 \, e -« - (2.5)

0

By integrating the right side of (2.5) by parts one gets

2 o2, [1-eePM gyl .. (2.6)
BZ
Now, we let
x= Bug= 2K , T =2K, uy e (2.7)
T x

Then, from (2.6), we get

2 K < 1-(1l+x) e*

which , in passing shows that X\, > 2 Ki ,

and hence

—X

L+x)e < 1=-2K . ... (2.8)
)\1
Since , (1 + x) e_x is a decreasing function of x,
taking ¥ such that (1 + X) e X 1 -2 Kg , then x >X , and
Ay
therefore ,
I < 2K, L (2.9)
um X

where X is the positive solution of
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Using Green's first identity (with ¢ = 1)

J vy Audx + J grad y . grad u dx = J Yy du ds ,
0 Q an o

we get (since A u = - \, u)

- N J u dx = J du ds .
Q aq O

Therefore

N, J u dx = J - 8u ds = J igrad uj ds <17 L
Q a o a0

where I is the arc length of o0 .

Ly
~
~N
i
(=]
~

] u dx < 1
Q

>
-

Substituting into (2.3) one finds :

E < _ =L
Ny uM A

and wusing (2.9) , we arrive at :

E

1A

2 K, L
A

, AX

For @ a disk , the inequality (2.11) gives (Schaefexr
and Sperb [16])

E < 0.565

which is an improvement of a result of Payne and Stakgold [11]
who obtained

E < 2/7 = 0.6366
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SECTION 3
THE FREE MEMBRANE PROBLEM

The following is to give an improved inequality to the
one by Payne and Weinberger [13] which gives an upper bound to
the first nonzero eigenvalue of the "free membrane problem” in

the plane,
Au+pu=0 inQcR, ..., (3.1)

gu=0 ono , ... (3.2)
or .

where » is the outward normal to 80 , u ¢ ¢€? and ) is assumed

to be convex .

Tt is possible to reflect { across a line-segment T’
of the boundary oQ , (see GCourant and Hilbert [1]), obtaining a
new domain © , and continue the function u into £ in the
following way : If y” is the mirror-image of the point y of Q)
under reflection , let T (y”) = u (y) when Bu/dr = 0 on T
Then T is a continuous solution of A u + pu =0 in the combined

domain  + Q° with €2 derivatives

REMARK 3.1

Under the boundary condition du/dr = 0 , the first
eigenvalue of (3.1) is zero and the associated eigenfunction is
constant. The second eigenfunction changes its sign in @ since

- @ J u dx = J du ds = 0 (by Green's identity}.
0 an o

DEFINITION : NODAL POINTS and NODAL TINES

In the case of a string or a rod, the points at which

an eigenfunction u vanishes are of practicd{ interest :
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these points are called the "nodal points" of the associated
eigenvibration u oMt , where w 1is the frequency of the string

or the rod .

In the case of eigenvibrations of a membrane , we
consider "nodal lines" i.e. the curves u = 0 , These nodal
lines are the curves along which the membrane remains at rest

during eigenvibrations.

THEOREM 3.1 (Courant and Hilbert [1], pp. 395)

If several branches of the curve u = 0 intersect in the
interior of a plane domain in which u is regular , then the set
of "nodal lines" which meet at the point of intersection forms an

equiangular system of rays

Now, by the theorem of Courant and Hilbert , it follows
that @ is divided into two subdomains Ot and Q- such that the
second eigenfunction u > 0 in Qt and u < 0 in 0~ . In Payne
[7],.the author shows that u cannot have a closed nodal line in
2. On the other hand , if 0 has two axes of symmetry , the same
is true for the corresponding eigeﬁfunction u . Ih-this case the

nodal line of u must contain one of the axes
Now, we consider the following function :
P(x) = g(u) 1grad u1?2 + h(u) ,

(h™ = ¢ £ g , and for convenience we take ¢ = 2) on a domain ()

with two axes of symmetry .

In the light of the above , we consider the second

eigenfunction u of (3.1) in (Q, which also satisfies (3.2) on ofl.
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Toke g(u) =1l and h”(u) = 2 g u, and therefore, the function

P(x) = 1grad u1? + p u? e .a (303

attains its maximum at a critical point of u (e.f. argument of

Theorem 5.6 of Chapter (V)), where u is a maximum (= uy , say).

Let M be the point where u = uy and let Q be the

centre of symmetry , i.e. , the point of intersection of the two

axes Let r measure the distance from M along the ray

connecting M and Q. Note that the point M must lie on one of the

axes
Now , since (3.3) takes its maximum where grad u = 0 ,
then
igrad ul” + pu’ <pug . .. (3.4)
We proceed as in Section 1 . Certainly -~ du < igrad u) ,
dr
therefore from (3.4) one gets
- dqus Jp Jug-ot . (3.5)
dr
and hence
UM —
du < Jp M@ .. (3.6)

o Y UM — U

The best value for MQ (Sperb [21]) is ﬁa = 1al/2

where 1al is the length of longer axis of {). Therefore, from
(3.6) we get
u
M
da < Jp 1ar . ..., (3.7)




Integrating the left side of (3.7) gives

MR

Hence

pe> w2 (3.8)
iat?

if Q is convex and symmetric (Sperb [21]), which is an improvement
of the inequality given by Payne and Weinberger [13] who showed
by entirely different methods that for a convex plane domain one
has

p>_=?
1b|?

where |b| 1s the diameter of (I, but no symmetry assumption is

needed for the validity of their inequality .
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