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V

SUMMARY

This dissertation is concerned with some of the many applications of 

the MAXIMUM PRINCIPLE .

In the first two chapters , we discuss and prove versions of the 

maximum principle first for Ordinary Differential equations, then for elliptic 

Partial Differential Equations , including some improvements due to Serrin .

In Chapter (III) , we study in detail symmetry properties of positive 

solutions of second order elliptic equations of the type

A u + f ( u )  s= 0

in a domain ft with zero boundary conditions. This follows the important 

article of Gidas, Ni and Nirenberg and shows that the problem cited has radial 

solutions in a spherically symmetric domain, no matter what the function f  is.

We give extensions of these results to certain systems of second order

elliptic equations in Chapter (IV) .

Chapters (V) and (VI) contain applications of different type. In 

Chapter (V ), we study solutions of the equation

A u + f ( u )  = 0

with either Dirichlet or Neumann boundary conditions, and obtain bounds for 

various quantities determined by a solution of A u + f(_u) -  0 .

We show that it is possible to find functions g, f  so that the

function

P = g( u )  igrad u \ 2 + h( u)

satisfies an elliptic inequality and , by an application of the maximum principle,

P either attains its maximum on the boundary of ft or at a critical point of u.
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We study particularly the case h ' ( u )  = c f ( u )  g ( u ) where c is 

a constant. For c <_ 1 we show that , under suitable assumptions , the

maximum of P occurs on whereas for c >. 2 the maximum occurs at

a critical point of u .

In the last chapter, we illustrate these results by giving some 

applications to the torsion problem , the e ff ic iency  ratio of a nuclear reactor 

and the free  membrane problem .
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INTRODUCTION

The MAXIMUM PRINCIPLE is one of the most valuable tools in the 

study of second order Partial Differential Equations . This principle 

is a generalization of the elementary fact of calculus that any function 

f i x )  which satisfies the inequality / "  >  0 on an interval [<z, £> ] attains 

its maximum value at a or b .

In general, functions that satisfy elliptic inequalities on a domain 

fi in n-dimensional Euclidean space take their maxima on the boundary of £2 . 

This is the simplest form of the maximum principle .

Maximum principles for solutions of second order elliptic equations 

(and inequalities) have been used in the mathematics literature since the 

early ninteenth century . These principles have been refined and extended by 

various authors (see e.g. references cited in the book of Protter and 

Weinberger [1 4 ] ) .

One of the more important refinements , known as the Hopf 

maximum principle , asserts that at a maximum on the boundary , the outward 

normal derivative is positive (unless the function is identically constant).

This dissertation is concerned with some of the many applications of 

the maximum principle . There are three main parts . The first one consists 

of two chapters where we discuss and prove versions of the maximum principle 

first for Ordinary Differential Equations , then for Elliptic Partial Differential 

Equations .

We follow fairly closely the book of Protter and Weinberger [1 4 ]  

but we also include some results due to Serrin [1 7 ] , including a maximum 

principle for a domain with a corner. We give new proofs of some of the

older results using those of Serrin .
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The next part concerns symmetry properties of positive solutions of 

elliptic partial differential equations. This follows the paper by Gidas, Ni 

and Nirenberg [ 5 ] and an earlier one of Serrin [1 7 ] .

This deals with equations of the type

A u + / ( « )  = 0 (1)

in a domain with zero boundary conditions . For / ( « )  = 1 , Serrin proved 

that if one has over-determ ined boundary conditions with also the normal 

derivative constant, then the domain 0  on which the solution of (1) is 

defined is necessarily a ball and the solution is radially symmetric. Later,

Gidas, Ni and Nirenberg [ 5 ]  showed that for a ball , positive solutions of the 

elliptic equation (1) are radially symmetric. This points out that on 

a symmetric domain, symmetric equations have symmetric solutions . The 

important point is that the results do not depend on /  . We explain parts of 

this paper in much detail .

Chapter (IV) contains extensions of the results discussed in Chapter 

(III) to certain systems of second order elliptic equations, as given by Troy 

[ 23 ]. In some places we use a slightly different argument to deduce the same 

results of Troy in an easier way .

In the third part we consider solutions of the equation 

A u + /(w )  = 0

and obtain bounds for various quantities associated with this problem. We 

show that (following work of Payne [ 9 ]  and Sperb [2 1 ] )  it is possible to find 

functions g , h so that the function

P = g( u)  I grad u \ 2 + h ( u )

satisfies an elliptic inequality and, by an application of the maximum
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principle , P either attains its maximum on the boundary of fi or at

a critical point of u

The cases ft" = 2 /  g and ft" = (2/n) /  g (for 0  c Rn ) have

been of considerable use in obtaining bounds and are well covered in the book

by Sperb [21 ].

We follow the procedure from Sperb's book but we study the more 

general case ft" = c /  g . We see how c = 2, 2/n arise in a natural way 

but that other choices may be possible. We show that for c <. 2/n , the

maximum occurs on 3Q whereas for c >_ 2 , under conditions related to the

curvature of 3fi , the maximum occurs at a point where grad u = 0 . Some 

of these results seem to be new for c * 2, 2/n .

We illustrate these results by giving, in Chapter (V I), some 

applications to the torsion problem , the "efficiency ratio" of a nuclear 

reactor and the free membrane problem .



Chapter (I)

MAXIMUM PRINCIPLES IN ORDINARY DIFFERENTIAL

EQUATIONS
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CHAPTER (I)
MAXIMUM PRINCIPLES 

IN ORDINARY DIFFERENTIAL EQUATIONS (O.D.E.s)

SECTION 1

THE ONE - DIMENSIONAL MAXIMUM PRINCIPLE

The maximum principle in Ordinary Differential Equations 

(O.D.E.s) is a generalization of the simple fact that any

function f which satisfies the inequality f" > 0 on an interval

[a, £> ] attains its maximum at one of the endpoints of [a, Z>].

This is obvious from the fact that f" > 0 is equivalent to 

convexity of f .

If f" > 0 on [a, 5] the same conclusion may be drawn but

now it is possible that f is constant on [a, b]. We follow Protter

and Weinberger [14-]. The prime denotes differentiation with

respect to x . We shall always assume in this Chapter that 
the function u is in the class C 2(a, b) H C°[a, ]•
THEOREM 1.1

Let u be C2 function on the interval (a, b), let g(x) be

a bounded function on (a, b) . Suppose u satisfies the 
differential inequality

L[u] s u" + g(x) u" > 0, x e (a, b)........ (1.1)

Then u attains its maximum M at either a or b . Moreover if 

u(c) = M for some interior point c of (a, b) then

u = M on [a, b].

REMARK 1.1

If u satisfies the strict inequality

u" + g(x) u' > 0 ,x e (a, b) ......(1.2)

Then u cannot have an interior maximum. Because if u has a maximum



5

at an interior point c in (a, b) , then by elementary calculus, 

we must have u'(c) =* 0 and u"(c) < 0, which contradicts the 

strict inequality above. It is important for applications to 

consider the non - strict inequality.

PROOF OF THEOREM 1.1

The idea of the proof is to construct an auxiliary 

function z such that

L [ u + £ z ] > 0  for all e > 0 ,

so that Remark 1.1 applies to u + e z. The proof is by

contradiction.

Suppose that u assumes its maximum M at an 

interior point c in (a, 5), but u f M in (a, b). Then there

is a point d of (a, b) such that u(d) < M. We suppose that

d > c.

Define the auxiliary function z by

, . ct(x - c) - z(x) = e - 1,

where a: is.a positive constant to be prescribed. By a simple 

calculation one gets :

L[z] = z" + g(x) z = a[a + g(x) ] e°^X

Choose a that a. > - g(x) for x e [a, £> ]; this can be done

since g is bounded. Then

L[z] > 0  on (a, b) .  (1.3)

Therefore, for any e > 0 ,  by (1.1) and (1.3) we get

L[u + e z] > 0 on (a, b) and a fortiori on (a, d).
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Now z(x) > 0 for a < x < c, so u + e z < W  for a < x < c and

u + e z  - M at c,

u + ez < M at d,

for e < [W - u(d) ]/z(d) .

Therefore u + e z must attain its maximum ( > M ) on

[a, fa] at an interior point of [a, fa]. This contradicts Remark

1.1 above and therefore the assumption that u(d) < M must be

false. We conclude that u ss M on [a, fa].

If d < c an exactly similar argument applies taking the

auxiliary function z(x) - e °^X °̂  - 1 with ot > g(x) on

(a, fa). □

FIGURE [1.1]
REMARK 1.2

The boundedness assumption on the function g(x) in 

Theorem 1.1 may be weakened. It suffices that g(x) be bounded 

on every subinterval [a , fa ] completely interior to (a, fa).

This observation is useful since it allows the 

coefficients of Differential Equations to become unbounded at 

the endpoints.This occurs in many of the equations arising in 

mathematical physics.
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EXAMPLE 1.1 :

The differential equation

32u + 1 3u = 0, for the disk 0 < r < 1,
3r2 r 3r

is Laplace's equation in polars for radially symmetric solutions.

Theorem 1.1 tells us that a non - constant function 

which satisfies the inequality

u" + g(x) u > 0  in (a, b)

attains its maximum at either a or b. In fact u decreases

strictly as one moves into the interior of the interval [a, b],

that is the directional derivative of u in the direction pointing

interior to [a, b] is negative.

More precisely we have the following result .

THEOREM 1.2

Let u e C2(a, b) satisfy the inequality

u" + g(x) u" > 0 in (a, b)

with g(x) bounded on every closed subinterval [&*", b" ] of 

(a, b). Suppose that u attains its maximum M at one of the 

endpoints of [a, b ], u ^ M in (a, b) , and has one - sided 

derivatives at a and b.

If u(a) = M and g is bounded from below at x =■ a, 

then u^Ca) <0. If u(b) = M and g is bounded from above at 

x b, then u'Cb) > 0.

PROOF:

Suppose that the function u attains its maximum at the 

endpoint b of [a, b]. Then u(b) — M, and u(x) < M for x e [a, b].
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Suppose that at an interior point c e (a, b), we have u(c) < M. 

Consider the auxiliary function

z(x) = e  a X̂ ^  - 1  with a > 0 .

Note that z(c) >0. By choosing a such that a > g(x) for

c < x < b, we have

t/ \ 2 - a(x - b) , , a(x - b) _L(z) = a e - a g(x) e >0.

Now, we consider the function

w(x) = u(x) + e x(x) , where 0 < s < [M - u(c) ]/z(c),

Then we easily get

L(w) ^ L(u) + e L(z) > 0.

Hence w attains its maximum at one of the endpoints c or b of

the interval [c, &]. By the choice of e, above, we have

w(c) = u(c) + e z(c)

< u(c) + M - u(c)

- W

Therefore the maximum of w occurs at b, and then w

has a nonnegative one - sided derivative at b

w'(b) = u"(b) + e z"(&) > 0

but z"(b) = - a: < 0, so that u"(£>) > 0. The result follows.□

REMARKS 1.3

(I) If u attains its maximum at x = a, then the argument is 

similar. In this case, we choose the auxiliary function

. N a(x - a) - z(x) “ e - 1
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with a > 0 and we select a > - g(x) on an appropriate interval.

(XI) The boundedness of g is essential for the conclusion of 

Theorems 1.1 and 1.2 . To see this , we consider the O.D.E.

u" + g(pc) u" = 0 with g(x) =
■ —3/x for x £ 0

. 0 for x = 0.

We see that u = 1 - x 4 satisfies our problem . Now , if we take 

x e [ -1, 1] then u attains its maximum at the interior point 

x = 0 . Hence Theorem 1.1 is violated on [-1, 1]. Also if we 

take x e [0, 1] , then u"(0) = 0 . So that Theorem 1.2 is

violated bn [0, 1].

MORE GENERAL DIFFERENTIAL INEQUALITIES

We want to consider inequalities with zero order terms

(1 + h)[u] * u" + g(x) u" + h(x) u > 0

By virtue of an idea of Serrin's [17],we are able to prove the

following :

THEOREM 1.3

Suppose that the function u satisfies

(L + h)[u] =■ u" + g(x) u' + h(x) u > 0 on (a, b) ,

.......(1.4)
with u < 0  on [a, b]. Then

(i) if u(c) =* 0 for some c e (a, b) , u = 0 on [a, b].

(ii) if u(a) = 0, u"(a) < 0 [ u(b) = 0, u"(b) > 0 ]

where h is bounded below , g is bounded on every closed

subinteravl of (a, b).



PROOF:

Take v(x) = e ̂  u(x) . Then

0 < (L + h)[u] =■ e0** [v" + (g + 2a) v** ] + e0̂  [ a2 + a g + h ]v

= e0̂  [hnv + H v], say,

where L^v = v" + (g + 2 a) v" contains no zero - order terms,

and H = a + a g + h.

For a sufficiently large, H(x) > 0  on (a, b) so we have

L^v > - F(x) v > 0 , since v < 0.

By Theorem 1.1, v attains its maximum' (M =* 0) at a or b and

(i) holds. Now, since

„, % ax . , .u (x) = e (v + a v) ,

and if u attains its maximum at a we get

u" (a) = eaa vr"(a)

< 0

Similarly, we apply the argument above to obtain

u"(b) > 0 if u(b) = 0. This gives (ii) .□

The following example illustrates that the hypotheses

of Theorem 1.3, above;cannot be discarded .

EXAMPLE 1.2

The function u(x) = sin x is a solution of the

equation
Un + u „ o on (0, t ) .

But u assumes its maximum at x — ir/2, so there is no analogue
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of Theorem 1.1. Here u is positive on (0, tt) and h(x) > 0. 

u < 0 does not hold.

THEOREM 1.4

Suppose that g , h are as in Theorem 1.3 , that

(L + h)[u] > 0  on (a, b)  (1.5)

and that u attains a positive maximum M > 0 on [a, fa]. Then

if h(x) < 0  on (a, b) , we have u attains its maximum M at

a or at b.

Moreover

(i) if u(c) = M for some c e (a, b), then u s M.

(ii) if u(a) — M, then u'(a) < 0 it —

[ If u(b) “ M, then u' (b) > 0 lovvit̂  ,

Thus maximum always occurs at an endpoint and either 

u a constant or (ii) holds.

PROOF:

Let v(x) = u(x) - M, then v < 0 and v = 0 at some point 

in [a , b ]. Then

(L + h)[v] =* (L + h)[u] - h M

> - h M

> 0 , since h < 0.

So Theorem 1.3 applies to v and the proof is complete.□

EXAMPLE 1.3

The differential equation

u" - u — 0 on the interval (-1, 1)

has the solution
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u(x) = * - { e X + e X } = - 2  cosh x.

Obvious, u attains its maximum M =* - 2 at x = 0. Here 

h(x) < 0, but u has a negative maximum.

REMARK 1.4:

If h(x) is negative somewhere in (a,.b) then part (i) of

Theorem 1.4 can only occur if M = 0.

This is the well — known version of the Hopf Maximum

Principle, as found, for example in the book of Protter & 

Weinberger [14], We believe that our method of proof is new .

COROLLARY 1.5

Suppose that (L + h) [u] > 0 on (a, b) with h(x) < 0.

If u is continuous on [a, b], and u(a) < 0, u(b) < 0̂  then

u(x) < 0  in (a, b) unless u = 0.

PROOF:

By hypothesis, u attains its maximum M on [a, b].

If M < 0, then by (i) of Theorem 1.3, either

u s 0 or u(x) < 0  in (a, b).

If M > 0, then the maximum occurs at an interior point. 

By Theorem 1.4 , this would imply

u s M , impossible since u(a) < 0, u(b) < 0.D
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SECTION 2
THE GENERALIZED MAXIMUM PRINCIPLE

Consider the differential inequality

(L + h) = u" + g(x) u" + h(x) u > 0  (2.1)

with h(x) not necessarily < 0. Assume that there exists a

function w e C2 such that under some conditions, w satisfies the

following inequalities

w > 0  on [a, 5]  (2.2)

(L + h)[w] < 0  in (a, b)  (2.3)

To see that suph a function w can exist, suppose h(x) is

bounded and the function g(x) is bounded from below in [a, b],

with [a, b ] sufficiently short. Then take

w - 2 - e“(x ~ a)  (2.4)

where a is a constant to be determined. We have by calculation:

(L + h)[w] - - e“ (x " a) [«2 + c« g + h] + 2 h ---(2.5)

By asstimption there are constants G and H such that g > G and

h > H. Then , if ot is sufficiently large, we have

a + a g + h > 0

and

e0!(x ^  > [2 h /(ex2 + ex g + h) ].

This can be done since h is also bounded above. From (2.5) we 

get

(L + h)[w] < 0  in (a, b) .

However (2.4) yields w > 0 on [a, 6], if [a, i] is required to



be small enough such that

ea(X - a) < 2

NOTE:

One can also construct w of the the form

w = 1 - /3(x - a) , for suitable 0 .

{see for example Protter and Weinberger [14]}.

When such a function w exists, we define the new 

dependent variable v = u /w  , then one gets

(L + h)[u] = v w" + 2 v" w" + v" w + g(v w" + v' w) + h(v w) > 0

Dividing by the positive quantity w we get

v" + [ 2 (w'/w) + g ]v" + (1/w) (L + h) [w] v > 0. ...(2.6)

THEOREM 2.1

Let u(x) satisfy the inequality

(L + h)[u] s u1' + g(x) u" + h(x) u > 0

in a suitable domain (a, b). Assume that there exists a function 

w(x) which satisfies conditions, (2.2)(,0*3) in [a, b]. Then results 

of Theorem 1.4 hold for the dependent function v = u/w .

REMARKS 2.1:

(I) In any interval (a, b), where Theorem 2.1 holds, u can 

have at most two zeros between which u is negative. If we call

these zeros x =* A and x - B , if u > 0 at any point between A

and B, u /w  would have a positive maximum between them which 

contradicts Theorem 2.1, unless the distance between A and B 

is so large that this theorem does not hold.
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(II) If u is a solution of the equation

u" + g(x) u" + h(x) =* 0,

the same reasoning can be applied to both u and (-u) to find 

that u can have at most one zero in any interval (a, b) where 
Theorem 2.1 holds.

Let r(x) satisfy the equation

r" + g(x) r' + h(x) r - 0 , x e (a, b)......(2.7)

with r(a) = 0, r(x) ^ 0 in (a, b) , and h(x) , g(x) are bounded.

If r has any zeros to the right of a we denote the first one by

a*, and we call a* the conjugate point of a. If r has no zeros

to the right of a we set a* = <» ,

NOTE:

The function r(x) does not change its sign in the 

interval (a, a*). For convenience we assume that r > 0 in the 

interval (a, a*).

Now, if a* is the conjugate point of a, we can find 
a function w > 0 such that Theorem 2.1 holds for v = r/w on 

the interval (a, b) if aiid only if b < a* . If w exists, then

v — r/w is positive on (a, a*) and zero at a and a*, so v
has a positive maximum on (a, a*). Then v would have to be 

identically constant on [a, a*] {i.e. r =* c w, where c is a 
constant} contradicting w(a) > 0.

If fa < a*, we take the function w in the form

r o a(x a) . w = * r + f i [ 2 - e  J

for sufficiently small e > 0. w is positive on [a, b] and we can
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have, for suitable choice of a ,

(Z, + h)[w] - (L + h) [2 - e°^X ~ ] < 0 in (a, 6).

Hence we have constructed w for which Theorem 2.1 holds.

(Ill) We remark that the boundedness of the functions g and ft 

is essential.

EXAMPLE 2.1.:

The function u(x) ■=* x sin( 1/x) satisfies the 

differential equation

u" + x 4 u = 0 on (0, co) .

JL, mClearly u vanishes at x “ l/(mr) , n = 1,2,..., and so a is 

not defined and no function w > 0 can exist. The problem here 

is that h is unbounded at 0 . □
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SECTION 3
UNIQUENESS RESULTS FOR INITIAL AND BOUNDARY 

VALUE PROBLEMS

One important application of the maximum principle is in 

the discussion of uniqueness of solutions to initial and boundary 

value problems,

INITIAL VALUE PROBLEMS (I.V.P.s):

Consider the initial value problem

u" + g(x)u" + h(x) u = f(x) ......(3.1)

with the conditions

u(a) « A, u' (a) = B ’ ......(3.2)

where the functions h(x) and g(x) are bounded in the interval 

(a, b), and A and B are prescribed constants.

THEOREM 3.1

Suppose u1(x) and u2(x) are solutions of (3.1) in (a, b) 

and both of u1(x) and u2(x) satisfies the initial conditions 

(3.2). Then

u, « u2 in (a, b).

NOTE : We do not require h(x) < 0.

PROOF OF THEOREM 3.1 :

Let u(x) = u1(x) - u2(x), x e (a, b). We want to show 

that u(x) e 0 in (a, b) . We have that u satisfies the equation

u1' + g(x) u' + h(x) u = 0

with the initial conditions

u(a) — u'(a) - 0.
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Assume that u ^ 0 in (a, 5). By Theorem 2.1 there 

exists e > 0 and a function w > 0  on [a, a + e] such that u/w

attains its maximum at one of the endpoints of [a, a + e].

Since the same argument applies for ™ u, we observe 

that either the maximum or the minimum of u/w must occur at a. 

But

(u/w)" = u' w ~ u w' = 0 at x = a.
w2

Since Theorem 1.3 holds for the function u/w we find 

that u/w is constant, moreover u/w = 0 at a since u(a) = 0. 

Contradiction. Therefore u = 0  on [a, a + e ] ,  in particular

u(a + e) » 0, u"(a + e) = 0.

We may repeat the argument to conclude that u = 0 in

(a + e, a + 2 e), with e being unchanged since it depends only on 

bounds for g and h in (a, b ) .

By employing the process above a finite number of times 

we deduce that u a 0 in (a, b) .□

BOUNDARY VALUE PROBLEMS ('B.V.P.s^ :

Consider the following B.V.P.

u" + g(x) u' + h(x) u =* f(x)  (3.3)

with x e (a, b)  and g and h bounded, subject to the

boundary conditions

u(a) = S , u(Z>) - R    . (3.4)

where S and R are prescribed constants.
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THEOREM 3.2

Suppose that u1(x) and u2(x) are solutions of (3.3) and 

satisfy the boundary conditions (3.4) . If h(x) < 0  in (a, fa) 

then
u, a u2.

PROOF :

Let u = u1 - u2 , then u satisfies

u» + g(x) u" + h(x) u = 0  (3.5)

with the boundary conditions

u(x) => 0 , u(fa) = 0,  (3.6)

Assume that u ^ 0. By Corollary 1.5 we know that u(x) < 0  in 

(a, fa) . Moreover, since the function - u satisfies (3.5) 

together with the conditions (3.6), then Corollary 1,5 also 

applies to - u . Hence, - u < 0 in (a, b). Therefore u a 0 in 

(a, fa). □

In the following, we prove a uniqueness theorem for 

B.V.P. s without any restriction on the function h(x). Meanwhile 

we put some condition on the required domain on which we wish to 

prove our theorem.

THEOREM 3.3

let u1(x), u2(x) be two solutions of (3.3) satisfying 

the same boundary conditions (3.4). If fa < a*, where a* is the 

conjugate point of a, then u1 a u2.

PROOF :

Define a function v(x) by

v(x) “ u,(x) - u2(x).
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Clearly v(x) satisfies the differential equation

v" + g(x) v" + h(x) v => 0

with the conditions

v(a) = 0, v(b) = 0.

Since b < a*, we can find a function w(x) > 0 such that

(L + h)[w] < 0  in (a, b). Applying Theorem 2.1 we get:

either
v(x) = 0  or v(x) ^ 0 on (a, a*) 

which is impossible, since b < a*. □
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SECTION 4
NONLINEAR OPERATORS

We have seen how the maximum principle can be employed to 

give very important results in case of the linear operators. In 

this section we show how the maximum principle is applicable to 

some nonlinear operators.

Let u(x) satisfy the nonlinear equation

u" + H (x, u, iT) = 0............... .....(4.1)

o n  a n  i n t e r v a l  [ a ,  f a ] ,  w h e r e  H(x, u, p ) i s  s u c h  t h a t  9 H  a n d  dH  a he
3u dp

c o n t i n u o u s  f u n c t i o n s  f r o m  [ a ,  b ] x  R 2 t o  R .  L e t  w ( x )  s a t i s f y  

the inequality

w" + H(x, w, w") > 0 .....(4.2)

in (a, b) .

THEOREM 4.1

Suppose that the function v(x) — w(x) - u(x) satisfies 

the inequality

v" + H(x, w, w") - H(x, u, u') > 0

in (a, b) , where dH , 8H are continuous and dH < 0 .
3u 9u" 3u

If v(x) attains a nonnegative maximum M in (a, Z>) , then

v s Af.

PROOF :
By the Mean Value Theorem , for 0 < t < 1 

H(x, w, w") - H(x, u, u'') -

3 H i 'w - U  ■3u (x, u + t(w - u), u" + t(w" - u')) .
M .w'' - u''.

. 3p .
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- dH v + 3ff v'.
du 9u"

So v satisfies the inequality:

v" + dH v" + dH v > 0  
dp 9u

which is linear, and hence the maximum principle as given in 

Theorem 1.4 applies.□



Chapter (II)

MAXIMUM PRINCIPLES IN ELLIPTIC PROBLEMS
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CHAPTER (II)
MAXIMUM PRINCIPLES IN ELLIPTIC PROBLEMS

SECTION 1
NOTATIONS AND SOME BASIC DEFINITIONS

Let u(x) e C2(Q), where fi is a bounded domain (open 

connected set) in the Euclidean space fRn .

DEFINITION 1.1

We call the operator (we use summation convention)

P s a±j(x) 92 , «3jj = ajL „  (1.1)
dxjdxj

(1, j = 1,2 n) , elliptic at x = (x1 ,x2 xn) if and only

if there is a positive constant /i(x) such that

aij(x) %i tj > l*(x) %i %i  (1.2)

for any vector £ (£1 ,£2,...,£n). The operator P is said to be

elliptic in a domain 0 if it is elliptic at each point of fi, and 

it is uniformly elliptic if (1.2) holds for each point of £2 and 

if there is a positive constant }tQ such that fi(x) > p0 for all 

x in fi.

EXAMPLE :

The Laplace operator defined by

A = 92 + 92 + , , , + 92 ,
0X19xi 0X20X2 0Xn0Xn

is uniformly elliptic in any domain fi.

DEFINITION 1.2

We say that the operator

(L+h) s aij(x) 92 + b^(x) 9__ + h(x)
dxjdxj 3x £
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is (uniformly) elliptic in fi if its principal part

P = atj _dl
3XjSxj

is (uniformly) elliptic in fi.



SECTION 2
MAXIMUM PRINCIPLE FOR ELLIPTIC INEQUALITIES

We investigate maximum principles for inequalities 

satisfied by operators L and (L + h). We follow Protter and 

Weinberger [14]. We shall need the following lemmas.

DEFINITION 2.1 :

An n x n matrix A is called positive semidefinite,(or 

negative semidefinite ), if

A f > 0 (< 0) for all f in Rn .

LEMMA 2.1

Suppose that A and B are symmetric n x n  matrices 

with A > 0 and B < 0. Then

trace (A B) <0.

PROOF : (Smoller [18])

There exist orthogonal matrices C and D with

C A (7-1 =» A 1 , D B D-1 ■=« A2 where A , and A2 are diagonal

matrices and A  ̂ has nonnegative elements and A 2 has 

nonpositive elements.

By the fact that the trace of a product is independent 

the order of the factors, we have

tr(A B) - tr(C A C-1 D O " 1) - tr (A, A 2) < 0. □

DEFINITION 2.2

Let 21 be the unit normal vector in an outward 

direction at a point Q on the boundary 3fi, and let v be a 

vector pointing outward from 0 at Q, that is v . n > 0 .
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We define the directional derivative of u at Q in the 

direction v, if it exists, as

du = [ lim u(0 - t tO - u(Q) ]. 
dv £»o t

If u e C1 , then
3u = lim [p1 8u + ... + pn 3u ]<
3^ x->Q 3xt 3xn

NOTE :

A well known outward directional derivative is the 

normal derivative.

LEMMA 2.2 (Elementary Calculus Lemma)

Suppose that the function u e C2(Q U 3H) and that u 

attains its maximum at a point x e 3fi . Then the outward 

directional derivative

3u > 0 at x .  (2.1)
3 v

If grad u(x) = 0 , then

32u < 0  a t x   (2.2)
dv 2

(p s outward direction).
PROOF :

By virtue of the Mean Value Theorem in the form 

u(x + h) - u(x) =» grad u(x + s h) . h

we have
u(x - t v ) -  u(x) => - t grad u(rf) . v

- t 3u(r?) .  (2.3)
3^

Therefore, as u(x) is a maximum , for t small , 

u(x - t v ) -  u(x) < 0
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If (2.1) is false we would have 3u < 0  at x, and therefore
3r

0u < 0  on a neighbourhood of x which gives a contradiction 

to (2.3) .

Suppose that grad u(x) = 0. We consider the second 

order directional derivative :

a_
3v

r8m  __ 3_ rgrad u . ^ 9_ rY 3u p n
l9 iJ  ~ 3p 1 J 3^ 1 Li J

“ y 3 _  rY 3u_ vi\ vj
Lj 3xj 1 Li 3xi J

- Y V 32u vi vj (i, j - l,...,n)
Lj L± 3xj.aU1 ^ a x j

= vT H V

where H = r 32u 1 is the Hessian matrixr_dfu_iL a x ^ a x j  J
By Taylor expansion

u(x - t v) - u(x) = grad u(x) . v + t2 H v .
2

hence /f v < 0 , and the proof of Lemma 2.2 is complete.□

REMARK 2.1

If x is an interior point, where u takes its maximum, 

then grad u(x) = 0 and H is negative semidef inite as the 

above applies to all directions v .

NOTE : From elementary calculus we know that if a function

u(x) satisfies the strict inequality

L[ u ] s aij 32u + bj 3u > 0   (2.4)
axjSxj dx±

in fi, then u cannot attain its maximum at any interior point of fi
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To see this, we assume that u £ C2(D U 30) has an interior 

maximum at some point x e 0. Then

3u 0 at x
3xj_

and the Hessian matrix

• -  i s S y

is negative semidefinite.

Let A denote the matrix (&ij) I i»J — 2, . . . ,n. Then by

virtue of Lemma 2.1 we have :

tr(A H) < 0 ,

since (&±j) is positive definite. Therefore we obtain 

a contradiction to inequality (2.4) .

We now wish to extend the maximum principle to allow the 

non - strict inequality. We will follow the proof given by Smoller 

[18] .

THEOREM 2.3

Suppose u(x) satisfies the inequality

L[u] = ai; 32u + bi du > 0   (2.5)
3xj_3xj 3xj_

in 0, L being uniformly elliptic with a^j, bj_ uniformly

bounded. Then u cannot attain its maximum H at an interior

point of fi unless u s M in fi.

PROOF :

Suppose that u assumes its maximum M at some point x Q in

fi, i.e. u(xQ) - M, Then we will show that u = M.
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Let S be the set of all points x in 0 for which 

u(x) - M, i.e. S - { x e Q : u(x) - W }. Clearly S is not empty, 

since x0 e S . If x, e fi\S, we connect x, to x Q by a curve y

fi. Since y is compact, we can find 5 > 0 such that if a point

Q e y, dist (Q, 30) > 5 > 0.

Since uCXj) < H t u(x) < M in some ball centred at x  ̂ of

radius at most 5/2 . If x, moves along y towards x Q, the

boundary of this ball eventually contains a point in S . Let x 

be the centre of the first ball whose boundary meets S . Thus 

there exists a ball j3 whose closure is contained in fi for

which 3B fl S ^ <p , (<p = empty set) , but B fl S -= . Let y denote

the point where dB fl S * tp , see figure [2.1]

FIGURE [2.1]

Let jBj <= B be a smaller ball of radius r1 such that 

y e 3.B,. Then u < M in jB\[yj. Let B 2 c fi be a ball centred 

at y and with radius r2 < r1 . If dB2 — T, U T2 where 

Ti -* 3B 2 fl B y , then T, is compact, so since u < M on T1 , 

u < M - e on T, for some e > 0.
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We choose the centre of B } to be the origin of our 

coordinate system, then we can define the auxiliary function z by

- ar* - ctrz (x) = e _ e 2

2 2 2 2 2 where a > 0 is to be prescribed, r ^ |x| = x 1 + x 2 + ... + xn .

By computation :
a O or2oz = ~ 2 a x-£ e
9xjr

d2z = 9  (-2 a X| e ^  )
dxjdxj dxj

„ „ -ar2 , 2 -ar2= - 2 a 5-y e + 4 a X| xj e

where 5̂  is the Kronecker delta, (i,j = l,2,...,n).

Thus
rr i // 2 " ar2 , / o ~ Q!r:L[z] 1=1 ajj (4 a x± xj e ) + a ^  (- 2 a e

+ b* (- 2 a xie ar )

= 4 a 2 a^j x^ xj e ^  - 2 a  (a_jj + x±)e°ir

“CMT2Dividing by the positive quantity e we get

e ar L [ z ] s 4 a;2 xj - 2 a (,3.±± + xi) ....(2.6)

Now since r2 < r., , the origin of our coordinate system 

0 / B 2 , and by the ellipticity condition we see that

aXj xi xj > a > 0 in B 2,

where c is a positive constant. Thus, for a: sufficiently large, 

L[ z ] > 0 in B 2 .
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We consider the new function : 

w(x) = u(x) + e1 z(x) 

and we take k = max {z(x): x e T Then on T,

w(x) < M - e + e1 z(x)

< tl ~ e + e 1 K

< M

if e1 < e/K .

Having chosen e1 < e/k , we see that on T2 

z(x) < 0 since |x| > r1.

Therefore

w(x) = u(x) + £ 1 z(x) < u(x) < M.

Thus w(x) < H on T, U T2 « 352. Since w(y) = M, w has

a maximum at an interior point x 2 in 23 2. But

L [ w ] - L [ u ] + e 1 L [ z ] > 0  i-n 2

since by assumption (Lu) (x) > 0  in £2. We have obtained 

a contradiction to the previous comments.□

REMARKS 2.2

(I) Theorem 2.3 remains valid in case that Q is not bounded.

(II) We can weaken the hypotheses in Theorem 2.3 by requiring

only that the quantities

a 2j(x) and bi(x) 
tt(x) ji(x)

with /*(x) > 0, are bounded on every ball contained entirely in 

the domain 0 .
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(III) A minimum principle applies to functions satisfying 

L[u] < 0 by applying the Theorem 2.3 to (- u).

Let u(x) be continuous and bounded function on 0. If 

u(x) attains its maximum at a point Q e 317, then the outward 

directional derivative of u at Q cannot be negative, by 

Lemma 2.2 .

In fact we shall see that the directional derivative must 

be positive unless u is constant.

THEOREM 2.4 (MAXIMUM PRINCIPLE OF E. HOPF)

Let u(x) satisfy the inequality

L[u] =  aj_ i B 2u +  b^ du  >  0
dxjdxj dxi

in 0 , and suppose that u assumes its maximum M at a point Q e 00. 

Assume that u is continuous in 0 U {Q} and 00 satisfies an 

interior sphere condition at Q. Then if v points outward from 

0 at Q

iu(Q) > o ;
B y

if it exists, unless u « H .

PROOF :(Protter and Weinberger [14])

Since 90 satisfies an interior sphere condition at Q, 

there exists a ball 23 c 0 of radius r1 with 33 fI 0 3 {Q} * We 

construct another ball S 1 with radius r-j/2 anĉ  with Q as a 

centre. (see figure 2.2 below)
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FIGURE [2.2]

We proceed as in proof of Theorem 2.3, and we choose the 

centre of the ball B to be the origin of our coordinate system.

Now we introduce an auxiliary function

. . -ar2 -ar.2 2 2 , 2 , , 2z(x) - e - e  1 , r - | x | - x 1 + x 2 + . . . + x n

where a > 0 is to be determined. We observe that

z > 0 in B , z — 0 on 3B and z < 0 outside B.

By choosing a sufficiently large we obtain (see proof of Theorem 

2.3.)
L[z] - a_jj 82z + b± dz > 0  in .

dxjdxj dx±

Define the function

w(x) - u(x) + € z(x) , e > 0 .

If u ^ N in fi, then u < M in (J3U8B)\{Q} , by Theorem 2.3 .

We choose e small enough to get w < M on BD9B1. Then w < M

on the entire boundary of the region BHB1 (see proof of Theorem 

2.3). In this region we have also

I
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L[V] = £[ u ] + & ^[z ] > ®

since -l[u] > 0 and £[2 ] > 0, Thus w(x) attains its maximum at 

Q, i.e. w(Q) = M, therefore

3w =* 3u + e dz > 0 at Q.
dv dv dv

We shall show that dz < 0 at Q, this will imply that
3r

3u > 0  at Q.
3v

We compute
— ry >-• 2

dz => - 2 q e
3x^ , (i - 1 ,2,...,n)

and we know that

dz - dz . vi , 
dv 3xj_

so if ij “ (tj1 , rj2, . . . , rjn) is the unit outward pointing normal at

Q, then 77 ̂ — x^ . Hence at Q 
r !

—fyr ̂3z =* - 2 a rt e 
3r

since v . y > Q (1 = 1, 2 ,..., 21).

This completes the proof of Theorem 2.4 .□

NOTE :

The auxiliary function z(x) can be chosen in different

ways, for example as in Serrin [17], where it is defined by

z(x) - X fe-alx| 2 - e_csr2 \&  \  ■*+- / -A. .j 1 | *

I Vi < 0
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MORE GENERAL DIFFERENTIAL INEQUALITIES

We now consider the linear partial differential 

inequalities in the domain fi with zero order terms. The following 

results have been obtained by Serrin [17], see also Gidas, Ni, 

Nirenberg [5].

THEOREM 2.5

Suppose that u 6 C2{fi) satisfies (we use summation

convention)

(L + h)[u] = a±; 32u + b£ 3u + hu > 0
dxfixj Sx*

in fi and u < 0 in fi. Then

(I) If u vanishes at some interior point in fi, then u a 0 in fi.

(II) If 3fi satisfies an interior sphere condition at a point

Q e 3fi with u(Q) “ 0 , then 3u (Q) > 0 unless u = 0 in fi.
3v

[ v denotes a vector pointing outward from fi at Q ]

PROOF :

We define a function v by

, . - ax, , xv(x) = e 1 u(x) ,

where a > 0 is to be chosen.

Let u(x) =■ v = f (x) v (say) . Then

3r - 51 £ a e 1
3xjf

S2̂  — a2 61 ? 6^  (zero unless i = j == 1)-
3x^3xj
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Now

3u = 9f v + f dv 
dx£ 3xi dx±

32u ^ 32f v + 2 3-f 3v + f d2v
dxjdxj Bxjdxj 3xj_ 3xj 3x^3xj

and hence,

0 < (L + h) = a_£ i\va2 + 2 5 ^  a ea X ‘l 3 v  + eCtX} d 2v ___|
L 3Xj 3x_j;3x ? J

ax, , ax, 1 , , ax,+ 5| a e 1 v + e 1 3 V  > + h e 1 v
L 3x f J

axe

3xx

1 \a±j d2y + bi 3v + 2 a 3v ]
L dxjdx i dxi 3Xj J

+ e^ 1 [a2a1 , v + a b, v + h v ]

— e0^ 1 L^[v] + e0̂ 1 [a.,, a 2 + a + h ] v

where Li is an elliptic operator containing no zero order 

terms. If we denote the term [a1% a2 + £>1 a + h ] by if and

choose a sufficiently large such that H > 0 , we obtain

Li[v] > 0  in 0 ,

since v < 0 in O.

(I) If u » 0 at some point in fl, v =* 0 at that point and

Theorem 2.3 applies to v to get v  a 0 in fl. This

completes (X).

(II) If u = 0 at a boundary point Q, v — 0 at Q e 30. 

Then by applying Theorem 2,4 to v we get

dv > 0 at Q.
dv
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Now

du = du vi = a e0̂ 1 v v i + e0^ 1 8v v£
8j> dx£ 8xi

Therefore at Q where 7 = 0,

8a = e0̂ 1 8v 
dv 8p

This proves (II). □

REMARK 2.3

It is interesting to note that Theorem 2.5 holds 

independently of the sign of h(x). However the maximum of u must 

be zero, otherwise the result may fail.

EXAMPLE 2.1 :

The function u = (- cosh x - cosh y) satisfies the

equation
A u - u - 0

on a domain containing (0, 0). u attains its maximum at the 

interior point (0 ,0) but is not constant. □

In the following, we study the well-known version of the 

Hopf Maximum Principle where it is required that h < 0,

THEOREM 2.6

Let u(x) satisfy the differential inequality

(L + h)[ul s d2u + bi 8u + h u > 0
8xj8xj 8xi

with h(x) < 0, where L is uniformly elliptic and the

coefficients of L and h are bounded. We have the following:

(i) If u assumes a positive maximum M at an interior point

of fl, then u a M.
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(ii) If u assumes a positive maximum M at a boundary point 

Q, and"512 satisfies an interior sphere condition at Q, and u is 

continuous in 12U{Q}, then if V is the outward norml at Q ,

du  ( Q )  >  0  

dv

unless u = M .

PROOF :

Let w => u - M, so that w < 0 in 12.

Now
(L + h)[w] = (L + &)[u ] ~ h M

> - h M > 0 , since h < 0.

Therefore Theorem 2.5 applies to the function w and hence 

(i),(ii) hold.D

REMARKS 2.4

(I) We believe that our method of proof Theorem 2.6 is new.

(II) Part (i) of Theorem 2.6 may fail if h(x) > 0.

EXAMPLE 2.2

Consider the differential equation

A u + 2 u — 0

in the domain

D - {(x, y): 0 < x, y < ir }

where A is the Laplacian. We find that the nonconstant 

solution
u(x, y) = sin x sin y

assumes its positive maximum (+ 1) at the interior point 

(tt/2 , tt/2) of D .
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(III) In general whether or not the outer normal derivative 

exists, we get

lim inf u(0) - u(x) > 0
x->Q |x - Q|

where the angle between the vector Q - x and the normal at Q is

less than x/2 - 8 for some fixed 6 > 0 (see Smoller [IS] and

Protter and Weinberger [14 ]).
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SECTION 3
(THE BOUNDARY POINT THEOREM AT A CORNER’)

Our results, in Section 2, have required smoothness of 

the boundary 00. Here we shall prove a boundary point Theorem at 

a special domain with a corner, which is suitable for applications 

to the non-linear elliptic equations.

We consider the results obtained by Serrin [17].

THEOREM 3.1

Consider the domain 0 with C2 boundary and let T be a 

plane containing the normal to 00 at a boundary point Q . Let 

0* denote the portion of 0 lying on some particular side of T.

Let u. be a function in C2(0*) with u < 0 in 0*, 

u(Q)= 0, satisfying the differential inequality

L[ u ] s a - . 92u + bjr 0u > 0  ..... (3.1)
0Xj_0Xj 0X_£

in 0* , with uniformly bounded coefficients. Assume that

|aij ^J1 + in.l<*l) ..... (3.2)

where K is a positive constant, T = (f1, t2  Tn) is an

arbitrary real vector, ij = (^ , ij2,..., T)n) is the unit normal 

to the plane T , and d is the distance from T . Then if v is 

a vector pointing outward from fi at Q , 

either

du (Q) > 0  or 02u (Q) < 0 
3p 0p2

unless u s 0 .
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PROOF :
Since 3£2 is of class C2, there exists a ball (] 

where B̂ (\Vt - {Q} and with radius r1 . Construct a ball B 2 

centred at Q and with radius r2 - X r1 , where \ is a 

constant to be prescribed. Let H - ^fl^D noting that B,,

B 2 are open balls. (see figure 3.1)

FIGURE [3.1]

Now we define the auxiliary function

r -a(x _ r n 2 -ar2 n r ~ar2 -ar2 i z(x) - (e 1 ri; - e ' ] . {e - e " 1 }

 (3.3)
in H , where a > 0 is to be prescribed. Let us choose the 

centre of the ball B 1 to be the origin of our coordinate system 

and let T be the plane x, - 0. For convenience assume that Q* 

is on the side of T where x t >0. We observe that :

■ z > 0 in H ........ (3.4)
■ z  - 0 on 3B, and on T
. z < 0 outside S 1.
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To
— ry ( y — y~  ̂2calculate ^[^j, we first denote e 1 1 by f

— QI2Tand e 1 by a) . We compute

z = (f - a)) (e ar - 0))

3f = - 2 a (x1 - r1) f 5 ^  
dxL

dz «• (f - u)(- 2 a X| e ar ) + 3f (e MJ‘ - a))-car2

dx£ 3x±

32z = 3f (- 2 a X| e ar ) + (f - u)[- 2 a e Qr 5
BxjBxj 3xj

-ar2+ 4 a; x ? x e  1 + 32f (
J Sx^xj

-car2 w)

+ 3f (- 2 a: Xi e ar ) 
9xi

where

32f = 3__ r3f
3xj3xj 3xJ U x J

if i v5 1
if i - 1, j * 1

- 2 a f + 4 a:2 (x,- r,) 2 if i - j - 1

Then, from above we have

- -ar2 - -a(x,- r,)2 -nr, L[zj = e [e 1 1 - ° 1e 1 ][4« a y  x± xj

- l a  (ay + bi xL) ] + e “(Xl r’5 2 [ -cur2 -cur i - e 1 ]

| 4 a2 a,, (x, - r,)2 - 2 a [a,, + b, (x, - r,)]J

+ 8 c,2 e-“r! e-“ (x' - r ')2 (x,- r,) a y  xj.

Since r > (1/2) r  ̂ in H , we have by ellipticity

a^j xj_ xj > ix r > (1/4) fi r1 in (3.5)
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and also

a,, (x1 - r,)2 > (1/4) p r2 in H .

From (3.2) we get

ia,j xj | = |a.j_j 7}j_ xj i < JT( |x, | + |xt |) 

since in the present case r) = (1, 0, . . . , 0) . Thus

I (x, - r,) a,j xj | < 2 x, r, K in H.

—ox 2Let g(x) = e i by the Mean Value Theorem we get

g(r, - x t) - g(r1) “ [ (r, - x, ) - r, ] g ' ,

where £ = t(r, - x,) + (1 - t) r, , 0 < t < 1. Therefore

g(r, - x,) - g(r,) - (- r,)(- 2 a J e ^  )

—rvp 2- 2 a x, $ e

Since J « r, - t x, , we get £ > rn - |x,| > r, (1 - X) and

£ £ > since |x1| < X r1 in H > and x, > 0 in H . Therefore

/ \ -7 2 2 -oe(x . - r.)2 -or, _ n . . -or,e ' 1 1/ - e 1 > 2 a x, (1 - X) r, e '...(3.6)

Using the fact that e ri ̂ < 1  and X < 1/2

we get the inequality

o /~\ s. \ -cur2 ” 2o:Xr2 -o/x. - r.)2.2 a x 1 (1 - X) r, e 1 > a x 1 r 1 e 1 e 1 1
 (3.7)

From (3.6) and (3.7) the following inequality is achieved

, . 2  2 2 . 2 , .2 -(x.-r.) -or.  ̂ . . -or,  ̂ - 2aXr. -o^x.-r.) .e v t - e 1 > 2ctxl(l-X)r1e 1 > o x ^ e  1 1 1
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Inserting the above inequalities into the expression 

for i'[2 ] i by virtue of the fact that the terms [a^ + bjr x± ] and 

[a^ + b1 (x1 - r1) ] are bounded , and for a sufficiently large 

we have :

L[z] > a*x1r 1e-°tra+ <*’ “ *' 5 ’ 1 [«*ir? - S) e-2"Xr? _ l 6 K  ]

/ s 2 2 2 9-a(x.. - r.) r -ar -ar, r <?]+ a e 1 1 / [e - e  1 ] la ju, - Si

where S is an appropriate constant being chosen as the 

following:

S =■ max [[aXi + bL Xj_], [a„ + bL (x 1 - rt)]] .

We require l[z] to be positive in H . To see this, let X= 1/a 

and choose a sufficiently large such that the quantities:

(a p r2 - S) e 2J:"1 - 16 and [a ^ rt - S

become positive. Hence we have constructed a function z(x) with 

L[ z ] > 0 in if .

Suppose that u 0 in 0*, then by virtue of 

Theorem 2.3, u < 0 in the domain fi* and hence u < 0 in H.

We consider the part of the boundary of H lying on dB2. 

This set — 0iffl3J32, say, intersects the boundary of 0* only 

on the plane T, Furthermore the intersection set iĈ HT lies at 

a finite distance from the corner of 0*.
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Moreover
u < 0 on dHi\dB 1 and on dHf\T.

2
Now let g(x) =■ e , then by the Mean Value Theorem,

exactly as above
g(r1 - x,) - g(r,) < 2 a x 1 £ < 2 a x1rl

, • f ~ctr2 i v,and since Le — e 1J < 1 , we have

z < 2 a on £]_.

We define a function v(x) by

v(x) = u(x) + [ e/(2ofjr1) ] z(x) .

Then v < 0 on 3H and v = 0 at Q , since z > 0 in H 

and z = 0 at Q . We observe that

L[v] => L[ u + (e/(2ar1)) z]

- L[u] + (e/^ar.,)) L[z]

> 0  in if.

Therefore (by the remarks preceding Theorem 2.3) we get

v < 0 in H ,

and at Q , where v =» 0 ,

dv > 0 and 82v < 0 , by Lemma 2,2 .
dp dp2

We need to calculate 9z explicitly at Q , at which
dp

x,- 0

dz “ grad z . p 
dp

1 3z_ • "i
Ll dxL
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= df (e ar - a)) i'1 + J (f - co) (- 2a e ar ) xi v£. 
3x1 i

—cur 2But at Q , a) = e and f = a) , so we get

3z = 0 at Q .

If 3v = 0 we should move to the second derivative with respect to
3v

v t therefore we need to calculate 3_ (3z) at Q.
3v 3v

As earlier,
32z = J 32z v̂  v-, .
3v2 itj 3x l3xj

From earlier calculation

_  2 „  2 
32z =* (f - co)[- 2a e ar 5j_ + 4 a2 x^ x; e ar ]

dxjdxj

_  2 _  2 
+ 32f (& ar - u>) + 3f (- 2 a Xf e ar )

3x_̂ 3x i 3xj

_ 2+ 3f (- 2 ot x; & ar ) . 
3x^

At Q , only the last two terms are non-zero, so

32z = 2  y 3f v,(- 2 oi e ar X£ v±)
3v2 i 3x1

N̂OTE: The term i =» 1 is zero, but this does not matter, j

Now at the point Q we have the following:

3f “ 2 a r, f is positive, v, < 0 , ) x± vi > 0
3xi i

where v is outward pointing vector to H at Q . Hence we have
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82z > 0 at Q,
Bv2

Then, since

0 £ 92v - B2u + e 82z > 82u
8v2 2 2ar 8»*2 8>»2

we deduce that

82u < 0  at Q
8>> 2

and the Theorem has been proved.□

REMARK 3.1 :

We remark that the same result holds if (L + h) u > 0 , 

by using the same procedure as in Theorem 2.5 .

The following example illustrates the Theorem .

EXAMPLE 3.1

and u attains its maximum (zero) at all points of the boundary.

The function u(x, y) -= - cos x cos y satisfies the

elliptic equation

A u - 2 u - 0

on the square

(ao)

FIGURE [3.2]
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It is sufficient to calculate 3u at the right hand
3r

side of the square:

ux = sin x cos y , u-xx = cos x cos X

Uy = cos x sin y , Uyy = cos x cos y

A u = 2 cos x cos y > 0 in the given square .

At the two right hand corners grad u = 0 , but at other points

uv > 0 and uv =■ 0 . Therefore 3u = 0 at the corners and
or

3u > 0 at other points.
3r

Now we shall show that 32u < 0  at the corners.
3r 2

It is enough to show this at the top R.H. corner (tt/2, x/2):

3u = ux vy + u7 v 2 
3r

2 2 
“ uxx v i +  ̂uxy v ̂ v 2 + uyy v 2

Bv 2

=a “ 2 r1 v 2 < 0

since r1( r2 > 0 at the top R.H. corner. Hence

32u < 0
3r 2

at the top R.H. corner .□

EXAMPLE 3.2

Let fi be the first quadrant in . Let u(x, 7 ) =» - xy 
in n . Then u < 0 in O , u(0,0) - 0 and A u - 0 but

3u(0) = lim u(x) - 0
3r x-*0 |X |
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Also we

since

find that

8 2u 
8p 2

uxx vi + 2 uxy ^i*2 + uyy 

- 2 v, v2 < 0 ,

x - 7

- x

uXX  ^ '

U-,rtr " 0 ,

U xy

yy

-l .□

V

FIGURE [3.2]

JL • < 0 ,
21 • — 2 < ®
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SYMMETRY PROPERTIES VIA MAXIMUM PRINCIPLES
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CHAPTER (III)

SYMMETRY PROPERTIES VIA MAXIMUM PRINCIPLES

SECTION 1
INTRODUCTION

We investigate symmetry of domains and symmetry of 

solutions of second order elliptic equations, in particular the 

symmetry of positive solutions of elliptic equations. The results 

are based on work of Serrin[17], Gidas,Ni,Nirenberg[5 ], Gidas[4] 

and use certain forms of the maximum principle (from Chapter(II)) 

together with a device of A.D.Alexandroff ( Procedure of moving 

parallel planes to a critical point). These techniques were 

employed before by Serrin[17] who treated solutions of elliptic 

equations with over - determined boundary conditions.

PROCEDURE OF MOVING UP PARALLEL PLANES

This consists of moving up parallel planes perpendicular 

to a fixed direction, and then showing that the solution is 

symmetric about a limiting plane.

We assume that Q is a bounded domain in Rn with smooth 

boundary. Let 7 be a unit vector in Rn and let T denote the

hyperplane 7 . x =■ X . For sufficiently large X > 0 the plane

T~ does not intersect £2 since £2 is bounded. Suppose that we X

decrease X , ( i.e. we suppose this plane to be continuously

moved towards £2 , normal to itself, to new positions) , until

ultimately T begins to intersect £2 . We denote by X0 the

first value of X for which T intersects £2 .X
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From that value of X on , the plane T cuts off from ftX

an open cap E(X) ; that is , I(X) will be that portion of ft 

which lies on the same side of as T— .

Let l"(X) denote the reflection of I(X) in the plane T^.

Clearly I**(X) will be contained in 0 at the beginning as X 

decreases, at least until one of the following occurs :

(I) I (X) becomes internally tangent to 3ft at some point

* / T\ 
or

(II) T. reaches a position at which it is orthogonal to 3ftX

at some point Q .

We denote by T : y • x “ X1 the plane T. when it X ̂ X

reaches either one of these positions. Evidently, I (Xn) t ft.

It may happen that if we decrease X below Xt , the reflected

cap L"(X) of I(X) in T continues to be contained in ft. In

that case E'(X)£ ft for X e [^2» ]» where

X2 — inf { X̂ < XQ| E'(X) c ft for X < X < X0}.

Then, L(X2) is called the optimal cap corresponding to the

direction y, and at X2 either (I) or (II), above, must occur.

{ see figure (1.1) below }

---> Y

FIGURE [1.1]

T , T t
K q  A .
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SECTION 2
MAIN THEOREMS

In this Section we will be concerned with positive 

functions u(x1 x 2,...,xnj that satisfy the semilinear elliptic 

equation:

A u + .f(u) = 0  in (u > 0 in Q) (2.1)

with boundary condition

u = 0 on 311 , (2.2)

where Q Q Rn , £ is assumed to belong to the space C 1 (£1) \>ou-r\<he.d -

We first give a result of Serrin [ 17 ] which shows that

for an over - determined problem the domain fi must be a ball in

Rn . We shall then give general results concerning symmetries of 

solutions. In particular, if 0 is a ball then the solution is 

radially symmetric ,

THEOREM 2.1 (Serrin [17])

Let 0 be a domain whose boundary is of class C2 in Rn.

Let u e C2(Q) be a solution of the Poisson differential equation

A u - -1 in n (2.3)

together with the boundary conditions

u =» 0, Su — constant on BQ (2.4)
dv

Then fl is a ball.

REMARKS 2.1

(I) By the maximum principle, we have u > 0 in ft.

(II) It will follow that u is radially symmetric (see Theorem 

2.2), and in fact u must have the form (R 2 - r2)/2n , where R is
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the radius of the ball and r denotes distance from its centre, 

(see Serrin [17])

PROOF OF THEOREM 2.1 :

We first follow, exactly as in Section 1, the procedure 

of moving up parallel planes to a critical point. This will lead 

to the assertion that fi must be symmetric about the plane T
1

To see this, we observe that for any given direction in 

Rn there would then be a plane T with normal in that direction

such that 0 is symmetric about T and would have to be simply
xi

connected.

Assuming that the assertion holds, and since this is true 

for an arbitrarily chosen direction and since 0 is simply

connected, then 0 must be a ball.

We choose an arbitrary direction, which we may assume to 

be x 1 and move the hyperplane towards along the x n- axis.

In order to show that S7 is symmetric about T , we
xi

recall, from Section 1, the definitions of XQ, Xlf 2\, L(X) and

L"(X) for X e [ X j j X0]. Now we define a new function v(x) in

E'CX,) by :

v(x) - u(x ) for x e E'CX.,) ,

where x is the reflected value of x across T . Evidently v
xi

satisfies the differential equation:

A v ■=* - 1 inZ"(X1)

and the boundary conditions
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v =» u on 3x'(x.,)nr

rj
v = 0, dv = constant = c on 3X" (X1 )fl(T ) ,

a, Xi
Q

where the constant being the same as in (2.4) and (T. ) denotes

the complement of (T ) .X1

We now wish to consider a new function

w = u - v in X" = X' (X1) ,

since X"(X1) is contained in 0 by construction. The following

holds :

A w - 0 in X" ,

v - o on 3x'nrXl

an<̂  w > 0 on 3X"n(TXl)C ,

where the latter condition is a consequence of u > 0 in 0 .

Applying the strong maximum principle as in Theorem 2.3

of Chapter (II) to the function w we get : either

w > 0 in X" , (2.5)

or

w = 0 in X". (2,6)

Therefore if (2.6) holds, we get

u(x) £3 u(x ‘̂1) for x e X(X.,) .

Since u > 0 in 0 and u =» 0 on 30, then the reflection of any

point x e 30 can not lie inside 0 but along 30. i.e. the

reflected cap X" must coincide with that part of 0 on the same

side of 2\ as X'' , that is 0 must be symmetric about TX1 x,
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To complete the proof of the theorem we must show that 

(2.5) is impossible.

Recall that for X = Xi either :

(a) L" is internally tangent to the boundary of ft at some point 

P / T , or

(b) T is orthogonal to the boundary of ft at some point Q .
X1

Suppose that we are in case (a) , then w = 0 at P . By virtue of 

Theorem 2.5 of Chapter (II) we have :

8w = 8(u - v) > 0  at P .
8r 8p

This contradicts the fact that

8u == 8v — constant =* c at P. 
dv Bp

Hence in case (a), (2.5) is impossible.

Thus we assume that there is a point Q e 8f2 where T

is orthogonal to 8ft [i.e. case(b) ]. That means Q is a right

angled corner of 'L< . Now we shall show that:

(i) u - v (=■ 0 at Q) has a zero of order two , 

and

(ii) apply Theorem 3.1 of Chapter (II) to reach a 

contradiction.

For (i) f let Q be the origin of our coordinate 

system , with x^axis being normal to T and xn-axis being
Ai

directed along the inward normal to 8ft at Q . Since, by

hypotheses , the boundary of ft is of class C2 , u e C2(U) and

u “ 0 on 8ft, then we have the following representations:
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xn “ ^(X, ,X2.... *n-i) » (2.7)

u(x1 , . . . . x ^ ,  , \ P )  = 0  (2.8)

We also wish to establish a representation for the boundary 

condition du/dv = c on 30 in the light of the above coordinate 

system and new representations (2.7), (2.8). To do that we

form, from (2.7) , the function :

F(x, ,x2, . . . ,xn) = ^(x, ,x2 v J  " xn = 0 *

The direction numbers of the normal to the boundary can be 

given by :

grad F = (3iA , . . . , 3i£  , -l]............. (*)
l3x1 3xn_t J

and the direction cosines of the normal by :

grad Fp_ = ______
Igrad F\

Therefore

3 u 3i!/ + . . . + 3u 3^ - 3u
8u - grad u. j. - Sxi 3xi 9xn-i 3xn-i 3*n
9i

I  R

where i = 1 , 2 , . . . , n-1. Thus d u / d v  — constant = c can be

written on 30 as :

V 3u - 3u = c 1 + J \d\If 1 1^ (2.9)
L x ̂ xi ^xi 3xn i l3xxJ J

(i - 1 , 2 .... n-1) .

Differentiating (2.8) with respect to x^ , i — 1, 2,..., n-1, we 

obtain

3u + 3u 3\f/ — 0 . (2.10)
3xx 3xn d x ±
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From (*) and the fact that v. 
3i/'/9xJ[ = 0 , i = 1 , 2 ,..., n-1

(2 . 10),

(0,..., 0, -1) at Q , we have 
Therefore ’ at Q we have: from

8u =*0 , i = 1, 2,..., n-1, and from (2.9) 
dx±

Next we differentiate (2.10) with respect to Xj, j 
This gives :

82u + 82u 8^ + 8u 82ij/ = 0
9xj_8xj 9xn8xj 9xi 8xn 9x^9xj

and evaluating at Q we get:

82a . — c 8 2̂  = 0  at Q
dxjdxj dxj_dxj

8u_ - 
9xn

1,2,...n-1

(2.11)

k - 1, 2,

Lastly differentiating (2.9) with respect to x^ , 

, n-1 , we get :

82u 8 + 8a 8 2̂  - 82u
 ̂ 9x^9x^ 9x-j_ Sx^ 8xj[9x|c 9xn9x^

Y J2ii__19x̂ 1 L dxjdxfc  ±J____
I1 + i j i y l *

and evaluating at Q gives :

92u = 0
8xn9x/c

(at Q)

From (2.3) and (2.11) we obtain :

82u = c A \p —  1 .
3xn3xn

We have now determined all the first and second order derivatives

of u at Q.

Since , by the definition , v(xt , x) - u(- x, , x) ,

(x = x 2, ... , xn), in T"(X1) we find that the first and second
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proof of (i) .

Now for (ii) we apply the boundary point maximum

principle to the function w = u - v in ^ ( X ^  . Since

w > 0 in ^(Xj) , and w = 0 at Q , we get :

9Cu - v) > 0  or 32Cu - v) < 0 (at Q).
3r dv2

This contradicts the fact that both u and v have the same 

first and second partial derivatives at Q , and the proof of 

i the theorem is complete . □

REMARK 2.2

Serrin also gives a similar result for general elliptic 

equations and also for over-determined boundary conditions where 

3u/3v = constant is replaced by du/du =* c(K), where c is a C1 

non-decreasing function of the mean curvature K .

NOTES :

In the proof of Theorem 2.1 we have applied the following 

properties of the Poisson equation:

(I) The Poisson equation is invariant under the reflection 

x — > x^ •

(II) The difference of two solutions obeys the strong maximum 

principle.

The following theorem says that : if (1 is a ball in Rn, 

then the positive solution of the elliptic equation 

A u + f(u) " 0 is radially symmetric about the origin of fi. 

Moreover 3u/3r < 0 for 0 < r < R .
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THEOREM 2.2

Let [2 be a ball of radius R in !Rn . let u > 0 be

a positive solution in C2(Q) of the differential equation

A u + f(u) = 0.

Suppose that

u = 0 on = {x e Rn : ixi =* J?)

and the function f is of the form £ 1 + f 2 where e C'1 and

f 2 is monotonically increasing. Then u is radially symmetric 

and 8u/9r < 0 , for 0 < r < R .

PROOF:

Here we use the maximum principle forms as in Theorem 2.5 

(Chapter (II)) together with the procedure of moving up parallel 

planes . We require, in addition, two technical lemmas to finish 

the proof of Theorem 2.2 .

We pick an arbitrarily chosen direction, as in the proof 

of Theorem 2.1 , which we may assume to be x 1 ; see figure (2.1) 

below . We move a hyperplane T  ̂ along the x,,- axis, normal to 

itself, from the right towards the origin with x 1 positive . Let 

7 = (1,0,...,0) and recall from Section 1 the definitions of \0, 

X1 , X2, Tx, I(X) and L'"(X) for X e [^2> ] ■

Let rx be the hyperplane = 0 . We define x to

be the reflection of x in the plane T , where x e ^(X,) . We

will show that

u(x) - u(x Xl) x e la,). (2.12)

Since the x ^  direction is arbitrarily chosen, (2.12) proves the 

symmetry property .
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By employing the device of A.D.Alexandroff we will be 

able to prove that , for x c I(X)

u(x) < u(x^) (2.13)

where x  ̂ is the reflection of x in the plane Z\, for XeCX^.Xo)*

Now for a given e > 0 and x 0 e we define :

ne - (1 (1 { |x - x Q |< e)

and

Se - 0 (|x ~ xQ|< e}.

LEMMA 2.3

Let xQ e with ^(x,,) > 0 . For a sufficiently small 

e > 0 , assume that u e C2(Qe) , u > 0 in fi and u *= 0 on Se.

Then there exists 6 > 0 such that

X--

FIGURE [2.1]

LEMMA 2.4

Assume that for X e [Xlt X0), the function u satisfies 

8u < 0 

8x,
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and

u(x) < u(xx) but u(x) ^ u(xx) in I(X) .

Then

u(x) < u(xx) in I(X) (2.13)

and • •

3u < 0  onfid Tx. (2.14)

0X 1

(Recall that x x is the reflection of x in )

REMARK 2.3

The set of positive X for which (2.13) and (2.14) hold is

open .

Now we complete the proof of Theorem 2.2 . By Lemma 2,3 

we remark that the set of positive X for which (2.13) and

(2.14) hold is non empty . In light of Remark 2.3 these

properties, (i.e. (2.13) and (2.14)), hold in a maximal interval

((jl, R) , R denotes the radius of the ball 12 .

We claim that fi — X-, . To see this , assume that

/1ju > X1 . Let xQ e 3I(X)\I\. Then x p e f2 . Since
fx X0 = u(xp) < u(x0) , u(x) f- u(x ) in I(/0 . Therefore , Lemma 2.4

holds for \x = X that is 3u/3x1 < 0  on and
fxu(x) < u(x ) in I(ft) . This and the continuity of ou/ox1 

imply that there is an e > 0 such that : 3u/3x, < 0 on a

neighbourhood in the region between and T^_e . By

compactness there exists a strip Qfl{x., > ji-e} on which

3u < 0 . (in f2fl{x1 > fx-e'}) (2.15)
3x1

{Xemma 2.3 can be used to get neighbourhoods on the boundary}.
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Then the definition of fi implies that there is an

increasing sequence (X7*) * £ (^-e, fi) , with lim = n , such
J J j — yx> J

that for each j there is a point xj e £(Xj) for which :

u(xj) > u(xj j). (2.16)

A subsequence which we still call (xj) converges to a point

---- fi pi
x e I(fO as j — > <x> , then xj — » x and u(x) > u(x ) . Since

Lemma 2.4 holds for fi = X we must have x e dL(fx) . If x is
ft finot on , then x lies in n , hence 0 *= u(x) < u(x ) a

contradiction . Therefore x e T„ and x =■ x . On the otherH-

 ̂7hand , for j large , the straight line segment joining xy  to 

xj is contained in Q . Therefore, from (2.16) and the Mean 

Value Theorem it follows that there is a point yj in this

straight line such that :

x fu(xjJ) - u(xj) = 3u_ (yj) . txn (t < 0)
9x1

Since the left hand side is < 0, this implies

9u_ (y f) > 0.
0X 1

Since lim yj = x , we get 0u (x) > 0 , a contradiction 
j— 3x1

with (2.15) . Thus we have proved that jit =« X1 and so far

Remark 2.3 . This completes the proof of Theorem 2.2 .□
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To prove Lemma 2.3 we need a preliminary result.

LEMMA 2.5

INVARIANCE OF THE LAFLACIAN UNDER ORTHOGONAL 
TRANSFORMATION

If y = A x where A is an orthogonal matrix [Ojj] then,

3u y cni t 3u , i = 1,2,. . . , n ,
3xi j=l 3y f

AX U = Ay u .

By the chain rule we get

3u = V 3u 3y;- . - 0  / _______il “ 1,2.... n,
3xi . J tyj dxi

“ \ «if .J “ l,2,...,n ......(2.17)
4/

Differentiating (2.17) with respect to xi we get :

and

PROOF

32u ^  “/j H ] t = 1*2.... n,

Thus

3xi8xj' j dyj k 8yfc

■ y  y H j  ai k 9-u 
J k dyjdyk

Ax u -  y . r y . y, “ i j  “ i t  ]
^  ‘‘j 9yj9yfc

- y . y _9£u_ «jfc - a7 u 
** 37j87fc

lince J ct±k — 8j/c where 8j/c is the Kronecker delta.□
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PROOF OF LEMMA 2.3 :

Since fi is an open connected subset of Rn and u > 0 in fi, 

then du/dv < 0 on 3fie. By hypothesis ^  (xQ) > 0 implies that 

v1 > 0 on S£ for small e > 0. Therefore 0u/8x1 < 0 on S&.

If the.Lemma was not true, there would be a sequence 

jx^j £ fi£ such that x^— » x0, with 3u(x^)/3x1 > 0. For j large the

interval in the positive x,,- direction from x^ intersects S£ at

a point z^ where 3u/3x1 < 0. Thus, since lim zJ = x Q, we conclude
j— >00

that

3u (x 0) = 0 and 32u (-̂ 0) < 0- (2.18)
3x1 3x13x1

case:(i)
Suppose f(0) > 0 {we mean by f(0) the function f(u(xQ)), 

where u(xQ)= 0 }. Then

A u + f1 (u) - f, (0) < f2(0) - fr2(u) < 0

since f 2 is increasing. By the mean value theorem there exists

a function h 1(x) [whose sign is undetermined], such that

A u + h1 (x) u < 0.

Applying the boundary point theorem (Theorem 2.5, Chapter (II)) to

the function - u we find

3u (x0) < 0 , and therefore 3u (xQ) < 0 
3p 3x1

which contradicts (2.18) . 

case:(ii)
Suppose f(0) < 0. Then at x Q e 3fi we find

A u - - f(0) > 0 (at x q) (2.19)
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Since u > 0 in and u - 0 on 3f2, we always have 3ti/9*»(x0) < 0 
at x Q e 3fi. Now if 3u/3j>(x0) <0, we are finished.

Suppose 3u/3^(x0) =» 0. This implies grad u = 0 at x0.
We take a rotation of axes, that is a transformation from x to y 
given by :

y = A x

where A is an orthogonal matrix.
Choose A so that y,- axis is along v_ at x Q e 3ft, i.e.

A §1 = v_

so

v_£ 33 ^  ̂i J 301 al i ’ *** 1»2 , . . . ,n.

Then yj_ = Zj a±j xj and by Lemma 2.5 (setting J = 1) we get

3u ). <k- cxll .
3x1 1 3yjr

Since u - 0 on 3fl, all tangential derivatives of u are zero on 

3f2 [c.f. argument in Serrin's proof (Theorem 2.1)]. In particular 

du/dyj =* 0 , for j =■ 2,3,...,n, and therefore

3u — 3u - r 1 3u “ i> 1 3u (= 0 at x0).
3xn 3y, 3y1 3ji

Next we have :

32u ^ 32u a^ 1 otj t , as in Lemma 2.5
3x3x 1 ±j  dyidyj

= 32u ^ii 1 at x 0 e 3Ii .

since all other derivatives of u with respect to y are zero at x 0 

We get at x0 :

32u — 32u v1 v1.
3x13x1 3y,3y,
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Since the Laplacian is invariant under rotation of axes,

A u(x0) - 82u
87,87,

From (2.19) we have

0 < A u ~ d2u (at x0)

Thus we conclude

82u > 0 (at x 0)
8x, 8x,

which contradicts (2.18). The Lemma is proved. □

PROOF OF LEMMA 2.4

Let x e I''(X). Define the function v(x)= u(x^) . Then

v(x) < u(x) (v(x) ^ n(x)) (2.20)

and v satisfies

A*\T + ;f(v) “ 0. (2.21)

Let w = v - u . Then

w < 0 (2.22)

and satisfies

A w + f ,(v) - f,(u) > f2(u) - f 2(v)

> o

since f2 is an increasing function. By the mean value theorem, 

there exists a function c,(x), whose sign is undetermined, such 

that

A w + c,(x) w > 0 for x e E"(X). (2.23)
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Applying Theorem 2.5 in Chapter (II) to inequalities (2.22) and

(2.23) and recalling that w = 0 on flnrx we get :
X

w < 0 in I"(\) (this gives u(x) < u(x ), x e I(X))

and

8w > 0  on fi n rx.
3x1

But on rx

8w = 8v - 8u > - 2 8u .
8x 1 8x 1 8x, 8x 1

Thus , 8u/8x < 0  on fiflTx and the proof of Lemma 2.4 is

complete . □

REMARK 2.3

The function f(u) is of the form

f (u) - f, (u) + f2(u)

where .f 1 e C  (17) and f 2 is monoton.ica.lly increasing if f is 

locally Lipschitz continuous , as stated in Gidas, Ni, Nirenberg 

[5 ] . This follows from the following facts.

DEFINITION :

The function f(u) is called locally Lipschitz on Rn if 

for all M there exists a constant K ™ K(M) such that

|f(u) - f(v) | < K\u - vi^ |li| < M and m  < M ,

where K is called a Lipschitz constant.

LEMMA 2.6

If u eC°(S7) then there exists a positive constant M 

such that :

|u(x) | < Af for each x e £7.
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LEMMA 2.7
If on a neighbourhood B^ £ Rn

If (u) - f (v) I < K\u - v|

then

f (u) = f -j (u) + f 2(u) 

where f1 is Cy and f 2 is monoton.ica.llj increasing function. 

PROOF:

Take Q > K and let

f2(u) =■ f(u) + 0, u + m. (m =■ an arbitrary constant) 

Then for u > v

f2(u) - f2(v) =■ f(u) - f(v) + J2 (u v )

> - K (u - v) + J2 (u - v)

- (J2 - K)(u - v) > 0.

So f2 is monotonically increasing. Also f(u) = f2(u) + (- f?u- m)

and f 1 (u) = - fiu - m is certainly C71 . D

In the following theorem we investigate the symmetry of 

positive solution of the elliptic equation

A u + f(u) = 0

in a domain 0, not necessarily a ball. We require 12 to be bounded 

and with smooth boundary 00.

THEOREM 2.8

Let u satisfy the differential equation

A u + f (u) - 0 in 0

with the conditions

u > 0 in 0 and u — 0 on 00 .



69

Let X e (X,, XQ) . Then

3a < 0 and u(x) < u(x^ ) (2.24)
3x,

for x € E(X) . Moreover, if 3a/3x1 = 0  at some point in fl fl 2\i *

then u is symmetric relative to the plane !FXl and

(l - I u r  u (rXlnn) .

NOTE:

The definitions of X, Xp, X1 , Tx, TXl , E(X) , Z"(X), E(X,) 

and E' (X, ) are as before. We define T = E(X,) and E" 5=1 E"(X1) .

PROOF OF THEOREM 2.8

Take x p e 3Q, such that i»1(xQ) > 0. Then by Lemmas 2.3 
and 2,4 we have,for sufficiently small Xp - X > 0,

3u < 0 and u(x) < u(x^) V x e E(X). (2.25)
3x1

Decrease X until a critical value ^ > X-, is reached, beyond 

which (2.25) no longer holds . Then (2.25) holds for X > /x, 

while for X = fi , by continuity, the following happens :

3u < 0 and u(x) < u(x^ ) for x e E(/0 (2.26)
3x1

The same argument as in the proof of Theorem 2.2 applies to show 

that =* X1 .

Now, since /i =■ X1 , it follows that (2.24) holds for 

X > X1 . By continuity,

3a (x) < 0 and u(x) < u(x^) in I(X1).
3x1



Next suppose that there is a point x e OfirXl at which 

3u/3x1 =■ 0. Then Lemma 2.4 implies that

Xu(x) s u(x 1) in ECXj).

Therefore u is symmetric in TXl . Since u > 0 in E(X-,) and 

u = 0 on 3fl , we conclude that

o 3 I u r  u(rXl H-O) ♦

This completes the proof of Theorem 2.8 . □

REMARK 2.5

A positive solution of A u + f(u) =0, u = 0 on 3fl 

satisfies grad u ^ 0 on the maximal cap £(X.,).
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SECTION 3
MORE GENERAL RESULTS

We show how Theorem 2.2 of Section 2 can be proved as 

a consequence of Theorem 2.8 (Section 2) .

PROOF OF THEOREM 2.2 USING THEOREM 2.8 :

For an arbitrarily chosen Xj- axis, we apply Theorem 2.8 

to the function u on the positive side of x t- axis. Then we 

see that :

3u < 0 (for > 0).
9x,

Similarly, applying Theorem 2.8 to u in x 1 < 0 gives :

8u > 0 (for < 0).
8x,

Hence , 0u/3x1 = 0  on x 1 «■ 0 . By the last assertion of

Theorem 2.8 we infer that u is symmetric in x 1 . Since the

direction of x.,- axis is arbitrarily chosen, it follows that u is 

radially symmetric and 3u/0r < 0 for 0 < r < R . □

Theorem 2.2 suggests the following theorem. We shall

use Theorem 2.8 in its proof.

THEOREM 3.1 (Gidas, Ni, Nirenberg [5])

Suppose that u satisfies the equation :

A u + f(u) - 0

in a ring-shaped domain R' < |xi < R , with

u > 0 ini?"<|x|<i2 ,

u “ 0 on |x| = R ,

u e C2(R'< |x| < R) .



72

Then

9u < 0 for R' + R < |x| < R. 
dr 2

This means that u has no critical points in the larger half of 

the ring .

PROOF:

Take the direction y , arbitrarily chosen, as positive

x.,- axis. Let Z,̂  denote the maximal open cap corresponding to

y , and Ẑ , the reflected cap of T.y (see figure 3.1). It

follows from Theorem 2.8 that

y . grad u < 0 in Z,y .

Since y is arbitrarily chosen , then the union of the maximal

caps is the region (R'+ R)/2 < |xi < R .

Suppose that there is a point y with lyi = (R"+ R)/2, at

which du/dr = 0 . Then with y =■ y/iyi , the last assertion of

Theorem 2.8 implies that

0 - z7 U Z'

which is impossible . P

REMARK 3.1 :

If in addition to the hypotheses of the theorem above we

assume that u = 0 on |xi = R" and u e £72(R" < |xj < R) , then

one might think that u is radially symmetric . Using an example 

by Schaeffer, Gidas [4] shows that this is not true in general.



FIGURE [3.1]

COROLLARY 3.2 (Gidas [4])

Let H be a convex domain in Rn. If a function u satisfies 
the hypotheses in Theorem 2.2 of Section 2, then there exists a 

neighbourhood of 30 in fi where u(x) cannot have critical 

points .

EXAMPLE 3.1

We take an ellipse as an example of a convex domain. We 

find that the critical points of u ( if any ) lie in the shaded 

region in Figure (3.2) (the origin alone in this example),

k

FIGURE [3.2}
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PROOF OF COROLLARY 3.2 :

Applying Theorem 2.8 implies that u has no critical 

point in any maximal cap . The union of the maximal caps covers 

all of Q except for a small region about the origin , see Example

3.1 above . □



Chapter (IV)

SYMMETRY PROPERTIES OF SOLUTIONS OF SYSTEMS 

OF ELLIPTIC EQUATIONS
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CHAPTER (IV)
SYMMETRY PROPERTIES OF SOLUTIONS OF SYSTEMS 

OF ELLIPTIC EQUATIONS

SECTION 1

INTRODUCTION

We shall see in this chapter how the previous results 

can be extended to certain systems. This was done by Troy [23].

We shall be concerned in this chapter with solutions of 

systems of the form

A ui + ,u2,...,um) = 0  in 0 , i = 1,2,...,m (1.1)

where O is a domain in Rn , with the condition

Uj_ > 0 in fl and = 0 on 30 VI. (1.2)

The functions f£ are assumed to be C1 and satisfy the condition

dfi > 0 for , 1 < l,j < m. (1.3)
duj

We wish to determine a class of domains fi for which the 

solution of the problem (1.1), (1.2) is symmetric about a point in 

0. In particular, we shall show that the solution is radially 

symmetric in case 0 is a ball. However, if 0 is not given but we 

add the condition 3û /3j> ** C  ̂ on 30, i = l,2,...,m, where Ci is a 

constant and v is the outer normal to 3fl, then Q must be a ball in 

Rn and the solution is radially symmetric.
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MAXIMUM PRINCIPLE AND THE RELATED 
BOUNDARY POINT THEOREMS

Here we discuss the extension of Theorems 2.5 and 3.1 of 

chapter(II) from the scalar versions to systems.

Ue define the operators :

Li = J a ;ic(x) d2  + y b j(x) 9  (1.4)
j,k dxjdxk j dxj

i — l,2,...,m and 1 < j, k < n, where each is uniformly

elliptic .

The following theorem is an extension of Theorem 2.5 of 

Chapter (II) to systems.

THEOREM 1.1

Let u^(x) e C2(fl) fl C° (A) satisfy the system of 
differential inequalties

Li[ul] + h±j(x)uij > 0   (1.5)
J

in a domain fl Q Rn with Uj_ < 0 in fl for all i = 1,2f ... ,m.

Suppose that the coefficients ajk> hj_j are uniformly

bounded in fl, and that for x e fl,

hij(x) > 0, i * J, 1 < i, J < m ........(1.6)

(i) If for some k, u^ vanishes at an interior point of fl,

then

Ufa s 0 in fl.

(ii) If 3fl satisfies an interior sphere condition at a point

Q f 3fi with Ufc(Q) - 0 , for some ic, then we have
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3ufc(Q) > 0
dp

unless U£ = 0 in fi, where p denotes the outward normal to 3H 

at Q.

PROOF :

From (1.5) we have

Lk[uk ] + hfcfc uk => - ^ ^ hkj

1 1 5 since uj < 0 and hkj > 0 for k^j. Therefore

Theorem 2.5 of Chapter (II) applies to uk , and the proof is 

complete .□

REMARK 1.1 :

This is a shorter proof than the one given by Troy[23], 

THEOREM 1.2

Let 0 £ Rn be a domain with C 2 boundary and let T be a 

plane containing the normal to 3D at a point Q € 0ft. Let 0* denote

the portion of fi lying on some particular side of T.

Let e C2(fi*), X =■ l,2,...,rn, satisfy the system of 

differential inequalities (1.5). Assume that < 0 in 0* for

all X and that there is j such that uj < 0  in 0* with ̂j(Q) =* 0.

Then either :
3 u j ( Q )  > 0  or d2uj(Q) < 0, ...(1.7)
3 p dp2

unless uj = 0.

Here p denotes the outward directional normal at Q e 3fi, 

also the coefficients of L± with hij (x) in (1.5) are assumed to be 

uniformly bounded.



PROOF :

We proceed as in Serrin's proof of the Hopf boundary

point theorem at a corner (Theorem 3.X, Chapter (XX)).

We define the region H by :

H =

where c Q is an open ball with radius r1 and internally

tangent to fl at Q, B2 is an open ball centred at Q and with

radius r2. We take r2 < j 2̂.

Define

—OiXVj_ = e 1 u i > 1 < i < m.

Then satisfies

ym ,

0 < Li[ui] + I hij uj 3 Li [ vi ] + («2 aii * « + hii'> vi

ym
+ l j hi-jvj >   (1 -8)

where l } is an elliptic operator containing no zero - order

terms , For large a and all i ,

o’2 a1 1 + « b1 + ĥ j_ > 0

since a1 1 , b̂  and hj_j_ are bounded , and 1 is positive .

By (1.6) , it follows from (1.8)

[vi ] — 0 in A , I - 1, . . . , m

and V£ < 0 in fl .

Applying Theorem 3.1 of Chapter (II) to vj for some 

the result follows .□
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SECTION 2
MAIN RESULTS

The following is a generalization to systems of the 

result in Section 2 of Chapter (III) . Our work is based on Troy 

[23].

THEOREM 2.1

Let fl <=■ Rn be a ball of radius R . Let e C2(fl) satisfy 

the differential equations:

A U| + fi(u1lu2l...,uJ2j) = 0  ,i = 1,2,...,m, (2.1)

where is C1 and satisfies the condition

dfi > 0 , 1 < i,j < (2.2)
9uj

Suppose that

> 0 in n and = 0 on 30 for all i. (2.3)

Then for each 1, is radially symmetric and du^/dr < 0 for 

0 < r < R.

PROOF :

We require three technical lemmas which are extensions of

Lemmas 2.3, 2.4 and Theorem 2.8 of Chapter (III) for the scalar

problem to systems.

We pick an arbitrarily chosen direction which we may 

assume to be the Xj- axis and move a hyperplane T  ̂ from infinity

towards fl retaining its normal in the positive x.,- direction. In

our construction of the caps, let y be the unit vector (1,0 ,...,0) 

and recall from Chapter (III) the definitions of \0, X1? X2, T 

I(X), E"(X), KX,) andI"(X1) for X e [^2» ]*
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Now for a given e > 0 and x Q e 3n we define :

= £2 n {|x - x Q I < e} , x e Rn ,

and

S£ = 3H fl {|x - x 01 < e} , x e Rn .

LEMMA 2.2

Let x 0 e 30 such that r,(x0) > 0 . Choose e > 0

sufficiently small so that y ( x )  > 0 , for each x e S€. Assume

that for each i, 1 < i < m , e C 2(Q£) , u^ > 0 in tle and Uj_ = 0 

on 8ne. Then there exists 5 > 0 (independent of i) such that

du£ < 0  in fig.
0x 1

LEMMA 2.3

For X e [ X1, XQ) and some 1,(1 < i < m), assume that the 

function satisfies :

duj_ < 0  , x e L(X) , (2.4)
3x,

and

Then

and

U£(x) < u_l(xX) but ujf(x) f- uj(xX) in I(X) . (2.5)

u^(x) < ui(xX) in £(X),

3u^ < 0  on 0 fi T\.
3x,

LEMMA 2.4

Let u “ (u1,u2 um) satisfy the differential equations

A ui + fjr(u, >u j , . . . ,ura) — 0 in 0 .
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Suppose that

Uj_ > 0 in 0 and uj; = 0 on 3n.

Then for X c (X1, X0),

3u^ < 0 and u_£(x) < u^(x^) for x e L(X) .
9x1 ..... (2.6)

If for some i, 3u-jy3x1 = 0  at some point in £3 fl , then 

Uj; is symmetric in the plane T^1 and Q = S(X1 )UE“' (X1 )U(T^1 nn) .

We now complete the proof of Theorem 2.1 assuming Lemmas 

2.2, 2.3 and 2.4. We may assume without loss of generality that 

the ball 17 is centred at x =■ 0 in Rn .

By Lemma 2.4 we have, for any choice of the x,- axis and
each i,

8uj_ < 0 for x 1 > 0.
3x,

Also, by the same lemma it is easy to see that

3u^ > 0 for x 1 < 0.
3xt

Furthermore we get

3uj_ “ 0 at x, » 0,
3xn

since e C2(Q). Therefore Lemma 2.4 implies that U£ is

symmetric in the x.,- axis. Since the x^- axis is arbitrarily 

chosen, it follows that uj_ is radially symmetric for each i and 

3u^/3x1 < 0 for 0 < r < R .□
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We now turn to the proofs of Lemmas 2.2, 2.3 and 2.4 .

PROOF OF LEMMA 2.2

Assume that i has been chosen and is held fixed. Since Q 

is an open connected subset of Rn and U| > 0 in fl£) then

9iii < 0  on BQe.
01'

Also, i> 1 (x) > 0 implies that v, > 0 on S& for small e > 0. 

Therefore

Buj_ < 0  on Se.
0x,

If the Lemma were false, then there would be a sequence

{x~̂ } Q Q£ such that x^ — =► xQ as j — > oo and 0uj;(x^)/0x, > 0.
JeN

On the other hand, for each J, the interval from xJ in the 

positive x d i r e c t i o n  intersects S£ at a point z? such that 

zJ — > x 0 as j — > oo.

Since 0uj_(z^)/0x, <0, we conclude that

0u^(x0) = 0 and 02Uj_ (x0) < 0 . (2.7)
0x1 9x10x1

cased):

Assume that fj_ (0) > 0 [fj;(0) » f j;(u, (x0) , . . . ,um (x0) )

with ui(xQ) = cTJ. Then in , u^ satisfies

A Uj_ + , . . . ,um ) " fi W  1 0 •

hence, by the mean value theorem there exist functions

17, (x)....17n(x) defined for x e fl and with values in Rn such that



Applying Theorem 1.1 (Section 1) to -uj_ implies

3u^(x0) < 0, hence 3u_£(x0) < 0 
8? 3x1

contradicting (2.7). 

case(ii):

Assume that fj;(0) < 0. Then at x Q we get 

A ui = - £j_(0) > 0.

Applying Lemma 2.3 , Chapter (III) , the result follows.□

PROOF OF LEMMA 2.3

Let X e [Xlt X0). For each 1 *= 1, . . . ,m, we define the

function

vj_(x) = u^(x^) for x e X"(X).

Then v^(x) satisfies

A V1 + £l(vi» • * • = 0 inL'(X).

Define the function

wl(x) = v±(x) ~ u±(x) i-n E'CX), 1 < i < n. 
Applying Lemma 2.4 , Chapter(III), the result follows.□

PROOF OF LEMMA 2.4

Since v 1 (x) > 0 for x e dQ fl 3(I(X)), then by Lemma 2.2
we have

3uj; < 0 and u^(x) < ul(x )̂ at x € » (2.9)
3x,

for X0 - X > 0 sufficiently small.



84

Decrease X below \0 until a critical value [i > X, is

reached beyond which (2.9) no longer holds for some uj . Then

(2.9) holds for uj for X > p, while for X ==

< 0 and uj(x) — ^or x 6 •
3x1

Theorem 2.8 of Chapter (III) applies to uj and the result 

follows.□

THEOREM 2.5

Let fi £ R be a domain whose boundary is of class C2. 

Suppose that uj’, I ■= l,2,...,m, satisfies the system of 

differential equations :

A Uj_ + fi(uA,u2>... ,um) = 0  in n (2.10)

with the condition

Uj’ = 0 on 0Q at all 1 < i < m, (2.11)

where fj_ is assumed to be of class (71 and satisfy the condition

Bfi > 0 , , 1 < < ra (2.12)
3uj

Further we assume that

3uj; ° Cj on 3fl (2.13)
B p

where Cj_ is a constant and p denotes the outer normal to 3ft. 

Then ft must be a ball.

PROOF :

We use the same device of moving parallel planes as in 

Section 1, Chapter (III), and adopt the same notations.
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Define the function v_̂ by

Vj(x) = Uj_(x^1) for x e I"(X1), 1 < i < m ...(2.14)

where x^1 is the reflected value of x in the plane rXl. For each 

I the function V£ satisfies the differential equation

A v± + f i (v, , v2 , . . . , vm) = 0  in n (2.15)

with the boundary conditions

Vi =» u On 9E'(xt)nrXl,

= 0 and 3v^ = on 31'* (X1) H(TXl ) ,
3y

where the constant being the same as in (2.13) and (TXl)

denotes the complement of (TXl). Further we define the functions

Wi = Vi - U£ in I"(X1). (2.16)

Then, by the mean value theorem, there exist functions

£ 1 (x).... £n(x) defined for x e Q and with values in Rn such

that

A Wi + T 3£i(£x(x)) Wi - 0.
Lj dWJ

Therefore ,

A Wi + - - J 3fi (£ }(x))wj.
dwi Lj dwj

Since Bfi/dwj > 0 for i * j and by virtue of Lemma 2.3 , (2.16) 

implies wj > 0  in Z"(X1). It follows that

A Wi + h a  Wi < 0 in L" (X1) .... (2 .17)

Wi - 0 on 3l*'(X1)nrXl --- (2.18)

wi > 0 on 3L"(X1)n(rXl)C .....(2.19)
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where h^j = 3f^(£ j(x) )/3wj.

Applying Theorem 2.3 of Chapter (II) (as in Theorem 2,1 

of Chapter^III) ) the result follows.□

REMARK 2.1

The proof above is similar to Troy's one .

EXAMPLE 2.1 :

STEADY STATE SOLUTIONS OF SOME 
REACTION—DIFFUSION EQUATIONS

The following model represents a system which satisfies 

the essential condition (1.3) of Section 1.

The Belousov - Zhabotinskii reaction in a capillary tube 

leads to a system of equations, given by Field and Noyes [2],

3u = 32u + F(u, v) ,  (2.20)
3t 3x3x

3v = G(u, v) ,  (2.21)
3t

where
F(u, v) = s ( v - u v  + u -  q u2) ,

G(u, v) - (l/s)(- v - u v + f u0) ,

s is a given constant (s =• 77.27 in the application), q is a 

small constant (q = 8.375 x 10-B) and f is a numerical parameter

taken in the range (±+J~2, co) (Field and Troy[ 3 ]) , (uQ, vQ) are 

the unique positive constant solutions of (2.20) and (2.21) given 

by

u„ - {1 - f - q + [ (1 - f - q) * + 4 q (1 + f) ]i }/2 q
 (2.22)



and

v0 - f u„/(l + U0) .  (2.23)

Here we show that u0 > 1. Since (1 - £ - q) < 0  for f > 1, then

U 0 =  1  .' ( 1  - f - q) + !l - f - qi 1  + 4q(l + f)
2̂ * L ( l - f - q ) 2 I -

1 (1 - f - q) + |1 - f - q 1 + 2q(l + f)
(1 - f - q)2

(using ( l + x ) ^ - l + £ x  for small x)

(1 - f - q) + ll - f - qi + 2q(l + f)1
2q

1 + f

|1 - f - qI 

, since |1 - f - qi = -(1 - f - q)
|1 - f - q|

= 1 + f - 1 + 2/(f - 1)
f - 1

so u0 > 1 for f > 1 (and q small). Note that this gives

u q — 2.414 for f = 1 + J~1 .

REMARK 2.2

One can, of course, calculate uQ using a calculator for 

the given values of f and q. This gives the answer very close to 

that above (=* 2.41433).

Now, It is reasonable to consider diffusion in v also. 

Then (2.21) gives

9v =- A v + G(u, v) 
dt



Then steady state solutions satisfy the second order elliptic

system:

A u + F(u, v) = 0,  (2.24)

A v + G(u, v) = 0.  (2.25)

By changing variables to

u, = u - uQ, v1 = v0 - v,

one gets:

A u, + ir(u1 + uQ) Vg - v,) = 0 , 

-A v1 + G(u1 + u0, vQ - v^) “ 0,

or
A u1 + F,(u,, v,) - 0,  (2.26)

A vT - ^(u,, v,) =■ 0,  (2.27)
where

F1 - s[v0 - Vl- (Ul vQ - u, v, + u0 v0 - u0 v,) + (u,+ u0)

- q (uj + 2 u, u0 + uj)],  (2.28)

G1 = 1/s [-(v0 - vn) - (ut vQ - u1 v, + uQ vQ - u0 vn)]. 
 (2.29)

Note that for physical reasons, (Troy [23]), (u, v) are

constrained to satisfy the inequalities

u0 < u < 1/q, 0 < v < vQI ..... (2.30)

so (u1, vt) satisfy the inequalities

u0 < ti,+ u0 < 1/q, 0 < v1 < v0....... (2.31)

Differentiating F t and £?1 with respect to v1 and u, , 

respectiv ly, we get
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0F, = 3 [ (u, + U 0) - 1 ],

9^7

a = i/s (v0 - v,).
011̂

From (2.22),(2.23) and (2.31) we have :

3F 1 > 0 and ) > 0 .
8v1 8u1

Therefore, we conclude that Theorems 2.1 and 2.5 apply to 

equations (2.26),(2.27) and hence to the Field - Noyes model 

(2.24),(2.25).□

REMARK 2.3

Example 2.1 is a complete version of the one given by

Troy [23]

NOTE :

A thorough treatment of system (2.20), (2.21) can be 

found in Field and Troy [3].



Chapter (V)

THE P-FUNCTION FOR SOLUTIONS OF 

A u + f ( u ) = 0
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CHAPTER (V)
THE P - FUNCTION FOR SOLUTIONS OF 

A u + f(u) — 0

INTRODUCTION

The elliptic partial differential equation A u + f(u) = 0 

has been of much interest because of its many applications. The 

maximum principle is an excellent tool for the study of 

properties of its solutions .

The papers by Stakgold and Payne [22], Payne, Sperb and 

Stakgold [12], Schaefer and Sperb [16], Payne [9] and the recent 

book by Sperb [21] show applications of different kinds of maximum 

principles to solutions of A u + f(u) = 0.

In Chapter(III) we have seen how maximum principles can 

be used to show some symmetry properties of positive solutions of 

A u + f(u) =0. In the present chapter we follow Sperb [21] and we 

study the function P defined by

P(x) - g(u)\grad u |2 + h(u), 

where u(x) ..is a solution of A u. + f (u) = 0  in (3.

We shall show that P satisfies a maximum principle if the 

functions g(u) and h(u) are chosen appropriately. This will lead 

to a derivation of useful bounds for all kinds of quantities that 

are of interest in problems governed by this equation as will be 

illustrated by some examples.
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SECTION 1

THE ONE - DIMENSIONAL PROBLEM

It is convenient to start with the simplest cases and 

then proceed to more complicated situations.

we consider the differential equation

u" + f(u) = 0  in (a, b) (1.1)

where f > 0 and u is a function of one variable x e (a , b) 

and the primes denote differentiation with respect to x. For 

practical reasons we introduce a numerical parameter X which we 

may assume to be positive, since we are iterested in positive 

solutions, and take X f(u) in the place of £(u) in (1.1). Also for 

convenience we assume that the interval under consideration is 

finite and take the interval (0, 1).

Adding the boundary conditions u(0) = u(l) = 0  to (1.1) 

brings us to the problem :

u" + X f(u) - 0 , u(0) = u(l) = 0. (1.2)

REMARKS 1.1 :

(I) The nonlinear problem (1.2) arises as one of the physical 

problems involving the steady state temperature distribution in a 

material bounded by two finite parallel planes which lead to the 

problem of determining those positive numbers X for which (1.2) 

has a positive solution u(x) in the interval (0, 1).

(II) All nonzero solutions of (1.2) for X > 0 are strictly 

positive and have exactly one maximum on (0, 1) {Laetsch [6 ]}.
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ruNow we let F(u) - f(s) ds and multiply (1.2) by u":
J o

u" u" + X f(u) u" = 0, (1.3)

which, on integration, gives

1 (u")2 + X F(u) = constant. (1.4)
2

Therefore, in the case of (1.1), the function

P = ( O 2 + 2 F(u) (1.5)

is just a constant.

From (1.3) one can derive an implicit representation of 

the solution as follows :

Let xQ e (0, 1) be the point at which some solution of 

(1.2) assumes its maximum = u(xQ), then u"(x) > 0  on [0, x 0 ]

and u"(x) < 0 on [xQ, 1]. From (1.4) we get

1 ( O 2 + X F(u) - X F(u ) , (1.6)
2

and integration gives :

| [F(um ) - F(S) ]“* ds - x„ (2X)^, x e [0, Xq J, 0-7a)

T  [F <um) " F <s> f i ds ~ O  “ x oM2X)*, x e [x0, 1], (1.7b)

Setting x = x Q and u(x) = u , we see that x 0 = 1 and
2

u(x) = u(l - x) ; that is any solution of (1.2) is symmetric about

x = 1 .{This was shown by Laetsch [6 ]}
2

Therefore, equations (1.7) may be used to construct the 

solutions of (1.2), Similarly, different boundary conditions for
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u(x) can be treated provided that condition (1.7) is modified 

(see Sperb [ 21 ]) .

For equations more general than (1.1) we may take, for 

example, the equation

ft(u"2) u" + g(u) = 0, (1.8)

where h is a function of (u'2). Introducing f = u"2 and using 

the fact that

df = d£ du' “ 2 du d2u ,
dx du" dx dx dx2

we find that

1 H(u'2) + G(u) = constant, (1.9)
2

where dH/ds - h(s) and dG/ds = g(s). From (1.9) one can construct 

an implicit representation of the solution of (1.8) following the 

above procedure.

Considering problems such as (1.1) and (1.8) gives an

idea of what type of P - functions one has to look for in the

n - dimensional case.
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SECTION 2

DETERMINATION OF P - FUNCTIONS FOR 

SOLUTIONS OF A u + f(u) - 0

Let u e C2(0) D C3(0) satisfy the elliptic equation

A u + f(u) — 0 in 0 (2.1)

where 0 is an open connected subset of Rn . We shall be concerned■ 

with positive solutions of (2.1).

We aim to find conditions under which the function P } 

defined by :
P :== g(u) \grad u| 2 + h(u) , 

satisfies a maximum principle, u(x) being a solution of (2.1). 

According to Section 1, the function

P = \grad u |2 + 2 F(u)

is a possible candidate. Recall, from Chapter (II), that if a 

function u satisfies an elliptic inequality :

L[u] = Y aij(x) 82u + J b±(x) du > 0  in
. . dxidxj , 9xf

(i,J = l,...,n), then the following holds :

(I) If u assumes its maximum value M in Q, then u = M 

throughout •

(II) If u assumes its maximum value M at a point Q e 80, then 

either

u ® M in (] or 8u (Q) > 0
8

where v is the outward normal to 90 at Q.
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2Going back to our function P = |grad ui + 2 F, it

will follow that P satisfies a maximum principle if P satisfies 

an inequality of the form L[P] > 0 in Q.

LEMMA 2.1

(the last term contains more positive terms).□

At this stage, we would like to split Section 2 into 

three subsections.

2.1 UPPER AND LOWER SOLUTIONS AND EXISTENCE 

OF SOLUTIONS OF A u + f(u) - 0

The formalism of upper and lower solutions is of 

importance in the following sections.

DEFINITION 2.1:

For any sufficiently smooth function u : Rn — > R 1 and 

for n > 1, the following inequalities hold :

PROOF :
By Schwarz's inequality

An upper solution to the boundary value problem

A u + f(u) = 0 in 0
( 2 . 2 )

u - 0 on an,
where f e C1(H), is a function ^(x) satisfying
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A uM + f (uM) < 0  in 0

uw > 0  on 3n, M "

A lower solution u (x) is a function that satisfiesm

A u + f(u ) > 0 in Q m m ~

u < 0  on SO. m “

LEMMA 2.2

Let u (x), uw(x) be lower and upper solutions, m M

respectively, and suppose that

u (x) < u..(x) , x e fLm M

Then there exists at least one solution u(x) of (2.2) satisfying

the inequality

um (x) < u (x) < U -̂Cx) , x e fi.

NOTE : The proof of Lemma 2.2 can be found in Smoller [18], or

Sattinger [15], Stakgold and Payne [22] use this result to

discuss the above equation in the special case that

f(s) =■ X s - h(s) , X > 0 ,

where h(s) e C2(- «>, <») and h(0) = 0, h(s) > 0 for s > 0.

2.2 REMARKS ON CURVATURE

Let n be a domain in Rn having nonempty boundary 3fi.

Let 8f2 e C2. For a point Q e BQ, let v(Q) and T(Q) denote

respectively the unit outer normal to 30 at Q and the tangent 

hyperplane to 30 at Q .
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The curvatures of 3D at a fixed point Q0 e 30 are 

determined as follows. By a rotation of coordinates we can assume

that the xn - coordinate axis lies in the direction of the inner

normal at Q0. In this frame we can represent the boundary of 3D 

locally by the equation :

xn = i/'(x") , xf/ e C2, (2.3)

where
x" = (x, , . . . and D \KQq) = 0, (2.4)

where D denotes derivative.

The curvature of 3D at Q0 is then described by the 

orthogonal invariants of the Hessian matrix [I>2̂ ] evaluated 

at Qq. The eigenvalues, k1 , . . . ,/cn_1 , of [D2̂ (Qq) ] are called the 

principal curvatures of 3D at Q0 and the corresponding 

eigenvectors x 1 , x2,...,xn_1 are called the principal directions 

of 3D at Q0.

DEFINITION :

We define the mean cuirvature (or the average curvature) 

of 3D at Q0 by :

K(Q0) - 1 - 1—  A *«?;).........(2.5)
n - 1 n - 11= 1

IMPLICIT REPRESENTATION OF THE BOUNDARY

If the surface 3D is given by an equation

F(x1,...,xn) = 0 with D F & 0 on 3D, then

3F/3xjr is the unit normal to 3D directed towards positive F.
ID F l
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It can be shown that the matrix 8
8x

8F/8xj_i evaluated
ID F |

at a point p e 8Q has eigenvalues -k1, -k2,. . . , -kn_1,0

So the mean curvature is given by

K(p) - -1
n - 1 l8x J

dF/dxĵ

ID F |
(P)

EXAMPLE 2.1

We compute the curvature at the "north pole" of the 

sphere of radius R as an example. First we use the implicit

representation. Let F(x1,...,xn) = RZ- x^ - x\ - x■n

where the xn - axis lies along the inner normal, so that D F
1D F |

is the inner normal.

Then,
8x^

and
9F/8Xj; = - Xj_

ID F |

so that

8 xj
8 F/dx±
ID F I

-  5- xi xj

G /*  1* (2 /*  3

At the north pole, p = (0, 0.... -R), then

axj
{SF/dxn

l|» F|
5-g + R 8 in 8jn

R F 3

-1 0 . . . 0l
R
0 “1 0... 

R
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So
K = -1

n - 1

1 (n - 1) f- 1 
n - 1 I R

I
R

EXPLICIT REPRESENTATION :

From the equation of the sphere we have

2 2 , 2 —2x 1 + x 2 + ... + xn = R

Then, near the north pole, we can represent the boundary 3f2 as

Thus
xn T R~: x x X ,  + + X1 2 - 1

Then

and

> >xn-1)  J R 2 - xixj_
d\p

dxj_
X j

/ R 2 - x"

32̂
dx^dxj

+ Xj, Xj

y js2 - x"2 [i?2 - x"2]

At the north pole x" = 0, and we get

1 0 ..
R
0 1 0 .
. J?

REMARKS 2.1

(I) If xn was chosen along the outer normal one gets the

opposite signs in above calculations.
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(II) The implicit and explicit representations are related. If 

we have
xn = \fr (x1 , . . . .x^.,) on 3f2 where grad i/- => 0,

one can take
F(x, » • • • 3=3 ^ n  —  ^  i ■ ■ ■ j Xfi— i ) •

In the following lemma we shall use the term "normal 

coordinates", by which we mean that we take the x 1,...,xn_1 axes 

along the principal directions corresponding to k1,...,krz_1 at 

a point Q e 90.

LEMMA 2.3
Let u e C2{0) be a function vanishing on 90 where 90 is 

to be of class C2. Then A u can be represented at Q e 90 by the 

identity

A u = 9lu + (n - 1)K 9u (2.6)
9*2 a.

where p is the outward normal to 90 at Q e 90, and K denotes the 

mean curvature of 90 at Q.

PROOF : (we use summation convention)

Following the argument above, we get

xn - iff (x') ; ^ e C2, x" = (x1 , . . . ,xn_1) ,

where we use normal coordinates at Q . Since u is in C 2(0) the 

condition u •= 0 on 90 can be expressed as a twice differentiable 

identity

u (x", if,) s 0, x" - (x,,...^^,). (2.7)

Differentiating (2.7) with respect to x j_, i = l,...tn-l, we get

9u + 9u dip - 0. (2.8)
3xj_ dxn 3xi



Differentiating (2.8) with respect to xj, j = l,,..,n-l 

and evaluating at Q, where 9^/9X£ « 0 (by (2.4)) and hence 

du/dxi = 0  (by (2.8)), yields :

d2u + 9u 32\1/ = 0 (at Q) . (2.9)
dxidxj dxn dxidxj

Considering the coordinate frame above at Q e 90, we get

9u ** - 9u and 92u = 92u . (2.10)
9xn 3j' 9xn9xn 3;'2

Since we have, from (2.9),

92u = - 9u 920 , 1 = 1,...,n-1
dxidx1 dxn dxidxi

then
A u = 9u 92\X + 92u .

dv dx±dx± dv2

Finally, by (2.5), we get

A u -* 92u + (n - 1)K 9a .□
9t>2 3i>

2.3 PRELIMINARY CALCULATIONS

In many calculations the case n = 2 (i.e. the two - 

dimensional case) allows a somewhat different treatment than that 

of n > 3. Also the difficulties that one encounters depend for 

good part on the boundary conditions imposed on u.

As we mentioned before, the function

P = \grad u |2 + 2 F(u)

is a possible candidate, therefore we consider the more general 

form
P - g(u) \grad u |2 + h(u) (2.11)

where u is a solution of (2.1).
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Differentiating (2,11) with respect to xj gives :

BP — g'(u) |grad u | 2 3u + 2 g(u) B 2u Ba + h"(a) 8u 
Bxj Bxj dxidxj 3xj_ Bxj

 (2.12)
where the prime denotes differentiation with respect to u, and we 

use summation convention.

At this stage some simple notation will be convenient;

thus
= du ; ulf = d2n ; u H j  1=3 B3u ,

Bxj; Bx^Bxj 3xj_3xj_3xj
i,j = 1,...,n.

Now differentiating (2.12) with respect to xj gives :

A P - Pjj - g” |grad u |4 + 2 g' ui uj uij

+ g' | grad u |2 ujj + 2 g' ^  uj uj_j

+ 2 g uijj u± + 2 g uij u ^  + h"\grad u\ 2

+ h' ujV.

A P “ g" I grad u |4 + | grad ui2 (g" ujj + h")

+ 4 g' m  UJ Uij + 2 g uL u Ljj + 2 g U XJ uXj 

+ h' uj,.  (2.13)

Using (2.1), it is easy to see that

uLLj ~ ujii “ - f' UJ-  (2.14)

The third term on the right in (2.13) can be expressed, using

equation (2.12), as
4 S' ui uj uij ~ 2 Si uj [Pj - g'\grad u (2 uj - JT uj ]

S ........(2.15)
Thus we can rewrite (2.13) as
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NOTE :

number

A P = Igrad u |4 (g" - 2 z' 2)
g

+ I grad u| 2 (h" - fg" - 2 f"g - 2 h" z" )
8

+ 2 g Uij Uij - hr f + 2 £l U ; P i ,LiJ “ij “J
£

 (2.16)

Up to equation (2.16) the calculation is the same in any 

of dimensions.
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SECTION 3
MAXIMUM PRINCIPLE FOR THE P - FUNCTION

OF THE FORM P(x) - g(u)\grad u\2 + h(u)

Equation (2.12) of Section 2 shows that P may assume its 

maximum at a point at which grad u = 0 (i.e. at a critical point 

of u). A second possibility is that P assumes its maximum 

somewhere on the boundary 30. The third possibility is that P 

assumes its maximum at an interior point of 0 , not a critical 

point of u, but a point where the determinant of the matrix

Cjj - 2 g Ujj + (h" + g'\grad uj2 ) bij

vanishes.

The latter possibility does not help us to achieve our 

aim, so we shall try to choose P in such a way that one of the 

first two possibilities mentioned above occurs.

The following illustrates a maximum principle for the 

P - function defined by :

P(x) - g{u) \grad u |2 + h(u) 

where u is a solution of the differential equation

A u + f(u) = 0  in 0. (3.1)

Our work is based on Schaefer and Sperb [16], Sperb [21] 

and Payne [ 9].
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THE TWO - DIMENSIONAL CASE

We start with the case n = 2. We recall from Section 2 

equations (2.12) and (2.16) which are just

?i = g" .1 grad u| 2 ujr + 2 g Uj± uj + h' u± .... (3 .2)

and

A P = !grad u |4 (g" - 2 s'2)
£

+ igrad u |2 (h" - f g' - 2 f"g - 2 h's')
8

+ 2 g u y  u_£j - h' f + 2 £  U| P | ......... (3.3)

In order to eliminate the term ( 2 g Uj_j Ujrj) , we use the 

following identity which only holds in two dimensions. For any 

sufficiently smooth function u, we have (for grad u ^ 0)

UIJ = (A u)2 + __2____  ux uik uj uj|c - 2_,A_u uL uj ufj
I grad u |2 Igrad u j 2

 (3.4)

while the simple, form of (3.4) is :

uij uij = (A u)2 + 2(u*y “ uyy)

which is easily seen. From (3.1), we may rewrite (3.4) in the 

form

Ui j u ^  - f2 + — 2----  Ui uiic uj ujk + — 2_f_ Ui u j u ^
Igrad ui 2 Igrad u |2

 (3.5)

and we see that
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A P = |grad. u |4 (g" - 2 g"2)
g

+  I grad u l (ft" - fg' ~ 2 f'g - 2 h'g'_)
g

+ 2 g f 2 + 4 g Ui ui/c uj uJk
Igrad u|2

+ 4 g f Ui Uj Uij - ft"f + 2 gl Ui
Igrad u |2 g

(3.6)

Using (3.2), we can write

2 g Uj u ^  “ Pi - g' igrad u |2 Ui - ft" Ui ...... (3.7)

The combination of (3.6) and (3.7) gives :

A P « igrad u |4 (g" - 2 s'2)
g

+ igrad ui2 (ft" - f g" - 2 f'g - 2 ft"g") + 2  g f2
5

+ X (Pfc - g' û . Igrad u |2 - ft" u^)
g |grad u |2 

x (P& “ # uic igrad ui - ft" uic)]

+ 2 f Ui (Pi - g" Ui igrad u |2 - ft" Ui)
\grad u i2

- ft" f + 2 gl Ui Pi-  (3.8)
g

The product term

1 (Pfc “ g' uk 1 grad u|2 “ h" uIc> 
gigrad u |2

x (pic ” £"u/c Igrad ui2 - ft" uk) 

can be estimated as follows
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g |grad u |2
Pfc(- g' uk igrad ui2 - h' uk)

+ 1_____ Pk P k + g" 2 | grad u |4 + h" 2 + 2 g" h" igrad ui2
gIgrad u| 2 g g g

> 2 pic(~ S'" uk \Sra-d u >2 “ uic) + Si2 Igrad u |4
g\grad u|2 g

+ h"2 + 2 s'h" \grad u |2.
S S

The fifth term in (3.8) is

2 f ui (Pi - g" u± igrad u |2 - h' uL)
Igrad u I 2

22 f Ui ?i - 2 f g' |grad u| - 2 f h'
1grad u |2

A P > Igrad u |4 (g" - g^2) + Igrad u |2 (h" - 2 £' g - 3 f g")
S

+ uic 2 f - 2 ft' + 2 g f2 + hi2 
gIgrad u |2 g|grad u |2

- 3 £ h' .  (3.9)

Inequality (3.9) may be written in the form

A V + 1 $i Pi > g (log g)» igrad ui
I grad u |2

4

+ ((ft" - 2 f g)' - f g')Igrad ui2

+ I or - f g)(/r - 2 f g) 
s

(3.10)

where ’/'i = 1 [ 2 (h' - f g) ].
g
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Since we want to apply the maximum principle, we shall 

restrict our choice to functions g(u) and h(u) such that the right 

side in (3.10) becomes nonnegative. This will lead to the following 

result.

LEMMA 3.1

Let u e <73tf2) satisfy (3.1) in a plane domain c . If 

g(u) and h(u) are chosen such that the coefficients of |grad u |4

and |grad u\2 and the constant term in (3.10) are nonnegative, then

the corresponding function

P(x) = g(u) igrad u |2 + h(u)

attains its maximum either on 00 or at a critical point of u.

PROOF:
Suppose that P attains its maximum at an interior point 

Q of 0, where grad u(Q) * 0. Let

0" “ {x e 0 : grad u(x) # 0}

an open subset of fi and Q is an interior point of 0".

Then, by the above calculation, P satisfies

A P + 1 > 0  on fT.
Igrad u |2

By the maximum principle, either P = constant on Q'

or P attains its maximum on the boundary of 0" . The second

possibility cannot occur since P attains its maximum at Q.

Therefore, P is constant on fi' and therefore also on 0,", so P

attains its maximum at a point where grad u ** 0. This completes the 

proof of Lemma 3.1 .□
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In the applications, important choices of h are h" = f g

and h' = 2 £ g . We shall study here the more general case

h' ™ c f g, for c e R.

Hence h" = c [f"g + f  g'], and by substituting into (3.9) we get

A P >  Igrad u |4 (g '* - g " 2 )
8

+  igrad u | z (c f  g  + c f  g' - 2  f ' g - 3 f g ' )

+ uk 2 f 2 c f
Igrad u I 2 I grad uI 2

+  (c -  2 ) ( c  - 1) g  f 2 . (3.11)

Inequality (3.11) may be written in the form

A F + [2(c - 1) f ]  lift Pic >  Igrad u |4 (g" - g l 2 )
I grad u| 8

+ igrad ui [ (c - 2) f" g + (c - 3) f g']

+ [ (c - l)(c -2) ] g f 2 ............. (3.12)

As the constant term in (3.12) must be nonnegative, we must 

have either

c < 1 or c > 2.

We consider the special cases c ■=■=- 1, c — £, c = 2, c = 3 .

GASE c — 1 :

If c = 1 ; h' - f g then from (3.12) we get

A  P > |grad u | 4 (g" -  g ^ 2)

+  igrad u| (- f ' g  -  2 f  g" ).
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Therefore with the assumptions :

(i) (log g)" > 0 , g > 0,

(ii) £' g + 2 £ g' < 0

(or in other words (log f)" + 2 (log g) " < 0  ),

we get
A P > 0

hence Lemma 3.1 is applicable to the function

P(x) = g(u) Igrad u |2 +
rU

^(s) 5'(5') i-n

CASE c < 1:

As an example of the case c < 1, we take c = £ 

(3.12) we get :

4 2A P - f Ufc P£ > igrad u| (g" - gl )
Igrad u |2 g

+ igrad u | 2 [ £ ( -  3 f"g - 5

3 «

Therefore, with the assumptions

(i) as above

(ii) 3 f " g + 5 f g " < 0  , 

we get
A P -  £  uk  Pjc > 0

Igrad u |2

So Lemma 3.1 applies to the function

f uP(x) “ g W  \grad u |2 + £ J f(s) g(s) ds

From
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CASE c - 2 :

If c = 2 ; h " “ 2fg- then from (3.12) we get

A P + 2 f uk Yk > |grad u |4 (g" - g'2)
Igrad ui2 g

+ igrad u|2(~ f g") .

Therefore with the assumptions

(i) as before

(ii) f g' < 0 , 

we get
A P + 2 f u/c P& > 0

Igrad u|2

and Lemma 3,1 applies to the function

fUP(x) *=» g(u) |grad u |2 + 2 f(s) g(s) ds in fi.
J o

An interesting consequence of this case (when c — 2)

holds if we take g * = l ;  h" ■= 2 jf, then we get the inequality

A P + 2 f u;c Vk > 0
Igrad ui2

directly without putting conditions on f(u). Clearly we get the 

function P(x) in the form

P = Igrad u[Z + 2 F(u)

which we have conjectured on the basis of Section 1.

CASE c > 2 :

As an example of the case c > 2, we take c *= 3 ; 

h" 3 f g. From (3.12) we get
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A P + 4 f P̂ . > igrad u |4 (g" - g"2)
igrad u |2 g

+ igrad u\2(f' g) + 2 g f2.

With the assumptions :

(i) as before

(ii) f" > 0 (i.e. f(x) monotonically increasing)

we get
A P + 4 f uk ?k ^ 0 ■

t grad u|2

Therefore, Lemma 3.1 applies to the function

P(x) - g(u) |grad u\2 + 3 [ f(s) g(s) ds .
J o

EXAMPLE 3.1
*“ G ! UFor the case c =■ 1 , one can take g(u) = e , a > 0 

Then Lemma 3.1 applies to the function

fUP(x) - I grad ui2 e au + f(s) e as ds
J o

ryuprovided f ' < 2 c t f  (so that f(u) < f(0) e ) . Note that 

the equality sign in assumption (i) is admissible since

(log e aU )" =*= 0 .□

EXAMPLE 3.2 : (Sperb [21])

The following example is given in the case c =■ 2

Take g(u) =■ e a U , a > 0 ,

and
r uh(u) “ 2 e as f(s) ds ; 2i" - 2 £ g
J o
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so that
•u

P(x) - e au igrad u\ 2 + 2 —as ... \ ,e f(s) ds .
o

Assumptions (i) , (ii) in the case c = 2 above are satisfied 

and again the equality sign in assumption (i), for c = 2, is 

admitted.□

EXAMPLE 3.3

(XXIFor the case c =* 3 , one can take g(u) = e , a > 0.

Then Lemma 3.1 applies to the function

fUP(x) = \grad u |2 eau + 3 f(s) eaS ds
J o

provided £' > 0 . Note again that for c — 3, the equality sign 

in assumption (i) holds since

(log eaU )" = 0 . □

THE N - DIMENSIONAL CASE

The main problem which one encounters is the elimination 

of the term u^j u^j in equation (3.3) as we have seen in the 

Two - dimensional case above. Since the identity (3.4) is only 

valid in two dimensions, we use Schwarz's inequality.

Now, from (3.2) we have 

(Pj - g" |grad u |2uj - h" uj) (Pj - g" Igrad u |2 uj - h" Uj)

= 4 g2 tiij ui ukj uk < 4  g 2 u±j u±j lgrad u |2
(3.14)
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A P > I grad u |4 (gft - 2 ĝ _2 ) + l grad u|2(h" - fg' - 2 f'g
g

- 2 7T s') - h" f + 2 g" uj; r  — 3lL 2g 1 gr<5 g I 2g |grad u 12

x (Pj_ - g'' |grad u| 2 Uj_ - h' u±) (Pj_ - g'igrad u | 2 u± - h' uj;)j  .

...... (3.15)

The last term on the right side of (3.15) can be estimated as 

follows :

1_____ Pi (- g" uj_ |grad u| - h' Uj_ ) + 1_____ Pi Pi
g | grad u | 2 2g | grad u | 2

+ _____ 1 (g' Ui Igrad u|2+ h' ui )(g" Ui Igrad m 2 + h"ui)
2g 1grad a|2

> 1 pi(“ S' ui \gra-d u l2 - h" ui) + gl2 igrad u|4
glgrad u |2 2g

2 2 + h" + s' h" |grad u|
2g g

A P > igrad a |4 (g" - 3 s'2)
2 g

+ \grad u.| (h" - £ g' ~ 2 f"g - h' s' )
g

+ h"2 + g" iij Pj — h' f ~ h' Uj_ Pi .
2g g glgrad u |2

...... (3.16)
So (3.15) can be written in the form

A P + 1 \Pi Pi > Igrad u|4(g" - 3 s'2)
Igrad a |2 2 g

+ igrad a|2[(h" - 2 fg)" + gl (fg - h") ]
g

+ hi (h' - 2 f g)  (3.17)
2g
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2where ^  = 1 (h" u± ~ g' U£ \grad u] ). 
g

The analogue of Lemma 3.1 in the n - dimensional case is:

LEMMA 3.2

Let u e C3(Q) be a solution of (3.1), fi c Rn, n > 2.

If g(u), h(u) are chosen such that the coefficients of |grad u\A 

and |grad u |2 and the constant term in (3.17) are nonnegative, then 

the corresponding function

tiiust assume its maximum value either on or at a critical 

point of u.

The proof is the same as for Lemma 3.1 .□

NOTE : This calculation allows somewhat different results from

those of Lemma 3.1 when n =* 2.

At this stage we consider h'(u) in the form

P *= g(u) |grad u| 2 + h(u)

PROOF :

h' =* c f g ; c e R (real number).
Therefore, from (3.17) we get :

A P + 1
\grad u |2

fi pi > Igr*d u |4 (g" - 3 gI2 )
2 8

+ \grad ui2 [(c - 2)f'g - fg']

+ c (c - 2) g f 2 
2

(3.18)
where — JL [ c g f ui - g' u± |grad u| 2 ] .

g
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Recalling-.‘Lemma 3.2 , we shall discuss the required 

hypotheses for different values of c, for which Lemma 3.2 is 

applicable to the function

P(x) “ g(u) Igrad ui2 + h(u) ; h' = c f g.

REMARK 3.1

(I) From (3.18) it is clear that the admissible choices of 

c are :
c > 2 or c < 0,

4 2(II) Since the coefficient of Igrad u| , (g" ~ 3. gl ) , does
2 g

not depend on c, then the variety of the hypotheses will rest in the 

coefficient of igrad u |2 and in the constant term only.

CASE c - 2 :

For c = 2; h' 2 f g , we get , from (3,18),

A P + 1 > Igrad u| 4 (g" - 3 s'2)
Igrad u|2 2 g

- |grad u |2 £ g' ,

where )f/j_ = 1 [ 2 f g tt£ - g' \ grad u| 2 ]. 
g

Therefore, with the assumptions

(i) (g" - 3 gl2) > 0 , g > 0,
2 g

(ii) fg' < 0 

we get

A ? + 1 V'i Pi > 0
Igrad ui2
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Then Lemma 3.2 applies to the function

P(x) = g(u) Igrad u |2 + 2 f(s) g(s) ds in 17.
o

REMARK 3.2

For n = 2 , the previous result is less restrictive .

CASE c > 2 :

As an example, we take c = 3 ,  h" = 3 f g . From (3.18),

we get

A P + 1 Pi > Igrad u |4 (g"
Igrad u | 2 2 g

+ |grad u | 2 (f" g  - f  g" ) + 3 g  f 2 .
2

where = 1 [ 3 g f - g' Ui Igrad u | 2 ] 
g

Therefore with the assumptions

(i) as above

(ii) f  g - f g' > 0

we get
A P + 1 ^  Pi > 0 .

Igrad u |2

Therefore Lemma 3.2 applies to the function
u

POO “ g(«) Igrad U|2 + 3 •f(s) g ( s ) i-n
o

CASE c - Q :

For c = 0 ; h" =■ 0 , we get from (3.18)

A P + ___1
Igrad u |2

pi £ l£rad u f4 (8" “ 1 fil*)
2 g

+  Igrad u | (-2 £'g - £ g")
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where îi “ 1 (“ 8' ui I grad u|2) 
8

With the assumptions :

(i) as before

(ii) 2 f' g -f* f g" < 0

we get
A P + 1 \f,i :

{grad u i 2

therefore Lemmma 3.2 applies to

P(x) = g(u) Ig-rad u

CASE c < 0 :

As an example we take

A P + 1 ^  Pĵ > igrad
Igrad u |2

+ |grad

where ^  = 1 [- g f - g' u£
S

Therefore with the assumptions

(i) as before

(ii) 3 f" g + f g" < 0 ,

we get
A P + 1

Igrad u |2

Therefore, Lemma 3.2 applies to 

P(x) » g(u) Igrad u |2

1 > 0 ,

the function

2 in fi.

= -1. From (3,18), we get

111 4 (g-" - 3 gl2)
2 g

ui2 (-3 f ' g - f g '  ) +

Igrad u|2].

> 0 • 

the function

fu- -f(s) g(s) in fl.

rO| CM
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REMARK 3.3

The case c •=■ 2 is useful because no hypotheses are needed 

on f , only on g .

The following theorem is based on arguments given by 

Payne [9] for the case c = 2 only . It gives somewhat different 

results to the ones above.

We shall, first, introduce the following calculations. 

Consider the function P(x) in Q c Rn , n > 2, in the form :

P(x) =* g(u) I grad ui2 + c
u
f(s) g(s) ds

(thus h' == c f g ) and c e R. From (2.12) and (2.16) of Section 

2 we get :

Pfc = 2 g ui uifc + g'igrad u \ 2 u/c + c f g ujc (3.19)
and

A P =* 2 g u±j Ujj + I grad u |4 g"

+ igrad ui2 [- 2 g f  - f g' + c f'g + c f g' ]

+ 4 g' 14 uj uij - c g f2 . ..... (3.20)

Suppose that P(x) takes its maximum at an interior point Q 

where grad u # 0 . At Q we can orient our axes such that uj(Q) =* 0 p

for j £ 1 and u.,(Q) ^ 0. Since, by assumption, P^ =* 0 at Q, it

follows from (3.19) that :

2 g un  + g' uj + c g f - 0............ ..... (3.21)

and
u1 j_ “ 0 , i - 2, . . . ,n............... ..... (3.22)

Therefore

4 g' uL uj uij " 4 g ' u j  u „  .
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We will use the inequality

uij uij > ukk ukk “ uii + ^ ukk
k— 2

> 11,,+ 1 (A u —  u,, )
n - 1

by Schwarz's inequality.  ..(3.23)

So

2 £ uij uiJ — 2 £ [ u?i +  1--- + un > 2] ---- (3-24)(n - 1)

From (3.21) we have

u,, = - £ f - _gl_ u, 
2 2 g

a n d

£ + u1 1 (1 - £ ) f - £  u, .
2 2 g

(3.25)

Inserting from above into (3.20) we get :

A P > 2 g [ ( c f  + &1_ uf) + _1__ {(1 - c )£ - gl_ u2 }2 ]
2 2 g  n - 1  2 2 g

+ Igrad u |4 g" +  Igrad u |2 [-2 g  f " + c f " g  -  f g "  +  c fg " ]

+ 4 g" u, (- c f - £  u, ) - c f g .
2 2 g

=  Igrad u |4 [g" +  g l 2 + g " 2 - 4 g " 2 ]
2 g  2 g ( n  -  1) 2 g

+  igrad u| c f g" - 2jl - cj g' £ - 2 g f' + c f'g 

(n - 1)

- f g " + c f g " - 2 c  g " f - c f 2g  + c 2g  f 2+  2 g  (1 - c ) 2f 2 .
2 n - 1  2
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A F > I grad ui rg" - (3n - 4) s' "l
L 2(n - 1) e J

+ Igrad ui2 [(c - 2)g f' - rl + (2 - c)i g' f 1
L L (n -1) J

+ 2 g f2 [- c (n - 1) + (n - 1) c2 + (1 - c )2 ].
n - 1 2 ' 4  2

...... (3.26)

We shall restrict our choice to functions g(u) and f(u) 

such that the coefficients of igrad u |4 and igrad iz|2 and the

constant term are nonnegative and one of these is strictly positive 

to get a contradiction.

We note that the coefficient of igrad u |4 does not 

depend on c . So we want

g" - (3n ~ 4) s'2 > 0
2(n - 1) g

Also we want the coefficient of Igrad u |2

(c - 2) g f' - 1 +
(n - 1)

g' £ > o.

THEOREM 3.3

Let u e C3(Q) satisfy (3.1) in fi c R1*, n > 2. If g(u) 

and f(u) are chosen such that the coefficients of Igrad u ]4 and 

Igrad u |2 and the constant term in (3.26) are nonnegative and one 

of these is strictly positive, then the corresponding function

P(x) - g(u) |grad u|2 + c f(s) g(s) ds
J o

attains its maximum value either on the boundary of 0 or at a 

critical point of u.
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PROOF :

If the hypotheses above are satisfied, then by the above 

calculation, if P attained its maximum at an interior point Q where 

grad u £ 0 , we would have

A P > 0 at Q

which is impossible. This completes the proof of the Theorem 3.3.D

REMARK 3.4

The constant term is, itl fact,

2 g f2 [(n - 1) c (c - 1) + (c - l)2 ]
( n - 1) 2 2 2

= 2 g f 2 [(£ - l)(c n - 1)] .
( n - 1) 2 2

Therefore the constant term is zero when

c — 2 and when c — 2/n ,

and positive when

c > 2 and when c < 2/n

(negative in between).

Therefore the admissible values of c are : 

c > 2 and c < 2/n , n > 2.

SPECIAL GASES OF THEOREM 3.3

CASE c - 2 :

For c » 2 ; h' - 2 f ^ we get from (3.26)

A P > |grad u\A (g" - (3n - 4) g'2)
2(n - 1) g

+ igrad u|2 (- f g").
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Therefore, with the assumptions :

(i) [<§■" “ (3n - 4) z'2 ] > 0 , g > 0 ,
2(n - 1) g

(ii) g" f < 0 ,

and if one of these inequalities is strict, Theorem 3.3 applies 

to the function

P(x) - g(u) |grad u |2 + 2 f(s) g(s) ds.
J o

CASE c > 2 :

As an example we take c ■=* 3. From (3.26), we get

A P > Igrad u |4 [g" - (3n - 4) g";]
2(n - 1) g

+ i grad ui2 [g f' - (n -,,2), g'f] +  g f!,_ [ I n  - 1 ].
(n - 1) (n - 1) 2

Therefore, with the assumptions :

(i) as above

(ii) g £' > (n - 2) g' f ,
(n - 1)

Theorem 3.3 applies to the function

POO - g(u) igrad ui2 + 3 £(s) g(s) ds.
J o

CASE c - 2/n :

For c =* 2/n (ĥ  =■ (2/n) f g) we have from (3.26)

A P >  Igrad u | 4 [g" -  (3n - 4) g l 2 ]
2 ( n  - 1) g

+ igrad u | 2 [ 2 ( l - n ) g f " -  (n + 2) g" f  ].
n  n
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Therefore, with the assumptions :

(i) as before

(ii) 2(1 - n) g f' > f g"
(n + 2)

and if one of the inequalities in (i) and (ii) is strict , 

Theorem 3.3 is applies to the function

P(x) - g(u) |grad u\2 + 2
n

u
f(s) g(s) ds

REMARK 3.5 :

Since we must have c < 2/n or c > 2 we remark that the 

case c — 1 (h" = f g) is admissible only for n = 2 i.e. for 

a plane domain Q c .

CASE c < 2/n :

As an example we shall take c = 1/n (h" = (1/n) f g).

From (3.26) one gets :

A P > \grad u |4 [g" - (3n - 4) s'2 ]
2 (n - 1) g

+ Igrad u| 2 [ (1 - 2) g f  - (1 + n - (1/n)) g' f ] 
n ( n - 1)

+ g f2 a  - _i_ > .
(n - 1) 2n

Therefore, with the assumptions :

(i) as before

(ii) (3 - (l/n).,„-_2,nl g f" > ^  f ,
(1 - (1/n) + n)

Theorem 3.3 applies to the function

P(x) » g(u) Igrad u |2 + (1/n) f(s) g(s) ds .
J o
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NOTE : We note again that for c = 2 , no hypotheses are needed

on f .

EXAMPLE 3,4

If n c , n > 2, we consider the function

P(x) = g(u) igrad ui2 + h(u) 

where h" — 2 f g and g(u) = (u + (3) 01 , > 0.

To apply Lemma 3.2 we need :

(i) (g" - 3. s'7) = (u + /3) 01 2 (a2 + a - 3. a2) > 0
2 g 2

i.e. a 2 - 2 a < 0 , 

and

(ii) g' = - a(u + |S) a 1 < 0 ,

that is 0 < a: < 2 .

To apply Theorem 3.3 to P(x) as above, we want (the 

coefficient of igrad ui4),

(i) (a2 + ct - 3n - 4 a2 ) (u + /3) a 2 > 0
2n - 2

Hence ,
ct (a - 2n - 2 ) < 0 

n - 2

Also we want (the coefficient of igrad ui2),

(ii) - a (u + 0) a 1 > 0

with one of (i) and (ii) strict .

Therefore, we need

0 < a < 2n - 2 - 2 + 2 ,
n - 2 n - 2
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so Theorem 3.3 can be better .

However, for g(u) s 1, if c = 2, Lemma 3.2 can be 

applied but Theorem 3.3 cannot.□
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SECTION 4
THE MAXIMUM OF P ON 30

We study the second possibility of the maximum of the 

function P in which P assumes its maximum value on the boundary 

of 0. For these, the c.alculations as given by Sperb are 

appropriate.

THE TWO - DIMENSIONAL CASE 

We start with the plane domain case.

THEOREM 4.1
Let u be a solution of the elliptic equation

A u + f(u) = 0 (4.1)

in a plane domain 0 , with u < u < u.. , where u and uu are r m _ - M m M

lower and upper bounds respectively. Suppose that for ^  < s < 

the following conditions are satisfied :

(i) (log g(s))" > 0 , g(s) > 0 ,

(ii) (c - 2) f'g + (c - 3) f g' > 0 , c < 1 .

Then the function

2 fuP - g(u)igrad ui +c g(s) f(s) ds
J o

assumes its maximum on 30.

PROOF :

First suppose that c < 1 . By Lemma 3.1 , Section 3, P

assumes its maximum either on 30 or at a critical point of u . 

At an interior point of u , from (3.3) of Section 3, we get :

A P - 2 g uij uij - c g f2 .
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Using Lemma 2.1, Section 2, we find that

A P > (1 - c) g f2 > 0 , since c < 1 .

Therefore P cannot take its maximum at an interior 

critical point of u when c < 1 .

For c = 1 , from (3.9) of Section 3 we have :

A P > |grad u|4 (g" - s'2)
g

+ igrad ui2 (-2 f g' - f' g) .  (4.2)

Note that inequality (3.9) is derived assuming that 

grad u # 0 . So at a point Q where grad u # 0 , there is a

neighbourhood of Q on which grad u & 0 , and the above

calculation gives

A P > 0 at Q.

Also, if grad u = 0 at a point Q", then as above 

A P > 0 at Q" .

Therefore
A P > 0 in Q,

and hence P attains its maximum on 3fi and

3P > 0 there ,
3i»

unless P = constant in 0 .□

REMARK 4.1

Sperb [21] only considers the case c =■ 1 ; moreover we 

believe that his proof is incomplete .
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COROLLARY 4.2

For c < 1 } if u is a positive solution of (4.1) with 

u = 0 on 30 and P attains its maximum at a point Q on 3(1 , 

then
8P > 0  at Q 
3**

unless P = constant near Q .

PROOF :

From (3.12) of Section 3,

A P + ^  P/c > 0

at a point in ft where grad u * 0 , where ^  = 2(c - 1) f u/c .
I grad u i2

From Remark 2.5 of Chapter (III), u has no critical point in any 

maximal cap . Therefore grad u is bounded away from zero in

a neighbourhood of Q and the maximum principle in Theorem 2.4

of Chapter (II) applies .□

REMARK 4.2

If ft is convex , Corollary 3.2 of Chapter (III) gives

grad u # 0 on a neighbourhood of 3ft .

EXAMPLES 4.1 ; (Sperb [21])

(a) Take g(u) =■ (Jf(u))  ̂ if f(s) > 0

and

Then

(log f(s))» < 0 for < a < ,

P - (f(u)) * Igrad u |2 + 2 f2 (u)

(b) Choose g(u) - e~ U , ex > 0, then the equality sign

in assumption (i) is admitted , and (ii) is satisfied provided
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(log f(s))' < 2  a  for um < s < uM .m

Then
fUP — e ° U |grad u | 2 + e ** S f(s) ds
J o

assumes its maximum on 9fL

THE N - DIMENSIONAL CASE

Now we give a theorem which applies to Q c IRn , with 

n > 2 . Note that for n *» 2 the hypothesis (i) is changed from

that of Theorem 4.1 .

THEOREM 4.3
Let u be a sufficiently smooth solution of (4.1) with

u < u < u.. . Suppose that for u < s < u„ the following m ~ — M m — “ M

assumptions are satisfied

(i) g > 0 , (1/g)” < 0 ,

(ii) (c - 2) £' g > £ g' .
(c + 1)

Then the function

P = g(u) |grad u| + c 

assumes its maximum on 9Q.

u
f(s) g(s) ds , c < 2/n

PROOF :
We have taken h so that h" *= c f g. By substituting

into (3.2) and (3.3) of Section 3, we get

Pic “ g' l£rad u \2 uk + 2 8 uik ui + c f Z uk

and
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A P - Igrad u\ j-g" - 2 g£ j

+ igrad u| [c f' g + c f g' - f g' - 2 f' g - 2c f g']

+ 2 g uik uiic - c f 2 g + 2 £  uk Pk .
g

Exploiting Lemma 2.1 of Section 2 for the n - 

dimensional case we get

2 S uik uik 2 2 g (d u)2 - 2 g f 2
n n

Thus
4 P - 2 £  uk Pk > |grad u |4 rg" - 2 g£ 2 i

g  L g J

+ igrad u|2[(c - 2) f" g - (c + 1) f g' j

+ (2 - c) g f 2 .  (4.4)
n

Now, assumptions (i) and (ii) state that the

coefficients of |grad u |4 and |grad u\2 in (4.4) are nonnegative, 

for c < 2/n , noting that :

g" - 2 (£l2) - - (1 ) (1 )" .
8 g 2 g

Hence P satisfies

A P - 2 (log gy  uk Vk > 0  in n,

and the result follows.□

REMARK 4.3

Sperb[21 ] only considers the case c ■= 2/n .



For c < 2/n a different argument yields the following 

result which appears to be new .

THEOREM 4,4

Let u be a sufficiently smooth solution of (4.1) with

u < u < uw . If for u < u < u__ the following assumptions m _ “ M m " - M °

are satisfied

(i) g" ~ 3n - 41 ^ Z J g

rc - z - li
In - 1 J

_2n - 2J g

(ii) (c - 2) g £' + [c - 2 - 1] g' f > 0 , c < 2/n

then the function

ru
P(x) “ g(u) igrad ui2 + c J f(s) g(s) ds

attains its maximum on 3D .

PROOF :

By Theorem 3.3 of Section 3, either the maximum of P 

occurs on the boundary or at a critical point of u .

At an interior critical point of u , from (3.3) of 

Section 3,

4 P ■= 2 g uLj uLj - c g f2 .

Using Lemma 2.1 , Section 2 , we find that

A P > ((2/n) - c) f2 g > 0 , since c < 2/n ,

impossible . □

REMARK 4.4

A similar result to Corollary //.2 holds .
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Also for c < 0 another variant is possible .

THEOREM 4.5

Let lz be a sufficiently smooth solution of (4.1) . If, 

for < u < the following assumptions are satisfied

(i) g" - 3 g'2 > 0 ,
2 g

(ii) (c - 2) f" g - f g' > 0 , c < 0 , 

then the function

f uP(x) « g(u) I grad ui2 + c f(s) g-(s) ds
J o

takes its maximum on .

PROOF :

By Lemma 3.2 , Section 3, either the maximum of P occurs 

on 30 or at a critical point of u .

At an interior critical point of u , from (3.3) of

Section 3 ,
A P = 2 g uij u ij - c f2 S .

Using Lemma 2.1 of Section 2, we find that

A P > ((2/n) - c) f2 g > 0 , since c < 0 ,

impossible .□

REMARK 4.5

A similar result to Corollary 4-2, again, holds .

EXAMPLE 4.2 : (Sperb [21])

Take g( u) - l/(a ii + 0) , ce>0 ,0 > 0. Then (1 /g)« = 0.

Assumption (ii) of Theorem 4.3 for c = 2/n requires that for

u < u < u., we have :m “ ~ M
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n+2 
2n- 2a u + 0 > 0 and f(u) < C (a u + (3) , where

C “ f(um>
n+2

(aum + 0) 2n_2 

REMARK 4,6 :

In Sperb [21] , the inequality for f(u) in the example 

above seems to be incorrect.

SPECIAL CASE OF THEOREM 4.3

With somewhat more restrictive assumptions on f(u) it

is possible to obtain upper bounds for Igrad u[ as we shall see 

later. Choosing g(u) = 1, the following demonstrates our aim.

COROLLARY 4.6
Let u e C'3(D) satisfy equation (4.1). If f'(u) < 0

in fi, then the function

2 fuP(x) “ Igrad u| + c f(s) ds
J o

where c < 2/n , attains its maximum on 312.
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SECTION 5

THE MAXIMUM OF P AT A POINT WHERE grad u - 0

We study the maximum of P at a critical point of u under

some conditions on 90. Recall that we choose our functions g(u) 

and h(u) such that the corresponding function P(x) assumes its

maximum either on 90 or at a point where grad u ■= 0.

To achieve our goal, mentioned above, we must select the 

functions g(u) and h(u) with appropriate conditions such that the 

normal derivative 9P/9p , where v is an outward normal to 90,

is nonpositive at a point on 90 which contradicts the strong

maximum principle. In such a case P must take its maximum at 

a point where grad u = 0.

We shall be concerned with positive solutions of the 

elliptic equation
A u + f(u) “ 0, in 0 (5.1)

where f e C1 is positive in 0. Also we shall confine ourself 

to convex domains for which the mean curvature K is nonnegative 

at each point of 90. We shall denote by K0 the nonnegative lower 

bound of K ; often we shall assume K0 > 0. In addition to the 

convexity of 90 we require 90 to be C2. we shall use the symbol 

r defined as

r = max igrad ui . (5.2)
90

Now we shall seek conditions so that the maximum of the 

function P defined by

P(x) = g(u) |grad u |2 + h(u)

cannot occur on 90.
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To accomplish this, we assume that u satisfies

A u + f(u) “ 0 in fi

u - 0 on 9Q

which is known as Dirichlet Problem (D P).

LEMMA 5.1

Let u(x) be a sufficiently smooth solution of (5.1) 

vanishing on the boundary of fi. The normal derivative of the 

function

P(x) - g(u) Igrad u\2 + h(u) 

can be represented at a point Q e Bfi by the identity

9P - - Igrad u| |g'(0) igrad u |2 - 2 f(0) g(0)
Bv

+ 2 K(n - 1) g(0) |grad u| + h"(0) j (5.3)

where v is an outward normal to 9C .

PROOF :

The boundary 9Q can be represented locally by the

identity

xn " ^(xi> x2> ■■■ * xn-i) * ^ e C2

where grad \J, = 0 at Q e 017,

V

3 f t

FIGURE [5.1]
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By a rotation of coordinates, we assume that the xn -

coordinate axis lies in the direction of the inner normal at Q.

The outward normal ji(x) is given by

il(x) - (B±_ , -1)
dx£ *   (5.4)

(1 + | grad i£| 2 )1

The condition u = 0 on can be expressed as a twice 

differentiable identity

u(x} , x 2....... xn„, , i/0 a 0 on 30...... (5.5)

So

Then
U£ + un “ 0 on 80, i *= 1, . . . , n-1 .

+  LZj2j i ^23 îj ”  ̂  * d  =  ^  > * ' * » ^

At Q
~ un V'ii since grad ip *= 0 at Q

and
A u “ unn un i/^ ,  (5.6)

Note that grad u points into 0, so

Igrad u| = 8u (at Q) and Igrad u| = - 8u
8xn dp

Therefore, from (5.6) we have

A u = unn + du (n - 1)K 
dp

where K is the mean curvature ; see Section 2. So

unn = - f - 8u ( n - l ) K  (at Q) .... (5.7)
8j'

Now
8P = g' U£ |grad u |2 + 2 g u^j uj + h' Uj_ 
dxj
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So

9P - Pf vj — g” I grad u\2 3u + h' du + 2 g Ujr? u; v̂
Bv dv dv

•» g' I grad u\2 du + h' du + 2 g unn  3u (at Q)
dv dv

since at Q , uj — 0 for j & n and v± *= 0 for i # n.

From (5.7) we get (at Q)

9 P  =  g' | g r a d  u | 2 3 u  +  h' du +  2  g [ — f - du  ( n  -  1 ) K ]  9 a
9 p  9 v  3j> 3 p  dv

= - igrad u| [g'(0) igrad u |2 - 2 g(0) f(0)

+ 2 g(0) (n - 1)K Igrad u| + h-'(0)] }

since u = 0 on 3Q. □

REMARK 5.1

This direct proof is not the one given by Sperb [21 ] who 

uses some tensor analysis .

Our work is based on Sperb [21], Payne, Sperb and

Stakgold [12], Stakgold and Payne [22], Schaefer and Sperb [16],

Sperb [20] and Payne [8 ], We discuss the Two - 

dimensional and the N - dimensional cases separately.

THE TWO - DIMENSIONAL CASE

In (D P), if by appropriate choice of the functions f(u) 

and g(u) on dD, , the term between braces in the right side of

(5.3) becomes nonnegative, for n = 2, we get

3F < 0  at Q e 3fi.
3 v

We know by the maximum principle that if P has a maximum 

at Q on Sfi, then dP/dv  > 0  at Q unless P is a constant in 0.
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Consequently we arrive at the following result 

THEOREM 5.2
Let u c C3(ft) be a solution of (5.1) in a convex plane

domain ft with u «= 0 on 8ft and u < u < u„ . Suppose that form ~ — M

this range of u, we have :

(i) (log g(u))" > 0 , c > 2 and (c - 2)f'g + (c - 3)£g" > 0,

g W  > 0,

(ii) g"(0) 7 + 2  Kq g(0) > 0 , K > K0 > 0.

Then the function

P(x) = g(u) lgrad u\2 + c f f(s) g(s) ds ...(5.8)
J o

assumes its maximum where grad u == 0.

PROOF
From inequality (3.12) of Section 3 we have,for 

h' = c f g

& P + 2(c - 1) f ufc P/c > I grad u\A f g" - ĝ _2
\grad u i I g

+ I grad u|2[(c - 2) f"g + (c - 3) fg")]

+ (e - l)(e - 2) g f a ............(5.9)

We know that P attains its maximum either at a point 

where grad u = 0 or at an interior point where grad u £ 0 or

somewhere on 8ft where grad u & 0 .

Let ft" be the subdomain of ft defined by :

ft" = {x e ft : grad u ^ 0} .

If P attains its maximum at Q in ft" then by the maximum 

principle, P = constant in ft" . Therefore P is constant on ft"
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and also attains its maximum at a point on the boundary of 0" 

where grad u - 0 .

Suppose P attains its maximum at Q1 e 80" where 

grad u(Q,) * 0 . Then Q, c 80 and by the maximum principle

either P * constant or 0P/8r (Qn) > 0 , where v is the 

outward normal at Q, .

FIGURE [5.2]

If P = constant on 0' , as before P attains its

maximum where grad u «= 0. Suppose that P ^ constant on 0' .

Now, for h' ” c f g and n «= 2 equation (5.3) can be written in

the form :

8P = - |grad u| [2 g(0)]grad u| K + g'(0)\grad ui2
a*.

+ <c - 2) f(0) g(0) ] .

We note that if P takes its maximum on 80 it must be

where
I grad tz| = t max | grad u|.

80
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Therefore, at Q 1 we get

BP < "  r 2 [ 2  g ( 0 )  K0 + g " ( 0) t  ] ,

Bp

since (c - 2) f(0) g(0) > 0  .By assumption (ii) then

9P < 0 at Q, c 90,
Bp

a contradiction. Hence P attains its maximum at a critical 

point where grad u “ 0 .D

REMARK 5.2

Sperb [ 21 ] only gives the case c = 2 when the 

conditions are independent of f .

REMARK 5.3

If c < 1 , the function P(x) as defined in (5.8) is

unlikely to assume its maximum where grad u •» 0 , but to take

its maximum on the boundary of 0 ; c.f. Theorem 4.2 ,

EXAMPLE 5.1

Let u(x) be a sufficiently smooth solution of Poisson

equation

A u + 1 = 0 infl

and

u = 0 on 3f2

with Q as above .

We find that the function P(x) , with g(u) = 1 , defined

as

P(x) == | grad u |2 + c u  , c < l  

takes its maximum on 9n , by Theorem 4.2
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In Payne [10], the author states that for c < 1 , there

is no region (2 on which P(x) s constant .

REMARKS 5.4

(I) For a convex 0 , Sperb [20] shows that for a class of

functions ir(u) the convexity of (2 implies that the solution

of (5.1) with zero - boundary condition has only one critical

point in 0. If f(u) > 0 and u > 0 then u has exactly one

maximum in 0 .

(II) Let g(u) = 1 , h" = 2 f. The function

2 ru P = |grad u| + 2 f(s) ds,
J o

where u = 0 on 3(2 and u satisfies (5.1), takes its maximum at

a point where grad u ■= 0 if (2 is convex. This was first found 

by Stakgold and Payne [22], and it marked the beginning of

a series of papers that were concerned with various

generalizations and applications of maximum principles for such 

a function associated with the solution of some boundary value 

problems.

EXAMPLE 5.2

Let (2 be a simply connected cross section of a 

cylindrical bar that is twisted by terminal couples. If the angle 

of twist per unit length is sufficiently small, one is led to the

Saint Venant torsion problem. It can be formulated mathematically

as follows :

We seek a solution u(x) of

A u = - 2 in c R2 (

u ** 0 on 3(2.
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The components of the resulting stress are then given by :

r ~ /x 6 du
dx

where fi is the shear modulus and 6 is the angle of twist per 

unit length. The function u(x) is called the stress function.

The magnitude r of the shearing stress is given by :

r = (i 6 | grad u| ,

where the torsional regidity of Q defined as :

that is the Dirichlet integral of u . For more details one is 

referred to Payne [8 ] , Weinberger [24] and Sokolnikoff [19].

In the Saint Venant torsion problem the assumptions (i) 

and (ii) of Theorem 5.2 are satisfied with

g(u) = 1 , h(u) - 4 u .

We shall come back to the torsion problem in Chapter (VI), where 

we seek bounds for the maximum stress r .

REMARK 5.5

is the author makes use of the maximum principle for elliptic 

equations to compute upper and lower bounds for the maximum stress 

r in the Saint Venant torsion problem in terms of geometric 

properties of the cross section of the beam. That is the cross 

section 0 is assumed to be a bounded two - dimensional simply 

connected region.

S

There is some thing interesting about Payne [8 ], that
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These bounds are claimed to be better than those obtained 

by making use of "sub" and "super" solutions, which are often too 

crude to be of practical value.

EXAMPLE 5.3

The assumptions (i) and (ii) of Theorem 5.2 are satisfied

with

g(u) - 1 , h(u) - 2
(u + a)2

f(s) ds,
o (s + a)2

in the nonlinear Dirichlet Problem (Payne, Sperb and Stakgold

[12]), where a > r/ K 0 .

We may also take (Schaefer and Sperb [16])

where /3 = 2K0/r .

g(u) = e , h'(u) - 2 e f(u),

THEN - DIMENSIONAL CASE

Let us now consider a domain in n - dimensions with 

n >2 . The following is an extension to the result in the Two -

dimensional case to the n - dimensional case.

From Lemma 5.1, we recall that at Q e 315 :

3P = - |grad u| [2 g(0) (n - 1) K |grad u\2 - 2 g(0) f(0)
dv

+ \grad u. j g'( 0) + h" (0) ]  (5.12)

since u = 0 at Q 6 80.

As in the two-dimensional case we shall take P(x) to be

2 ruP(x) = g(u) igrad j + c f(s) g-(s) ds
o
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Therefore, equation (5.12) can be written in the form :

9P - - Igrad u| [ 2 g(0)igrad u| (n - 1) K + Igrad u |2 g" (0) 
dr

+ (c - 2) £(0) g(0) ]. (5.13)

THEOREM 5.3

Let u e (73(fi) be a solution of (5.1) in a convex domain

O with zero boundary condition and let < u < . Suppose

that, for this range of u, we have

(i) g(u) > 0, [g *(u)] < 0, c > 2 and (c - 2)f'g - g"f > 0 ,

(ii) 2 g(0) (n - 1) K0 + r g'(0) > 0 , K > K0 > 0.

Then the function

2 ruP(x) = g(u) igrad u| + c J f(s) g(s) ds

assumes its maximum where grad u *- 0.

PROOF :
We proceed as in Theorem 5.2 . For h" = c f g , 

inequality (3.17) of Section 3 can be written in the form

A P + 1
Igrad u |2

pi > Igrad nI 4 jg" - 3
g

Igrad u |2 [ (c - 2)f g" - f g") ]

+ 1 c (c - 2) g f 2 , 
2

(5.14)

where = 1 (c f g - g" Uj_ \grad u|2) .
g

Since 1 g 2
2

3 gl‘
2 g

£ the coefficients
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of |grad u |4 and Igrad u |2 in the right side of (5.14) are 

nonnegative by assumption (i). We know that P takes its maximum 

either at a point where grad u - 0 or at an interior point where 

grad u # 0 or somewhere on the boundary where grad u * 0.

If (i) is satisfied, then by the maximum principle P can 

not attain its maximum at an interior point where grad u & 0. 

Suppose that P attains its maximum at Q 6 8C where grad u * 0,

and let 0" be a subdomain of 0 defined by :

12" - {x e 0 : grad u(x) * 0}.

So there exists Q, e 90" such that grad u ( Q - 0. On 0" P

satisfies (5.14), so by the maximum principle either

P e constant or 9P/9r (Q ) > 0 .

FIGURE [5.3]

If P s constant on 0" , then P(Q) •= F(Qt) and

therefore P attains its maximum where grad u - 0. Suppose that 

P f constant on 0". From (5.13) we get at Q :
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9P < ” Igrad ui2 [ 2 g(Q) (n - 1) K0 + r g"(0) ] ,
0p

(5.15)

since (c - 2) f(0) g(0) > 0 (for c > 2). By assumption (ii) 

then we have

9P < 0 at Q e 00,
0^

contradiction with the strong maximum principle. We deduce that 

P(x) assumes its maximum value at a critical point of u where u 

is a maximum.□

REMARKS 5.6

(I) Again Sperb [21] only gives the case c ■= 2 when the 

hypotheses do not depend on f

(II) The function

2 ruP(x) = Igrad u| + 2 f(s) ds
J o

where g(u) = 1 , h" = 2 f , satisfies the assumptions of 

Theorem 5.3 . This proves the fact noted in (II) of Remarks 5.4*

COROLLARY 5.4 (Payne, Sperb and Stakgold [12])

Let u(x) be a positive solution of (5.1) vanishing on

00. For 0 < cn < 2 and (3 > ex t  , where K0 > 0 is the
2(n - 1) K 0

lower bound of the mean curvature K of 00, the function

P(x) = |grad u |2 + 2
(u + 0)«

u
f(s) ds .... (5.16)

0 (s + (3)“

assumes its maximum value where grad u = 0.
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PROOF :
For 0 < a < 2 , g(u) - (u + (3) satisfies (i) of 

Theorem 5.3 and (ii) is satisfied by the choice of 0 .□

u
which satisfies the required result.

P(x) as defined in (5.16) is claimed to be more powerful 

than that used by Stakgold and Payne [22], in particular to get

which is known as Neumann boundary condition.

LEMMA 5.5

Let u(x) be a sufficiently smooth solution of (5.1), 

and let P(x) be defined as

P(x) = g(u) igrad u |2 + h(u) .

The normal derivative of P , dP/dr , can be represented at a 

point Q e 30 by the identity

provided that 3u/3v = 0 at Q e 30, v is the outward normal at Q 

and k£ are the principal curvatures of 30 at Q.

REMARK 5.7

If a = 0, in (5.16) then we are left with the function

bounds to the gradient of u via the maximum principle (see Payne,

Sperb and Stakgold [ 12]) .

NEUMANN BOUNDARY CONDITION

We study the maximum of P where u satisfies (5.1)

and

3u = 0 ov) 30,
Bv

3P = - 2 g 
31'

(5.17)
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PROOF :

It is possible to represent the boundary 90 locally by

xn - 0(x, , . . . , xn_1) , i/- e C2

where grad \p «= 0 at Q € 90, We choose the xn - coordinate

axis to be inner normal and the x, , . . , , xn_ 1 axes to be along

the principal directions corresponding to the principal curvatures 

k1 , . . . , kn_1

The outward normal at x is given by

ji(x) - (9£_ , - 1)
9xj_________  , i - 1, 2, . . . , n-1,

(1 + ~\grad 2) i

and the components are

vi(x) ™ d\Jr/dx£ , i = 1, . . . , n-1 ,
(1 + | grad \p I 2) £

and
-  Z_1---------  •

(1 + 1  grad $ | 2 ) 2

Now
9u = grad u (x) . (x) - - 9u + 9u 9i£
9j> I 9xn dxi dxi J

(1 + | grad i 2) £

On 90, where 9u/9i' •= 0 , we get :

un(x", 0) = u1(x", $) , (xx - x,,x2,...,xn_n),

(i = 1,2,...,n-1) .

Note that this gives un = 0 at Q (as it must since un = - 9u/9r 

clearly) .

Differentiating with respect to xj , j = 1,2,...,n-1 , gives 

Unj(x", + Unn(x' , \Js) \f,j - [UjjU", + Uln(x' , lj,)y]

+ u^(x',  (5.18)
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At Q , where grad ip - 0 , we find 

unj “ ui tij

Now

BP = P] “ 2 g u^! Ui vi + Igrad u |2 g' 3u + h' du ,
8*» d v  d v

(i,j - 1,2..... n) ,

At Q , we get

8P = 2 g unj uj (J - 1, 2 , . . . ,n)
d v

= ~ 2 g unn un ~ 2 8 unj uj ■ (j # n)

= - 2 g U] uj , since un *=■ 0 at Q .

This last is the quadratic form in (n - 1) variables

relative to the matrix i . Since we have chosen coordinates so

that the matrix i i s  diagonal , and its eigenvalues are 

. ,/cn„1 we get

vn~ i 79P = - 2 g / kt Uj .□“X “x 
dv ^=1

REMARK 5.8
Our proof differs from that of Sperb [21] .

The following theorem illustrates a maximum priciple for 

the function
ruP(x) = g(u) |grad u |2 + c J f(s) g(s) ds , c e R,

where u satisfies (5.1) and the Neumann boundary condition

9u = 0 on Bfl 
dv

with v is the outward normal at Q e 3f2.
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THEOREM 5.6 :

Let u(x) be a sufficiently smooth solution of (5.1) in a 

convex domain 0 c Rn , n > 2 , with Bu/3v - 0 on BO. Suppose 

that the hypotheses of Lemma 3.2 , Section 3, are satisfied ,

then the function

where c > 2 or c < 0, takes its maximum at a critical point 

of u .

PROOF :

The proof is obvious (c.f. arguments in Lemma 3.2 of 

Section 3). Only we need to show that

BP < 0  at Q e 30 .
3)'

Since for a convex domain , the curvatures are

nonnegative , then by Lemma 5.5 we get at Q

Therefore , P cannot assume its maximum on BO, and the proof is 

complete .□

REMARK 5.9
Results in Theorem 5.6 extend those of Sperb [21 ] who 

took c = 2.

u
o

REMARK 5.10
Take g(u) = 1  ; h' = 2 f , then we arrive at an

analogue to Remark 5.6 , that is : if the function

u
f(s) ds

o
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satisfies the hypotheses in Theorem 5.6 , then P takes its 

maximum where grad u “ 0 ,

Using Lemma 5.5 we can also prove the following result

given by Payne [ 9 ] for n = 2,3 .

PROPOSITION 5.7

Let v(x) be any C2(0) function satisfying dv/dr  ■= 0

on a strictly convex portion T of 30. Then , if \grad v| 2

attains its maximum on F , it follows that v e constant .

PROOF
Suppose that u = \grad v |2 takes its maximum at a 

point Q on P . Then du/dv  > 0  by elementary calculus lemma.

Taking g = 1 and h = 0 in Lemma 5.5 we have

3u ■= - 2 / ki v| < 0  , if ^ 0 , for any i .a..
Therefore we must have

v^ = 0 for all i ,

i.e.
grad v = 0  at Q.

Thus Igrad v |2 = 0 on 0 and v = constant .□

NOTE : For n = 2 , k± is to be replaced by the ordinary

curvature of 30.
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CHAPTER (VI)
APPLICATIONS

SECTION 1
TORSION PROBLEM 

We consider the classical torsion problem, that is

A u “ - 2 in 0  (1-1)

with zero boundary condition

u = 0 on 3n,  (1-2)

where 0 is a convex plane domain.

We are mainly interested in obtaining information about 

the maximum stress r defined by

r = max |grad u|  (1.3)

which is known to occur on the boundary.

Here we wish to employ the results in Theorem 4.1,

Section 4 and Theorem 5.2 , Chapter (V) .

First we shall make use of Theorem 4.1 which, for

P(x) ■= | grad u |2 + 2 u ,  (1.4)

states that P takes its maximum on 30 , at Q say. That is,

I grad ui2 + 2 u < max | grad u |2 = r 2 ......(1.5)
30

where u satisfies (1.1) and (1.2) .

Then we have, by the maximum principle ,

3P = 3_ (|grad ui2 + 2 u) > 0  at Q ,
3 v 3;'

where v denotes the outward normal at Q , unless P = constant.
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Exploiting Lemma 5.1 , Chapter (V) , we get :

3_ (|grad u|2 + 2 u) - - igrad u|[2K igrad ui - 2] > 0
3?

..'....(1.6)

where K denotes the curvature of 30 . From (1.6) then one has

K Igrad u| < 1 , at Q

that is ,

K t < 1 (at Q) ................ ......(1-7)

Note that K is the curvature of 30 at Q where Igrad u| = r

Now , if K > K 0 > 0 , we get

r < 1/K0 ............................ ......(1.8)

REMARK 1.1 :

If 0 is a disk , then the equality sign holds in (1.8),

and P(x) becomes a constant . To show this , we proceed as

follows :

On the basis of Chapter (III) , u is radially symmetric 

in our disk , so that u is independent of the angle in 0 , and 

then the polar form for the Laplacian of u is just

A u = urr + (1/r) ur — — 2 .

By elementary calculus , one gets

u - R 2 - r2 
2

R denotes the radius of the disk, since u(R) = 0 (by (1,2)).

We have then

grad u *= ur = - r

and therefore

t = max |grad u i = R .
30
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Thus t  - 1/K0 , since for a  disk K - 1/R .□

Starting with (1.5), one can obtain other information 

on 7 . We define

S :— f j grad u\ 2 ds
Jn

as the torsional rigidity of O . Then , integrating (1.5) over 

Q gives

S + 2 f u d x <  72 A ,  (1*9)
JQ

where A denotes the area of fi .

Using Green's identity , yields :

2 I u dx •= f | grad u i 2 dx = S .Jn Jn
Thus (1,9) gives

r 2 > 2_S .  (1.10)
A

A combination of (1.7) and (1.10) then gives

K(Q) < j A/25  (1.11)

where K is the curvature at a point Q where \grad u| = t , Also 

a combination of (1.8) and (1,10) gives

S < _k_ .  (1.12)
2 K q

Finally , evaluating (1.5) at a point where u takes its 

maximum gives :

r2 > 2 uM .  (1.13)
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We want to find a lower bound for uĵ  . The following 

application of the maximum principle achieves this aim .

LEMMA 1.1

Let » ^2 two domains with fi;j_ c O2 and let Uj_

satisfy

A U£ + f(u±) = 0  in (i = 1, 2),

ujf « 0 on 3^^ (1 = 1, 2) ,

where f(u) > 0 and f'(u) < 0 for u > 0 . Then < U2 in 0^.

PROOF r

By the maximum principle , > 0 in (unless

f(0) - 0).

Let w - - U2 • Then w < 0 on and

A w — f(u2) -

  f"($) w

by the mean value theorem , so

A w  + f"(£)w-‘=0  in .

If w has a positive maximum in C;j_ , by Theorem 2.6 ,

Chapter (II), w would be identically constant . Therefore

w < 0 in Oj_ . □

For the torsion problem , f(u) = 2  so the above applies. 

Let Dp be the largest disk inside fi and let v be the

solution on Dp . Then v < u in Dp . If v attains its

maximum at M we have

v = v(M) < u(M) max ~

so U > Vmax ~ max
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By the calculation of Remark 1.1 ", v - p2/2
max

Therefore
uM > p V 2 .  (1-14)

A combination of (1.13) and (1.14) gives

r > p .  (1.15)

Similarly , if is the smallest disk containing 0* we have

uM < £ 2/2 .  (1.16)

We now take c = 2 and using Theorem 5.2, Chapter (V), 

we see that the function

P(x) — igrad u |2 + 4 u

attains its maximum at a point where grad u = 0 that is ,

1 grad u| 2 + 4 u < 4 .  (1.17)

On 30 this gives

rz < 4 uĵ  .  (1.18)

So a combination of (1.18) and (1.13) yields

2 uM < t 2 < 4 ujj ,  (1.19)

which gives an upper and lower bound for t .

One can also use the above inequality (1.17) to get an 

upper bound for uĵ  in the following way :

Let M be the point where u = u , Q a point on 30

nearest to M and r measure the distance from M along the ray

connecting M and Q . Since - du < \grad u| we have :
dr

UM
du

2 /un - u 
0

dr =: MQ

M
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Taking MQ — p , where p denotes the radius of the largest 

inscribed circle we get

uM < pz . .....(1.20)

This can be a better inequality than < R 2/2 , for

example , when fi is an equilateral triangle .

Now , we wish to employ Theorem 5.2 of Chapter (V) 

which, in an inequality form, states that :

g(u) igrad u |2 + -h(u) < h(u) (h" - 2 f g).......(1.21)
max

Now, our aim is to choose g(u) and h(u) optimal in the sense 

that:

(I) (1.21) is as sharp as possible at every point of fiu3n

and for any f(u) > 0 .

(II) (1.21) becomes an equality in the limit as the domain 

shrinks to a narrow strip.

Inequality (1.21) , for h" = 2 f g , can be written as

g(u) igrad u | 2 +  2
U rUM
f(s) g(s) ds < 2

o
f(s) g{s) ds

o
(1.22)

where uĵ  is the maximum of u . According to Schaefer and Sperb 

[16] the optimal choice of P(x) in the sense of (I) and (II) is

P(x) = Igrad u\ 2 e + 4
rU

e-(3s ds , 13 = 2K0/t0
 (1.23)
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(where in the torsion problem f - 2), where K 0 > 0 is the lower 

bound to the mean curvature K to 91).

REMARK 1.2

P(x) as defined in (1.23) satisfies the assumptions of 

Theorem 5.2 of Chapter (V).

Therefore, from (1.22) and (1.23) we get 
,u.

I grad u |2 < 4  e^U M
e ■ps ds - 4 (1 - )

0
(0 = 2Ko/t ). ......(1.24)

Thus, on dQ where u «* 0 and r = max igrad u | , we get :

t 2 < 4l. [1 - e (~ 2 K °UM/T) ]
2K„

7 < 2  [1 - e( 2K oumA )  j  ̂  (1.25)
K„

From (1.25) we have :

r + 2 e( 2KoumA) < 2 .
K o Ko

Setting x = 2 KQ , i.e. r = 2 KQ uM  (1.26)

we get

2 KQ + 2 x e X < 2 x 
K o Ko

x - x e X > K q .  (1.27)

Taking x such that

x (1 - e X ) - Kq uh

then
x > x
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(since the left side in (1.27) is increasing in x)

Therefore , from (1.26) , we arrive at

(1.28)

Inequality (1.28) gives upper bounds for the maximum 

stress r when and KQ are given explicitly.

Employing a similar technique as described in Payne 

[8 ], we can also obtain an upper bound for r . We proceed as 

follows :

Let M be the point where u — , and Q a point on

90 nearest to M . Let p measure the distance between M and Q and

let r be the distance between M and a variable point in 0 .

Certainly — du < igrad u| , and therefore from (1.24)
dr

we get :

- du < _2__ [1 - e ]*, 0 - 2K0/t
dr

(1.29)

Integrating along the ray from Q to M gives :

rM

n
dr >

M [i _ ,-PCmru) du ,

M [1 - e u) j i du < _2_ p .

J~T

(1,30)
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By change of variables, the left hand side of (1.30) 

can be integrated as follows :

Write e -0(uM-u) 2sin x , so that we have

du = 2 sin x cos x dx 
(3 sin2x

Substituting into (1.30), we have : 

,B

2 cos x dx 
(3 sin x

cos x dx < 2 p ,
j 1 - sism*x s m  x

1_  dx < p J (3 i.
s m  x

A

J T

esc x dx < p J (3

B
log (esc x - cot x) < p J i.e. log [l - cos x < p J 0 .

L sin x

(1.31)

We have 

and
sin2B *= 1 , sin B == 1 , cos B = 0

sin2A — e , cos A = (1 - sin2A)£

Then (1.31) becomes :

log s m  x,

{1 - (l“sin2x0)
< p / , setting sin2xQ = e-0uM

This implies , after some steps :

sin2x > e ■2p' ^ , (3 - 2K0/ r .......(1.32)71

[1 + (l-sin2x 0) i ]2 

Now , we let y — (1 - sin2x 0)2 . Then (1.32) can be written as
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1 - y 2 > A (- e 2p^  ) .
(1 + 7)2

So
1 - y > A i.e. 7 < 1 - A = taiih(pj~fi ) . 
1 + 7  1 + A

Using (1.25) we get

t < 2 (1 - sin2x n)2 < 2 tanh7 (p/~@ )o
Ko

i.e.

T < 2 tanh2 (p/(2K0/r)) .
Ko-

Let v — /(tK 0/2) . Then v2 < tanh2(pK0/v)

and so
v < tanh(pK0/v) .  (1.33)

Since, v - tanh(pK0/v) is an increasing function of v , taking v

such that v = tanh(pKQ/ v) , we finally get

r < 2 v2  (1.34)
Ko

where V is the positive solution of

v artanh v = pK0 .  (1.35)

A series expansion in (1.35) leads to the following :

First we arrange the identity in (1.35) to the form :

_ , - 2 Z /  v . - -2z/ vv (1 + e ) — 1 - e , z “ pK0 ,

which can be written as :

-2z/ v _e ' = 1 - v
1 + v
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i.e.
z — 1. log (1 + v) . 
v 2 1 - v

The right side in (1.30) is just :

v + v3 + v5 ... for -1 < v < 1 .
3 5

Therefore (1.36) gives for v small ,

v (v + v3) z 
3

Set u = v2 , then approximately we have

u + u2 D z i.e. u2 + 3 u - 3 z = = 0  
3

Then

i.e.

u = — 3 t / 9 + 12 z , z = pKQ
2

y<9 + 12 pKJ -  3 .

Substituting into (1.34) one gets :

t < ( / 9 + 12 pK0 - 3)
K o

which is an improvement of the result given by Payne [8 ],

(1.36)

(1.37)
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SEGTIQN 2
A BOUND FOR THE "EFFICIENCY RATIO"

In the steady - state operation of a bare, homogeneous, 

monoenergetic nuclear reactor, the neutron density w(x) satisfies 

the boundary value problem

A w + 7} w *= 0 , x e Q ; w *= 0 , x f Bn ...(2,1)

where Q is the domain occupied by the reactor , its boundary, 

and 7] is a positive parameter. In the linear problem , where r\ 

does not depend on w, 7} ** X, , where X, is the first (positive) 

eigenvalue of

A u + X u = 0 , x e O ;  U “ 0 on 3n. (2.2)

In (2.2), X1 is simple and positive with an associated 

positive eigenfunction u (see Stakgold and Payne [22]).

The Efficiency of the reactor is given by :

E := u dx , ujfl = max u(x) ,  (2.3)
^_____________  xeQ
um a

where u is the first eigenfunction in (2.2) and A is the area 

of n C r2 .

We investigate an upper bound for E . To achieve this, 

we use Theorem 5.2 , Chapter (V) , with P(x) defined by :

u
e_/3s . s ds , ..... (2.4)

o

where (3 = 2K0/r (K0 > 0  is the lower bound of the mean

curvature K), r = max Igrad u\ and u > 0 satisfies (2.2).an
The function P assumes its maximum where grad u = 0. Therefore

P(x) = |grad u |2 e -0u + 2 X.
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I grad u\2 e + 2 X1
.u

e . s ds < 2 X, [ e . s ds 
o J o

Evaluating on , where u — 0 , one gets

f M
1grad u 1 2 < 2 X 1 J e . s ds (2.5)

By integrating the right side of (2.5) by parts one gets :

r2 < 2 X1 1 - e (1 + (3 UM) (2 .6)

Now, we let

2 K0 û [ , r = 2 K 0 uĵ
x

Then, from (2.6), we get

2 K2d < 1 - (1 + x) e X

which , in passing shows that X, > 2 K0 , 

and hence

(1 + x) e X < 1 - 2 k I

(2.7)

(2 .8)

-xSince , (1 + x) e is a decreasing function of x,

    —  2 __taking x such that (1 + x) e = 1 - 2 K„ , then x > x , and

therefore ,
r  < 2 K , (2.9)
uM X

where x is the positive solution of
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(X + x) e X - 1 - 2 K„ .

Using Green's first identity (with ^ - 1)

ip A n dx + grad \p . grad u dx *
n ■n

we get (since A u “ - X1 u) :

xi u dx ™ 3u ds
n an

Therefore

xi u dx “ f - Bu ds =
n Jan Bv an

\p Bu ds ,
an

Igrad u | ds < t L

where L is the arc length of 30

I
u dx < t L

0 xi
( 2 . 10)

Substituting into (2.3) one finds

E < t L ,
X, A

and using (2.9) , we arrive at :

E < 2 K0 L . (2.11)
X1 A x

For 0 a disk , the inequality (2.11) gives (Schaefer 

and Sperb [ 16 ]) :

E < 0.565

which is an improvement of a result of Payne and Stakgold [ 11 ] 

who obtained

E < 2/ir - 0.6366 .
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SECTION 3
THE FREE MEMBRANE PROBLEM

The following is to give an improved inequality to the 

one by Payne and Weinberger [ 13 ] which gives an upper bound to 

the first nonzero eigenvalue of the 11free membrane problem" in 

the plane,

A u + p u = 0 in n c (  (3.1)

9u = 0 on 00 , ......(3.2)
0r

where v is the outward normal to 00 , u e C z and 0 is assumed 

to be convex .

It is possible to reflect 0 across a line-segment F 

of the boundary 00 , (see Courant and Hilbert [1 ]); obtaining a 

new domain O’' , and continue the function u into 0" in the 

following way : If y" is the mirror-image of the point y of 0

under reflection , let u (y") “= u (y) when 0u/0j» = 0 on T . 

Then u is a continuous solution of A u + p u = 0 in the combined 

domain 0 + 0 "  with C2 derivatives .

REMARK 3.1

Under the boundary condition du/dv = 0 , the first

eigenvalue of (3.1) is zero and the associated eigenfunction is 

constant. The second eigenfunction changes its sign in 0 since

- p u d x = |  0u ds = 0 (by Green's identity).
•*0 -*00

DEFINITION : NODAL POINTS and NODAL LINES

In the case of a string or a rod, the points at which 

an eigenfunction u vanishes are of practice/ interest :
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these points are called the "nodal points" of the associated

eigenvibration u e1Wt , where a) is the frequency of the string 

or the rod .

In the case of eigenvibrations of a membrane , we 

consider "nodal lines" i.e. the curves u «= 0 . These nodal 

lines are the curves along which the membrane•remains at rest 

during eigenvibrations.

THEOREM 3.1 (Courant and Hilbert [1], pp. 395)

If several branches of the curve u ■= 0 intersect in the 

interior of a plane domain in which u is regular , then the set 

of "nodal lines" which meet at the point of intersection forms an 

equiangular system of rays .

Now, by the theorem of Courant and Hilbert , it follows

that Q is divided into two subdomains and such that the

second eigenfunction u > 0 in ft+ and u < 0 in fi- . In Payne

[7], the author shows that u cannot have a closed nodal line in

fi. On the other hand , if 0 has two axes of symmetry , the same 

is true for the corresponding eigenfunction u . In this case the 

nodal line of u must contain one of the axes .

Now, we consider the following function :

P(x) = g(u) igrad u |2 + h(u)

(h' = c f g , and for convenience we take c = 2) on a domain 0 

with two axes of symmetry .

In the light of the above , we consider the second 

eigenfunction u of (3.1) in fi, which also satisfies (3.2) on 3f2.
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Take g(u) ■ 1 and h"(u) « 2 ft u , and therefore, the function

P(x) “ \grad u i2 + fi u2 (3.3)

attains its maximum at a critical point of u (c.f, argument of 

Theorem 5.6 of Chapter (V)), where u is a maximum (= tiĵ , say).

Let M be the point where u == and let Q be the 

centre of symmetry , i.e. , the point of intersection of the two 

axes . Let r measure the distance from M along the ray 

connecting M and Q. Note that the point M must lie on one of the 

axes .

Now , since (3.3) takes its maximum where grad u ■= 0 ,

then

2 2 2 1 grad u| + g u < g . (3.4)

We proceed as in Section 1 . Certainly ~ du < Igrad u] ,
dr

therefore from (3.4) one gets

and hence

du < /  UM ~ u
dr

(3.5)

M
du < J~g MQ

7— 2---- :/ UM - u
(3.6)

The best value for MQ (Sperb [21]) is MQ = |a|/2 

where \a\ is the length of longer axis of fi. Therefore, from 

(3.6) we get :

,uM
du J~l t I SL |

~2~

(3.7)
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Integrating the left side of (3.7) gives

Hence

> x2  (3.8)
lai 2

if O is convex and symmetric (Sperb [21]), which is an improvement 

of the inequality given by Payne and Weinberger [ 13 ] who showed 

by entirely different methods that for a convex plane domain one 

has

(jl > x2 
I b I 2

where |b| is the diameter of fl, but no symmetry assumption is 

needed for the validity of their inequality .

►
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