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Preface

This Final Degree Dissertation is intended as an introduction to Sobolev
spaces, with the objective of applying abstract results of Functional Analysis
and Sobolev Spaces results to the study of Partial Differential Equations
(PDEs).

The Dissertation is divided in two main sections. The first section intro-
duces Sobolev spaces, and it will cover the main results that will be used in
the second part of the Dissertation. This second part is divided as well in
several different subsections, each one devoted to a certain type of Partial
Differential Equations. The objective of this section is to study existence,
uniqueness, regularity and other results of weak solutions, using different
techniques.

The text is based on several books about Partial Differential Equations
and Functional Analysis, although it has been highly influenced by Haim
Brezis’ Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions and Lawrence C. Evans’ Partial Differential Equations. However, the
Dissertation includes some original content or exercises. Whenever this hap-
pens, a black circle (•) will precede such content, which may take the form
of a proposition, the proof of a proposition, an exercise, etc.

Imanol Pérez Arribas
University of the Basque Country
June 2016

v





Notation

In general, and if it is not specified otherwise, Ω will denote an open set
Ω ⊂ RN .

Given a functional f ∈ E?, with E a Banach space, for each x ∈ E we
denote f(x) as 〈f, x〉. Moreover, if H is a Hilbert space, its scalar product
will be denoted as (·, ·).

For each 1 ≤ p ≤ ∞, the number p′ will be given by the unique 1 ≤ p′ ≤
∞ such that 1

p + 1
p′ = 1.

Given a Banach space E, the closed unit ball of E will be denoted by
BE . That is, BE = {x ∈ E

∣∣‖x‖ = 1}.
Given an open set Ω ⊂ RN and an open set ω ⊂ RN , we say that ω is

strongly included in Ω if ω ⊂ Ω and ω is compact. In this case, we write
ω ⊂⊂ Ω.
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Chapter 1

Sobolev Spaces

In this chapter the theory of Sobolev Spaces will be developed, which will
be the core of the study of elliptic, parabolic and hyperbolic PDEs in the
second chapter, and even some nonlinear PDEs.

In a certain manner, Sobolev spaces are analogous to the Hölder spaces
Ck,α(Ω) with Ω ⊂ RN an open set, where the usual differentiability is re-
placed by weak differentiability.

1.1 Motivation and definition of Sobolev Spaces

Let C∞c (Ω) be the set of infinitely differentiable functions with compact sup-
port ϕ : Ω→ R. A function ϕ ∈ C∞c (Ω) will often be called a test function.
For each u ∈ C1(Ω), and taking into account that every
ϕ ∈ C∞c (Ω) has compact support, Green’s identity yields∫

Ω
uϕxi = −

∫
Ω
uxiϕ ∀ϕ ∈ C∞c (Ω), ∀i = 1, . . . , n

This motivates the definition of Sobolev spaces as follows:

Definition 1.1.1. For each 1 ≤ p ≤ ∞, the Sobolev space W 1,p(Ω) is
defined by

W 1,p(Ω) =

{
u ∈ Lp(Ω)

∣∣∣∣ ∃g1,...,gN∈Lp(Ω) such that∫
Ω
uϕxi = −

∫
Ω
giϕ ∀ϕ ∈ C∞c (Ω)

}

We denote by uxi = gi the weak derivative of u ∈ W 1,p(Ω), which are
unique as we will see now. Also, the gradient of u is defined by
∇u = (ux1 , . . . , uxN ). If p = 2, we write H1(Ω) = W 1,2(Ω).

In order to prove that the weak derivative is unique, we shall first state
the following well known lemma, about Lp spaces:

1



2 1.1. Motivation and definition of Sobolev Spaces

Lemma 1.1.1. Let Ω ⊂ RN be an open set and let u ∈ L1
loc(Ω) be such that∫

Ω
uϕ = 0 ∀ϕ ∈ C∞c (Ω)

Then, u = 0 a.e. on Ω.

Now, we can proof the uniqueness of weak derivative, as follows:

Proposition 1.1.2. Let u ∈ Lp(Ω) be a function that has a weak derivative
uxi. Then, this weak derivative is unique except in a set of zero measure, that
is, if g, h ∈ Lp(Ω) are two functions such that

∫
Ω uϕxi = −

∫
Ω gϕ = −

∫
Ω hϕ

for every ϕ ∈ C∞c (Ω), then g = h a.e.

• Proof. 1 Suppose that there exist g, h ∈ Lp such that
∫

Ω uϕxi = −
∫

Ω gϕ =
−
∫

Ω hϕ, ∀ϕ ∈ C∞c (Ω). Let ψ = g − h. We shall see that ψ = 0 a.e. We
have that ∫

Ω
ψϕ = 0 ∀ϕ ∈ C∞c (Ω)

Since ψ ∈ Lp(Ω), in particular ψ ∈ Lploc(Ω) ⊂ L1
loc(Ω). Therefore, using

the previous lemma, ψ = 0 a.e., and therefore the weak derivative is well
defined (up to a set of zero measure).

There is an alternative way to define the Sobolev Spaces. Given a func-
tion f ∈ Lp(RN ), and ei the i-th vector of the canonical basis of RN , we say
that the i-th partial derivative of f exists in the Lp sense and equals fxi , if
ε−1(τεeif − f)→ −fxi in Lp(RN ), when ε→ 0. The function τεei is defined
by (τεeif)(x) = f(x+ εei).

With these definitions, we can alternatively define the Sobolev space as

W 1,p(RN ) = {f ∈ Lp(RN )
∣∣fxi exists in the Lp sense for every i = 1, . . . , n}

Both definitions of the partial derivative fxi can be proved to be equal.
In what follows, the first definition will be used, instead of the alternative
definition.

For each u ∈W 1,p(Ω), we define the norm of u by

‖u‖W 1,p = ‖u‖p +

N∑
i=1

‖uxi‖p (1.1)

Moreover, H1(Ω) is a Hilbert space equipped with the following scalar
product:

1As mentioned in the Preface, whenever a black circle precedes some content, this
content is original.
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(u, v)H1 = (u, v)L2 +
N∑
i=1

(uxi , vxi)L2 (1.2)

Since H1(Ω) is a Hilbert space, (1.2) induces a norm in H1(Ω),

‖u‖′H1 =

(
‖u‖22 +

N∑
i=1

‖uxi‖22

)1/2

This norm is equivalent to (1.1) for p = 2.

1.2 First properties of Sobolev Spaces

Proposition 1.2.1. Let Ω ⊂ RN be an open set. Then, the following state-
ments hold:

(i) For each 1 ≤ p ≤ ∞, W 1,p(Ω) is a Banach space.

(ii) For each 1 < p <∞, W 1,p(Ω) is reflexive.

(iii) For each 1 ≤ p <∞, W 1,p(Ω) is separable.

Proof. (i) Let {un}n∈N be a Cauchy sequence in W 1,p(Ω), with
1 ≤ p ≤ ∞. Then, from (1.1) it follows that {un}n∈N and {(un)xi}n∈N,
with 1 ≤ i ≤ N , are Cauchy sequences in Lp. Thus, since Lp is a
Banach space, it follows that un → u and (un)xi → gi in Lp, with
u, gi ∈ Lp. Therefore, since∫

Ω
unϕxi = −

∫
Ω

(un)xiϕ ∀ϕ ∈ C∞c (Ω)

Letting n→∞, ∫
Ω
uϕxi = −

∫
Ω
giϕ ∀ϕ ∈ C∞c (Ω)

Therefore, we obtain that u ∈W 1,p, uxi = gi and thus ‖un−u‖W 1,p =
‖un − u‖p +

∑N
i=1‖un − gi‖p → 0, as desired.

(ii) Consider the space E = Lp(Ω) × Lp(Ω)N , which is reflexive since it
is the product of reflexive spaces. Set the operator T : W 1,p(Ω) → E
defined by Tu = (u,∇u). Then, T is an isometry, and since W 1,p(Ω)
is a Banach space, M = T (W 1,p(Ω)) is a closed subspace of E. Now,
since E is reflexive, BE is compact in the weak topology σ(E,E?), and
M is closed in the topology σ(E,E?). Therefore, BM is compact in
σ(E,E?), and therefore T (W 1,p) is reflexive. As a consequence, W 1,p

is also reflexive.
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(iii) Under the notation of (ii), and taking into account that E is separable,
it follows that T (W 1,p(Ω)) is separable and therefore W 1,p(Ω) is also
separable.

Under some conditions, one can think of a function u ∈ W 1,p(Ω) as a
function in u ∈ C1(Ω). Indeed, if u ∈ W 1,p(Ω) for a certain 1 ≤ p ≤ ∞,
and uxi ∈ C(Ω) for each 1 ≤ i ≤ N , where the partial derivative is a weak
partial derivative, then it can be proven that there exists v ∈ C1(Ω) such
that u = v a.e.

Moreover, we can stablish the following density result, although we will
later prove a stronger result under some more assumptions. But first, we
need to introduce the following lemma.

Lemma 1.2.2. Set ρ ∈ L1(RN ), v ∈ W 1,p(RN ) with 1 ≤ p ≤ ∞. Then,
ρ ? v ∈ W 1,p(RN ) and for each i = 1, . . . , N , we must have that (ρ ? v)xi =
ρ ? (v)xi.

Proposition 1.2.3 (Friedrichs). Let u ∈ W 1,p(Ω), with 1 ≤ p ≤ ∞. Then,
there exists a sequence {un}n∈N ⊂ C∞c (RN ) such that

un|Ω → u in Lp(Ω)

and

∇un|ω → ∇u|ω in Lp(ω)N for all ω ⊂⊂ Ω

If Ω = RN , then there exists a sequence {un}n∈N ⊂ C∞c (RN ) so that

un → u in Lp(RN )

and

un → ∇u in Lp(RN )N

Proof. Set u = uχΩ, and take vn = ρn ? u with ρn a sequence of mollifiers.
Then, vn ∈ C∞(RN ) and, moreover, vn → u in Lp(RN ). We must see that
for each ω ⊂⊂ Ω, ∇vn|ω → ∇u|ω in Lp(ω)N .

Let ω ⊂⊂ Ω, and take a function α ∈ C1
c (Ω) such that 0 ≤ α ≤ 1 and

α|ω = 1. It is easy to check that such function exists. Then, for n large
enough,

supp(ρn ? (αu)− ρn ? u) = supp(ρn ? (1− α)u) ⊂ supp ρn + supp((1− α)u)

⊂ B(0, 1/n) + supp(1− α) ⊂ (ω)c

And, therefore,
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ρn ? (αu) = ρn ? u on ω (1.3)

Using the previous lemma, we have

(ρn ? αu)xi = ρn ? (αu)xi = ρn ? (αuxi + αxiu)

The last equality follows from the fact that for each ϕ ∈ C∞c (RN ),

∫
RN

αuϕxi =

∫
Ω
αuϕxi =

∫
Ω
u[(αϕ)xi − αxiϕ] = −

∫
Ω

(uxiαϕ+ uαxiϕ) =

−
∫
RN

(αuxi + αxiu)ϕ

As a consequence, it follows that

(ρn ? αu)xi → αuxi + αxiu in Lp(RN )

After a restriction to ω, we have that

(ρn ? αu)xi → uxi in Lp(ω)

Taking into account (1.3),

(ρn ? u)xi → uxi in Lp(ω)

We shall define a certain sequence of cut-off functions ζn now. Fix a
function ζ ∈ C∞c (RN ) such that 0 ≤ ζ ≤ 1, and

ζ(x) =

{
1 if |x| < 1

0 if |x| ≥ 2

We define the sequence of cut-offs ζn(x) = ζ(x/n). Now, using the domi-
nated convergence theorem the sequence un = ζnvn satisfies that
un → u in Lp(Ω), and ∇un → ∇u in (Lp(ω))N . If Ω = RN , the sequence
defined by un = ζn(ρn ? u) satisfies the desired properties.

The following proposition offers a characterization of the elements of
W 1,p.

Proposition 1.2.4. Let u ∈ Lp(Ω), with 1 < p ≤ ∞. The following prop-
erties are equivalent:

(i) u ∈W 1,p(Ω).

(ii) There exists a constant C > 0 such that∣∣∣∣∫
Ω
uϕxi

∣∣∣∣ ≤ C‖ϕ‖Lp′ (Ω) ∀ϕ ∈ C∞c (Ω), ∀i = 1, 2, . . . , N
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(iii) there exists a constant C > 0 so that for every ω ⊂⊂ Ω and h ∈ RN
such that |h| < dist(ω, ∂Ω) we have

‖τhu− u‖Lp(ω) ≤ C|h|

Where τh is defined by τhu(x) = u(x+ h).

If Ω = RN , we have

‖τhu− u‖Lp(RN ) ≤ |h|‖∇u‖Lp(RN )

Proof. (i)⇒ (ii). Since u ∈W 1,p(Ω), for each ϕ ∈ C∞c (Ω) and i = 1, . . . , N ,∣∣∣∣∫
Ω
uϕxi

∣∣∣∣ =

∣∣∣∣∫
Ω
uxiϕ

∣∣∣∣ ≤ ‖uxi‖p‖ϕ‖p′
(ii) ⇒ (i). Given i ∈ {1, . . . , N}, Consider the linear functional

ϕ ∈ C∞c (Ω) 7→
∫

Ω
uϕxi

This linear functional is defined on a dense subspace of Lp
′
, since p′ <∞

as 1 < p. Moreover, this functional is continuous for the norm in Lp
′
because

of (ii). Thus, we may apply Hahn–Banach theorem in order to extend this
functional to a bounded linear functional F that is defined in all of Lp

′
.

Applying the Riesz representation theorem, there must exist a function g ∈
Lp such that

〈F,ϕ〉 =

∫
Ω
gϕ ∀ϕ ∈ Lp′

In particular, ∫
Ω
uϕxi =

∫
Ω
gϕ ∀ϕ ∈ C∞c

And therefore u ∈W 1,p.
(i) =⇒ (iii). Suppose that u ∈ C∞c (RN ). A density argument will be

used to prove the general case. Set h ∈ RN , and set v(t) = u(x + th), for
each t ∈ R. Clearly v′(t) = h∇u(x+ th), and hence

u(x+ h)− u(x) = v(1)− v(0) =

∫ 1

0
v′(t)dt =

∫ 1

0
h · ∇u(x+ th)dt

Therefore, for each 1 ≤ p <∞,

|τhu(x)− u(x)|p ≤ |h|p
∫ 1

0
|∇u(x+ th)|pdt
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Integrating on ω, we reach to

∫
ω
|τhu(x)−u(x)|pdx ≤ |h|p

∫ 1

0
dt

∫
ω
|∇u(x+th)|pdx = |h|p

∫ 1

0
dt

∫
ω+th

|∇u(y)|pdy

Now, take |h| < dist(ω, ∂Ω). Then, clearly there exists an open set
ω′ ⊂⊂ Ω such that ω + th ⊂ ω′ for all t ∈ [0, 1]. Therefore,

‖τhu− u‖pLp(ω) ≤ |h|
p

∫
ω′
|∇u|p

Which proves the case where u ∈ C∞c (RN ), 1 ≤ p <∞. Using Theorem
(1.2.3), the general case follows.

(iii) =⇒ (ii). Take ϕ ∈ C∞c (Ω). We may pick an open set ω that is
contained in between suppϕ and Ω, that is, suppϕ ⊂ ω ⊂⊂ Ω. Now, we
proceed as follows: pick h ∈ RN with |h| < dist(ω, ∂Ω). We are now under
the hypotheses of (iii), so that∣∣∣∣∫

Ω
(τhu− u)ϕ

∣∣∣∣ ≤ C|h|‖ϕ‖Lp′ (Ω)

Now, we have that∫
Ω

(u(x+ h)− u(x))ϕ(x)dx =

∫
Ω
u(y)(ϕ(y − h)− ϕ(y))dy

We conclude that∫
Ω
u(y)

(ϕ(y − h)− ϕ(y))

|h|
dy ≤ C‖ϕ‖Lp′ (Ω)

(ii) follows from letting h = tei and taking t→ 0.

Weak derivatives enjoy some properties that are analogous to the case
of C1 functions, such as the differentiation of a product and composition,
and the change of variables formula. The following results, whose proofs
are omitted, state these properties (See H. Brezis [1], Chapter 9, for the
corresponding proofs).

Proposition 1.2.5. Let 1 ≤ p ≤ ∞. Then, W 1,p(Ω) ∩ L∞(Ω) is closed
under multiplication, that is, for every u, v ∈W 1,p(Ω) ∩ L∞(Ω), its product
uv ∈W 1,p(Ω) ∩ L∞(Ω). Moreover,

(uv)xi = uxiv + uvxi , i = 1, 2, . . . , N
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Proposition 1.2.6. Let G ∈ C1(R) be a differentiable continuous function
such that G(0) = 0 and ‖G′‖∞ ≤ M , with M ≥ 0. Then, for each u ∈
W 1,p(Ω) (1 ≤ p ≤ ∞) the composition of G and u belongs to W 1,p. That is,
G ◦ u ∈W 1,p(Ω), and moreover

(G ◦ u)xi = (G′ ◦ u)uxi , i = 1, 2, . . . , N

Proposition 1.2.7. Let Ω,Ω′ ⊂ RN be two open sets, and H : Ω′ → Ω
a bijective map of class C1, such that H−1 ∈ C1(Ω), JacH ∈ L∞(Ω′) and
JacH−1 ∈ L∞(Ω), where Jac denotes the Jacobian matrix. Then, u ◦H ∈
W 1,p(Ω′) and

(u(H(y)))yj =
∑
i

uxi(H(y))(Hi(y))yj , j = 1, 2, . . . , N

1.3 Wm,p(Ω) spaces

After defining the W 1,p(Ω) spaces, we can define the general Wm,p spaces
recursively. Let m ≥ 2 be an integer, and 1 ≤ p ≤ ∞. Then, we define

Wm,p(Ω) =

{
u ∈Wm−1,p(Ω)

∣∣∣∣ uxi ∈Wm−1,p(Ω) ∀i = 1, 2, . . . , N

}
An equivalent way of defining these Sobolev spaces is defining Wm,p as

Wm,p(Ω) =

{
u ∈ Lp(Ω)

∣∣∣∣∀α with |α|≤m,∃gα∈Lp(Ω) such that∫
Ω uD

αϕ=(−1)|α|
∫
Ω gαϕ ∀ϕ∈C∞c (Ω)

}
The multi-index notation have been used. That is, α = (α1, . . . , αN ) ∈

NN and |α| =
∑

i αi. Moreover,

Dαϕ =
∂|α|ϕ

∂xα1
1 . . . ∂xαNN

We denote Dαu = gα. Then, it can be proved (although its proof will
be omitted) that Wm,p(Ω) is a Banach space with the norm

‖u‖Wm,p =
∑

0≤|α|≤m

‖Dαu‖p (1.4)

Just like in the W 1,2 case, Wm,2(Ω) is a Hilbert space that is denoted
by Hm(Ω), and its scalar product is

(u, v)Hm =
∑

0≤|α|≤m

(Dαu,Dαv)L2

Again, the norm arising from this scalar product is equivalent to (1.4).
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1.4 Extension Operators and Sobolev Inequalities

One may wonder if given a function u ∈W 1,p(Ω) with Ω $ RN , there exists
an extension ũ ∈ W 1,p(RN ). That is, a function ũ ∈ W 1,p(RN ) such that
ũ|Ω = u a.e. This is not true in general, unless we require more hypotheses
to Ω. If the domain is smooth enough, a concept that will be defined now,
the result is actually true.

Notation. Let x ∈ RN . We write x as x = (x′, xN ), with x′ ∈ RN−1.
Moreover, we denote |x′| = ‖(x1, . . . , xN−1)‖2, where ‖·‖ is the euclidean
norm of RN−1. Finally, we define the following sets:

(i) RN+ = {(x′, xN ) ∈ RN
∣∣xN > 0}

(ii) Q = {(x′, xN ) ∈ RN
∣∣|x′| < 1 and |xN | < 1}

(iii) Q+ = Q ∩ RN+

(iv) Q0 = {(x′, 0) ∈ RN
∣∣|x′| < 1}

Definition 1.4.1. An open set Ω ⊂ RN is said to be of class C1 if for every
x ∈ ∂Ω = Γ there exists a neighborhood U of x in RN and a bijective map
H : Q→ U such that

H ∈ C1(Q), H−1 ∈ C1(U), H(Q+) = U ∩Q, and H(Q0) = U ∩ Γ

Under these conditions, H is said to be a local chart.

The following theorem assures the existence of an extension operator
that extends any function u ∈W 1,p(Ω) to a function ũ ∈W 1,p(RN ), as long
as Ω is of class C1:

Theorem 1.4.1. Let Ω ⊂ RN be a domain of class C1 with Γ = ∂Ω bounded
or Ω = RN+ . Then, there exists a linear operator

P : W 1,p(Ω) −→W 1,p(RN )

with 1 ≤ p ≤ ∞, that fulfills the following properties for each
u ∈W 1,p(Ω):

(i) (Pu)|Ω = u,

(ii) ‖Pu‖Lp(RN ) ≤ C‖u‖Lp(Ω),

(iii) ‖Pu‖W 1,p(RN ) ≤ C‖u‖W 1,p(Ω),

with C ≥ 0 a constant that depends only on Ω. P is the extension operator
we mentioned before.
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Using this result, we may prove a density result regarding W 1,p spaces.

Corollary 1.4.2. Suppose Ω is of class C1. Then, the restrictions to Ω of
functions in C∞c (RN ) form a dense subspace of W 1,p(Ω).

Proof. Let u ∈ W 1,p(Ω). First, we will assume that Γ is bounded. Using
the previous theorem, there exists an extension operator P . Let

un = ζn(ρn ? Pu)

With ζn the cut-off functions previously mentioned, and ρn a sequence
of mollifiers. Then, un ∈ C∞c (RN ) and un|Ω → u in W 1,p(Ω).

If, on the other hand, Γ is not bounded, we consider the sequence ζnu.
Then, ζnu → u in W 1,p(Ω), so we may pick n0 ≥ 1 so that
‖ζn0u−u‖W 1,p < ε. Using the case where Γ is bounded, we can construct an
extension v ∈W 1,p(RN ) of ζn0u. Finally, using (1.2.3) we pick w ∈ C∞c (RN )
such that ‖w − v‖W 1,p(RN ) < ε. Then,

‖w|Ω − u‖W 1,p(Ω) ≤ ‖w|Ω − ζn0u‖W 1,p(Ω) + ‖ζn0u− u‖W 1,p(Ω)

≤ ‖w − v‖W 1,p(RN ) + ε < 2ε

The following corollary generalizes a classical result of C1 functions: if
u is of class C1 and its partial derivatives vanish in an open connected set
U , then u is constant on U .

Corollary 1.4.3. Let Ω ⊂ RN be a domain such that Ω = RN , or Ω is of
class C1 with Γ bounded. If u ∈W 1,p(Ω) satisfies that

uxi = 0 on U ⊂ Ω, ∀ 1 ≤ i ≤ N

with U ⊂ Ω an open connected set, then u|U is constant.

• Proof. Assume that Ω = RN first. Let {ρn} be a sequence of mollifiers
such that ρn ? u→ u in W 1,p(RN ). Using Lemma (1.2.2),

(ρn ? u)xi = ρn ? (uxi) = 0 on U, ∀ 1 ≤ i ≤ N,n ≥ 1

Since ρn ? u ∈ C∞(RN ), ρn ? u has to be constant on U , and taking into
account that (ρn ? u)|U → u|U , u is constant on U .

If Ω ⊂ RN is a domain of class C1 with Γ bounded, using the Extension
Operator Theorem (1.4.1), we extend u to a function in W 1,p(RN ) using the
extension operator P : W 1,p(Ω) → W 1,p(RN ). Then, (Pu)xi|U = uxi|U = 0.

Thus, using the case where Ω = RN we just proved, necessarily Pu|U has to
be constant, and as a consequence u|U is constant.
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In numerous occasions, it is useful to embed Sobolev spaces into other
spaces. Namely, it is important to know if we can embed a Sobolev space in
some Lq space, or even in the space of continuous functions. Moreover, it is
useful to determine when these embeddings are continuous or compact.

The dimension of the space will play a key role here, and the space where
the Sobolev space is embedded will in general depend on the dimension of
the space. Whether Ω is a proper subset of RN or not will also be important.

1.4.1 When Ω = RN

We will begin stating the following lemma, that will be used to prove a
theorem by Sobolev, Gagliardo and Nirenberg:

Lemma 1.4.4. Let N ≥ 2, and set f1, . . . , fN ∈ LN−1(RN−1). Given
x ∈ RN , we denote x̃i as

x̃i = (x1, x2, . . . , xi−1, xi+1, . . . , xN ) ∈ RN−1

Then,

f(x) = f1(x̃1) . . . fN (x̃N ) ∈ L1(RN )

And we have the estimate

‖f‖L1(RN ) ≤
N∏
i=1

‖fi‖LN−1(RN−1)

Now, the following theorem gives us a first result about when a Sobolev
space is included in a Lp space.

Theorem 1.4.5 (Sobolev, Gagliardo, Nirenberg). For each 1 ≤ p < N , let
p? be the unique number that is defined by 1

p? = 1
p −

1
N . Then, we have the

inclusion

W 1,p(RN ) ⊂ Lp?(RN )

Moreover, there exists a constant C that only depends on p and N , such
that

‖u‖p? ≤ C‖∇u‖p

Proof. Assume that p = 1 and u ∈ C1
c (RN ) first. Then,

|u(x1, x2, . . . , xN )| =
∣∣∣∣∫ x1

−∞
ux1(t, x2, . . . , xN )dt

∣∣∣∣ ≤ ∫ ∞
−∞
|ux1(t, x2, . . . , xN )|dt

(1.5)
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Let fi(x̃i) =
∫∞
−∞ |uxi(x1, . . . , xi−1, t, xi+1, . . . , xN )|dt. Then, proceeding

as in (1.5), we have that

|u(x1, . . . , xN )| ≤ fi(x̃i), i = 1, . . . , N

It follows, using the previous lemma, that

∫
RN
|u(x)|N/(N−1)dx ≤

N∏
i=1

‖fi‖1/(N−1)

L1(RN−1)
=

N∏
i=1

‖uxi‖
1/(N−1)

L1(RN )

That is,

‖u‖LN/(N−1)(RN ) ≤
N∏
i=1

‖uxi‖
1/N

L1(RN )
(1.6)

Which is precisely what we wanted to prove, since if p = 1, p? = N/(N−
1). For the general case 1 < p < N (although with u ∈ C1

c (RN )), we proceed
as follows. Let m ≥ 1. Applying (1.6) to |u|m−1u, we have that

‖u‖mmN/(N−1) ≤ m
N∏
i=1

‖|u|m−1uxi‖
1/N
1 ≤ m‖u‖m−1

p′(m−1)

N∏
i=1

‖uxi‖1/Np (1.7)

Since m is arbitrary, we may pick m so that mN/(N − 1) = p′(m − 1),
obtaining m = (N − 1)p?/N . Notice that m ≥ 1 since 1 < p < N . Then,

‖u‖p? ≤ m
N∏
i=1

‖uxi‖1/Np

And thus ‖u‖p? ≤ C‖∇u‖p ∀u ∈ C1
c (RN ). When u ∈W 1,p(RN ), we use

density to conclude the result. Take {un} ⊂ C1
c (RN ) a sequence converging

to u in W 1,p(RN ). We can assume that un → u a.e. Otherwise, just take a
subsequence that meets this requirement.

Then, we obtain

‖un‖p? ≤ C‖∇un‖p

The conclusion is immediate: Using Fatou’s lemma, u ∈ Lp
?

and
‖u‖p? ≤ C‖∇u‖p.

Remark 1.4.1. In the theorem, we can take C = C(p,N) = (N−1)p/(N−
p). However, this is not the optimal constant. It is possible to calculate the
optimal one, although the procedure is not simple at all. See G. Talenti [9]
for a statement and proof of the corresponding result.
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Corollary 1.4.6. If 1 ≤ p < N , then

W 1,p(RN ) ⊂ Lq(RN ) ∀q ∈ [p, p?]

with a continuous injection.

Proof. Let q ∈ [p, p?]. Write

1

q
=
α

p
+

1− α
p?

, for some α ∈ [0, 1]

It can be checked that ‖u‖q ≤ ‖u‖αp ‖u‖1−αp? ≤ ‖u‖p + ‖u‖p? . Young’s
inequality has been used in here. Therefore, using the theorem that was
just proved,

‖u‖q ≤ C‖u‖W 1,p ∀u ∈W 1,p(RN )

A good question that arises from the Sobolev, Gagliardo and Nirenberg
is what happens when p = N . The following corollary answer this question:

Corollary 1.4.7. The following embedding holds:

W 1,N (RN ) ⊂ Lq(RN ) ∀q ∈ [N,+∞)

Proof. As usual, we assume that u ∈ C1
c (RN ) first. We can apply (1.7) with

p = N , obtaining

‖u‖mmN/(N−1) ≤ m‖u‖
m−1
(m−1)N/(N−1)‖∇u‖N ∀m ≥ 1

Using Young’s inequality,

‖u‖mN/(N−1) ≤ C(‖u‖(m−1)N/(N−1) + ‖∇u‖N ) ∀m ≥ 1

In the previous equation we can pick m = N . Then,

‖u‖N2/(N−1) ≤ C‖u‖W 1,N

Using Gagliardo–Nirenberg interpolaiton inequality (see L. Nirenberg
[5]), we conclude that

‖u‖q ≤ C‖u‖W 1,p

For every q such that N ≤ q ≤ N2/(N − 1). We repeat the argument
with m = N + 1, N + 2, . . . and we finally get

‖u‖q ≤ C‖u‖W 1,N ∀u ∈ C1
c (RN )

For every q ≥ N . Repeating the usual density argument, the corollary
is proved.
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Lastly, we have the following embedding result by Morrey, for the case
where p > N .

Proposition 1.4.8 (Morrey). If p > N , then

W 1,p(RN ) ⊂ L∞(RN )

The injection is continuous, and moreover for every u ∈W 1,p(RN ), and
if we define α as α = 1−N/p, we have

|u(x)− u(y)| ≤ C|x− y|α‖∇u‖p a.e. x, y ∈ RN (1.8)

where C is constant and depends only on p and N .

For a proof of this theorem, see H. Brezis [1].
Let us emphasize an implication of the previous theorem. Let Λ ⊂ RN

be a set of zero measure such that the inequality (1.8) is satisfied in RN \Λ.
Then, we can extend the function u|RN\A to a continuous function in RN ,

and given the fact that RN \Λ is dense in RN , this extension is unique. That
is, we can replace u by a continuous representative.

Using repeatedly the theorems and corollaries that were stated previ-
ously, we obtaing the following corollary:

Corollary 1.4.9. Let m ∈ N and 1 ≤ p <∞. Then, we have the following
continuous injections:

Wm,p(RN ) ⊂ Lq(RN ), with
1

q
=

1

p
− m

N
, if

1

p
− m

N
> 0

Wm,p(RN ) ⊂ Lq(RN ), ∀p ≤ q <∞, if
1

p
− m

N
= 0

Wm,p(RN ) ⊂ L∞(RN ), if
1

p
− m

N
< 0

(1.9)

Moreover, we have that Wm,p(RN ) ⊂ Ck(RN ), with k = [m − (N/p)]]
([·] denotes the integer part).

1.4.2 When Ω ⊂ RN

In what follows, Ω will be considered to be a domain of class C1, with Γ = ∂Ω
bounded, or Ω = RN+ . In this section the Theorem (1.4.1) will play a crucial
role. The general idea that will appear in the proofs of this section is to
extend the functions of W 1,p(Ω) to a function of W 1,p(RN ) using Theorem
(1.4.1), in order to use the results from the previous section.

Proposition 1.4.10. For each 1 ≤ p ≤ ∞, we have the following continuous
injections:
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W 1,p(Ω) ⊂ Lp?(Ω), where
1

p?
=

1

p
− 1

N
, if p < N

W 1,p(Ω) ⊂ Lq(Ω), ∀p ≤ q <∞, if p = N

W 1,p(Ω) ⊂ L∞(Ω), if p > N

(1.10)

Proof. Using Theorem (1.4.1), we take the extension operator
P : W 1,p(Ω) → W 1,p(RN ). Then, we apply the different results from the
previous section where we studied the case of RN , in order to conclude the
desired results after a restriction to Ω.

Corollary 1.4.11. If p > N , for every u ∈W 1,p(Ω) we have

|u(x)− u(y)| ≤ C‖u‖W 1,p |x− y|α a.e. x, y ∈ Ω (1.11)

with α = 1 − N/p, and C is a constant depending on Ω, p and N . Thus,
W 1,p ⊂ C(Ω).

Proof. In a similar way as in the proof of the previous theorem, take the
extension operator P and apply Morrey’s Theorem (1.8).

Corollary 1.4.12. The conclusions of Corollary (1.4.9) are still true if RN
is replaced by Ω.

The following result shows different cases in which the injection is com-
pact, instead of just continuous. It will be very useful in the second part of
the Dissertation, where PDEs will be studied.

Theorem 1.4.13 (Rellich–Kondrachov). Let Ω ⊂ RN be a bounded domain
of class C1. Then, the following injections are compact:

W 1,p(Ω) ⊂ Lq(Ω) ∀q ∈ [1, p?), where
1

p?
=

1

p
− 1

N
, if p < N

W 1,p(Ω) ⊂ Lq(Ω) ∀q ∈ [p,+∞), if p = N

W 1,p(Ω) ⊂ C(Ω) if p > N

(1.12)

Proof. Let p > N . Let H be the unit ball in W 1,p(Ω). Using Proposition
(1.4.10) the injection W 1,p(Ω) ⊂ L∞(Ω) is continuous. Thus, there exists
a constant M > 0 such that ‖u‖∞ ≤ M‖u‖W 1,p . Therefore, the set H is
bounded. Now, we will prove that H is equicontinuous. Given ε > 0, set
δ = (ε/C)1/α, where C is the constant mentioned by (1.11). Then, for each
x, y ∈ Ω such that |x− y| < δ,

|u(x)− u(y)| ≤ C‖u‖W 1,p |x− y|α ≤ ε, ∀u ∈ H
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So, indeed, H is an equicontinuous family. Using Ascoli–Arzelà’s theo-
rem, H has compact closure and therefore the the injection is compact.

The case p = N reduces to the case p < N , so we will study the case
where p < N now.

Again, we denote by H the unit ball in W 1,p(Ω). Using the Theorem
(1.4.1), we consider the extension operator P . Set F = P (H), so that
H = F|Ω. We will use Kolmogorov–Riesz compactness theorem to prove
that H has compact closure in Lp(Ω), for q ∈ [1, p?). We can assume that
q ≥ p, since Ω is bounded. Clearly, F is bounded in W 1,p(RN ) (the prove is
similar to the case p > N), and therefore it is also bounded in Lq(RN ), by
Corollary (1.4.6). In order to use Kolmogorov–Riesz’s theorem, we have to
check that

lim
|h|→0

‖τhf − f‖Lq(RN ) = 0 uniformly in f ∈ F (1.13)

Using Proposition (1.2.4),

‖τhf − f‖Lp(RN ) ≤ |h|‖∇f‖Lp(RN ) ∀f ∈ F

We write

1

q
=
α

p
+

1− α
p?

for some α ∈ (0, 1]

Since p ≤ q < p?. Using Gagliardo–Nirenberg interpolation inequality
we conclude that

‖τhf − f‖Lq(RN ) ≤ ‖τhf − f‖αLp(RN )‖τhf − f‖
1−α
Lp? (RN )

≤ |h|α‖∇f‖αLp(RN )(2‖f‖Lp? (RN ))
1−α ≤ C|h|α

(1.14)

Where C is a constant that does not depend on F , because as we
have proved F is bounded in W 1,p. Then, (1.13) holds, and thus using
Kolmogorov–Riesz’s compactness theorem the injection is compact.

• Corollary 1.4.14. Let {un} be a bounded sequence in W 1,p(Ω),
1 ≤ p < ∞, such that un ⇀ u weakly on W 1,p(Ω), with Ω bounded and
of class C1. Then, there exists a subsequence that converges strongly to u in
Lp(Ω), and in particular there exists a subsequence that converges a.e. to u.

• Proof. Using Theorem (1.13), the injection W 1,p(Ω) ⊂ Lp(Ω) is compact.
That is, the injection operator i : W 1,p(Ω) → Lp(Ω) is compact. Thus,
and taking into account that {un} is bounded, i(un) = un has a convergent
subsequence in Lp(Ω). Therefore, due to the uniqueness of the limit, we
must have that un → u strongly in Lp(Ω). Moreover, since un → u in
Lp(Ω), we can extract again a subsequence that converges a.e. to u.
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1.5 Wm,p
0 (Ω) space and its dual

Definition 1.5.1. We denote by W 1,p
0 (Ω), with 1 ≤ p < ∞, the closure of

C1
c (Ω) in W 1,p(Ω). We write H1

0 (Ω) := W 1,2
0 (Ω). We can equip the space

W 1,p
0 with the norm of W 1,p. Then, the space is a separable Banach space,

and it is reflexive for 1 < p <∞. If p = 2, the space H1
0 is a Hilbert space,

equipped with the scalar product of H1. An immediate observation is that
given the fact that C1

c (RN ) is dense in W 1,p(RN ), we obtain W 1,p
0 (RN ) =

W 1,p(RN ).

Similarly, we define de spaceWm,p
0 (Ω) as the closure of Cmc (Ω) inWm,p

0 (Ω).

Intuitively, a function of W 1,p
0 (Ω) vanishes on Γ = ∂Ω. This is not

accurate at all, since a function u ∈ W 1,p(Ω) is well defined up to a set of
zero measure (it is defined a.e.), so it does not make sense to say that u
vanishes on Γ. However, the next result will formalize this idea. Similarly,
we can think of a function u ∈ Wm,p

0 (Ω) as a function u ∈ Wm,p such tat
Dαu = 0 on Γ, for every multi-index α with |α| ≤ m− 1.

Theorem 1.5.1. Let Ω be a domain of class C1, and let 1 ≤ p < ∞. Set
u ∈W 1,p(Ω) ∩ C(Ω). Then, u = 0 on Γ if and only if u ∈W 1,p

0 (Ω).

The proof will be omitted2. This kind of results belong to the Theory
of traces. Roughly speaking, the trace of u on Γ, denoted by u|Γ, is a linear
operator, defined in an appropiate way, from W 1,p(Ω) into Lp(Γ).

A corollary of this result is Poincaré’s inequality, that estimates the norm
of a function u ∈W 1,p

0 (Ω) in terms of its gradient:

Corollary 1.5.2 (Poincaré’s inequality). Let 1 ≤ p <∞, and Ω a bounded
domain. Then, there exists a constant C such that

‖u‖p ≤ C‖∇u‖p ∀u ∈W 1,p
0 (Ω)

The constant C depends only on Ω and p. Therefore, ‖∇u‖Lp(Ω) is a

norm on W 1,p
0 (Ω) equivalent to (1.1). For the Hilbert space H1

0 (Ω), the
scalar product

∑
i

∫
Ω uxivxi induces the norm ‖∇u‖2, and it is equivalent to

‖u‖H1.

The dual of W 1,p
0 (Ω) will be denoted by W−1,p′(Ω). If p = 2, we write

H−1(Ω) := W−1,2(Ω). If Ω is bounded, we have the following continuous
and dense injections:

W 1,p
0 (Ω) ⊂ L2(Ω) ⊂W−1,p′(Ω) if 2N/(N + 2) ≤ p <∞

If Ω is not bounded the injections are still continuous and dense, but
only if 2N/(N + 2) ≤ p ≤ 2. Therefore, in particular

2See H. Brezis [1] for a proof of the theorem.
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H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω)

With continuous and dense injections, for every domain Ω ⊂ RN . The
following proposition gives a better insight of the elements of W−1,p′ .

Proposition 1.5.3. Given f ∈ W−1,p′(Ω), there exist f0, f1, . . . , fN ∈
Lp
′
(Ω) such that

〈f, v〉 =

∫
Ω
f0v +

N∑
i=1

∫
Ω
fivxi ∀v ∈W

1,p
0 (Ω)

and ‖f‖ = max0≤i≤N‖fi‖p′. Moreover, we may pick f0 = 0 if Ω is bounded.

Proof. Set E = Lp(Ω)N+1. E is a Banach space equipped with the norm

‖h‖ =

N∑
i=0

‖hi‖p, h = (h0, h1, . . . , hN )

We define the following map:

T : W 1,p
0 (Ω) −→ E

u 7→ (u, ux1 , ux2 , . . . , uxN )
(1.15)

Taking into account (1.1), T is a isometry. Set G = T (W 1,p
0 (Ω)), and

set S = T−1 : G→W 1,p
0 (Ω). The map h ∈ G 7→ 〈f, Sh〉 is a bounded linear

functional on G. We may use Hahn–Banach theorem now, and extend it to
a bounded linear functional Φ that is defined on all of E, and ‖Φ‖E? = ‖F‖.

Using Riesz representation theorem, there exist functions f0, f1, . . . , fN ∈
Lp
′

such that

〈Φ, h〉 =

N∑
i=0

∫
Ω
fihi ∀h ∈ E

Moreover, ‖Φ‖E? = max0≤i≤N‖fi‖p′ . Therefore, if u ∈W 1,p
0 ,

〈Φ, Tu〉 = 〈f, u〉 =

∫
Ω
f0u+

N∑
i=1

∫
Ω
fiuxi (1.16)

If Ω is bounded we may equip the space W 1,p
0 (Ω) with the following

norm:

‖u‖W 1,p =
N∑
i=1

‖uxi‖p

and repeating the same argument with E = Lp(Ω)N , we conclude that we
can take f0 = 0 in (1.16).



Chapter 2

Partial Differential Equations

Sobolev Spaces are a powerful tool that can be used to study various prop-
erties of Partial Differential Equations. This chapter will be focused on the
solvability of mainly second-order linear partial differential equations, with
both Dirichlet and Neumann boundary conditions. A distinction will be
made between different types of PDEs, and each of them will be studied
separately.

The linear second-order partial differential operator will be used fre-
quently, which will be denoted by L. This operator may have the divergence
form

L ≡ −
N∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
+

N∑
i=1

bi(x)
∂

∂xi
+ c(x) (2.1)

or in the nondivergence form

L ≡ −
N∑

i,j=1

aij(x)
∂2

∂xi∂xj
+

N∑
i=1

bi(x)
∂

∂xi
+ c(x) (2.2)

Notice that if the coefficients aij are of class C1, we may write an operator
in divergence form (2.1) in the nondivergence form (2.2), and reciprocally.
We will assume that the coefficients aij are symmetric, in the sense that
aij = aji for 1 ≤ i, j ≤ N .

2.1 Second-order elliptic equations

This chapter will study the equation Lu = f in a certain open and bounded
domain Ω ⊂ RN , with some boundary conditions on ∂Ω, where f : Ω → R
is a function in a certain space of functions.

Throughout this section, we will assume that the operator L satisfies the
uniform ellipticity condition, that is, there exists a certain constant θ > 0
such that

19
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N∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2, ∀ξ ∈ RN , a.e. x ∈ Ω (2.3)

An example of a partial differential operator L that satisfies the ellipticity
condition is the Laplacian changed of sign, that is, L = −∆. In this case,
bi ≡ 0 for i = 1, . . . , N , c ≡ 0 and aij = 0 if i 6= j, and aii = 1. Then, the
condition (2.3) is satisfied trivially.

Remark 2.1.1. The uniform ellipticity condition can be seen as imposing
that the matrix (aij(x)) is positive definite a.e. x ∈ Ω, and its smallest
eigenvalue is greater or equal to θ.

2.1.1 Weak solutions of the Dirichlet problem

Our objective now is to define a weak solution of the problem{
Lu = f in Ω

u = 0 on ∂Ω
(2.4)

In order to motivate the definition weak solutions of (2.4), we will first
assume that the coefficients aij , b and c as well as f and u are smooth enough.
Then, multiplying the PDE by a function ϕ ∈ C∞c (Ω) (such functions are
usually called test functions), integrating over Ω and integrating by parts,
we obtain

∫
Ω

 N∑
i,j=1

aijuxiϕxj +

N∑
i=1

biuxiϕ+ cuϕ

 =

∫
Ω
fϕ

Notice that this equality still makes sense when u, ϕ ∈ H1
0 (Ω). Moreover,

the homogeneous Dirichlet boundary condition is implicit in the choice of
the space H1

0 (Ω). Thus, we can introduce the following definitions:

Definition 2.1.1. The bilinear form B is defined as follows:

B : H1
0 (Ω)×H1

0 (Ω) −→ R

B[u, ϕ] :=

∫
Ω

 N∑
i,j=1

aijuxiϕxj +
N∑
i=1

biuxiϕ+ cuϕ


Definition 2.1.2. A function u ∈ H1

0 (Ω) will be called a weak solution
of (2.4) if B[u, ϕ] = (f, ϕ) for every test function ϕ ∈ H1

0 (Ω). Here, (·, ·)
denotes the usual inner product in L2(Ω).
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If we have the more general problem{
Lu = f in Ω

u = g on ∂Ω
(2.5)

In many cases we may suppose that g ≡ 0. Indeed, assume that
u ∈ H1(Ω) is a weak solution of the inhomogeneous problem and ∂Ω is
C1. Suppose that there exists a function g̃ ∈ H1(Ω)∩C(Ω) such that g̃ = g
on ∂Ω. Then, v = u− g ∈ H1

0 (Ω) is a weak solution of{
Lv = f̃ in Ω

v = 0 on ∂Ω
(2.6)

With f̃ = f − Lg. Thus, we will only consider the case where g ≡ 0.

Existence and uniqueness of weak solutions using Lax–Milgram
Theorem

In order to obtain the first results about weak solutions, we will first intro-
duce some estimates of the bilinear form B[·, ·], known as energy estimates.
They will play a key role when it comes to the proof of existence of weak
solutions.

Proposition 2.1.1 (Energy estimates). Let B[·, ·] be the bilinear form de-
fined in Definition (2.1.1). Then,

|B[u, ϕ]| ≤ α‖u‖H1
0 (Ω)‖ϕ‖H1

0 (Ω)

for every u, ϕ ∈ H1
0 (Ω), where α > 0 is a certain constant. Moreover, there

exist constants β > 0 and γ ≥ 0 such that for every u, ϕ ∈ H1
0 (Ω),

β‖u‖2H1
0 (Ω) ≤ B[u, u] + γ‖u‖2L2(Ω)

Proof. We will first prove the former inequality of the proposition. From
the definition of B[·, ·] and taking into account Hölder’s inequality, it follows
that for each u, ϕ ∈ H1

0 (Ω),

|B[u, ϕ]| ≤
N∑

i,j=1

‖aij‖∞
∫

Ω
|∇u||∇ϕ|+

N∑
i=1

‖bi‖∞
∫

Ω
|∇u||ϕ|+ ‖c‖∞

∫
Ω
|u||ϕ|

≤ max


N∑

i,j=1

‖aij‖∞,
N∑
i=1

‖bi‖∞, ‖c‖∞


(∫

Ω
(|∇u||∇ϕ|+ |∇u||ϕ|+ |u||ϕ|)

)
≤ α‖u‖H1

0 (Ω)‖ϕ‖H1
0 (Ω)

(2.7)
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for some suitable α > 0, and therefore the first inequality of the proposition
is proved.

We shall prove the second ineqality now. The uniform ellipticity hypoth-
esis (2.3) will be used in this part. Let θ > 0 be the constant mentioned in
the definition of uniform ellipticity (2.3). Then, given u ∈ H1

0 (Ω) we apply
(2.3) with ξ = ∇u:

θ|∇u|2 ≤
N∑

i,j=1

aijuxiuxj

Integrating over Ω we obtain that

θ

∫
Ω
|∇u|2 ≤

∫
Ω

N∑
i,j

aijuxiuxj = B[u, u]−
∫

Ω

(
N∑
i=1

biuxiu+ cu2

)

≤ B[u, u] +

N∑
i=1

‖bi‖∞
∫

Ω
|∇u||u|+ ‖c‖∞

∫
Ω
u2 (2.8)

Recall that Cauchy’s inequality for a given ε > 0 states that for each
a, b > 0,

ab ≤ εa2 +
b2

4ε

Applying this inequality with a = |∇u| and b = |u| and integrating over
Ω, we get that ∫

Ω
|∇u||u| ≤

∫
Ω

(
ε|∇u|2 +

1

4ε
u2

)
Using this last inequality in (2.8) with ε such that

0 < ε <
θ

2
∑n

i=1‖bi‖∞
We conclude that for an appropiate constant C,

θ

2

∫
Ω
|∇u|2 ≤ B[u, u] + C

∫
Ω
u2

From Poincaré’s inequality (1.5.2), we know that ‖u‖L2(Ω) ≤ C ′‖∇u‖L2(Ω)

for a constant C ′ > 0. Thus, we finally obtain that for some suitable con-
stants β > 0, γ ≥ 0,

β‖u‖2H1
0 (Ω) ≤ B[u, u] + γ‖u‖2L2(Ω)
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Before proving the first result on existence and uniqueness of weak so-
lutions, we shall introduce a powerful tool from Hilbert spaces first, known
as the Lax–Milgram Theorem.

Theorem 2.1.2 (Lax–Milgram Theorem). Let H be a real Hilbert space.
Let B : H ×H −→ R be a bilinear form such that

|B[u, v]| ≤ α‖u‖‖v‖, ∀u, v ∈ H

β‖u‖2 ≤ B[u, u], ∀u ∈ H

for some constants α, β > 0. Then, for every ϕ ∈ H?, there exists a unique
element u ∈ H such that

B[u, v] = 〈ϕ, v〉, ∀v ∈ H

Moreover, if B is symetric, we may characterize u as the unique u ∈ H
such that

1

2
B[u, u]− 〈ϕ, u〉 = min

v∈H

{
1

2
B[v, v]− 〈ϕ, v〉

}
For a proof of the theorem, see H. Brezis [1]. Now, we may state and

prove our first result on existence and uniqueness of weak solutions:

Proposition 2.1.3. There exists a number γ ≥ 0 such that for each µ ≥ γ
and f ∈ L2(Ω), the boundary-value problem{

Lu+ µu = f in Ω

u = 0 on ∂Ω
(2.9)

has a unique weak solution u ∈ H1
0 (Ω).

Proof. Let γ be the constant from Theorem (2.1.1). Then, for every µ ≥ γ
we define

Bµ[u, ϕ] = B[u, ϕ] + µ(u, ϕ) ∀u, ϕ ∈ H1
0 (Ω)

Which corresponds to the second-order partial differential operator
Lµu := Lu + µu. Here, (·, ·) denotes de inner product in L2(Ω). Then,
Bµ satisfies the hypotheses of the Lax–Milgram Theorem, due to the en-
ergy estimates. We define now the bounded linear functional ϕf given by
〈ϕf , v〉 := (f, v). Applying Lax–Milgram Theorem, there exists a unique
function u ∈ H1

0 (Ω) such that Bµ[u, v] = 〈ϕf , v〉, for all v ∈ H1
0 (Ω). Thus,

Bµ[u, v] = (f, v) for every v ∈ H1
0 (Ω) and hence u is the unique weak solution

we were looking for.
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• Remark 2.1.1. Notice that if bi ≡ 0 for each i = 1, . . . , N , the bilinear
form B[·, ·] is symmetric. Thus, we may make use of the characterization of
the weak solution u that provides the Lax–Milgram Theorem. That is, the
unique solution of (2.9) will be characterized as the unique u ∈ H1

0 (Ω) such
that

1

2
B[u, u]− (f, u) = min

v∈H1
0 (Ω)

{
1

2
B[v, v]− (f, v)

}
That is, u is the unique function of H1

0 (Ω) at which the previous min-
imum is achieved. Even more, from this characterization and the energy
estimates, we deduce that there exist constants β > 0 and γ ≥ 0 such that

β‖u‖H1
0 (Ω)2 ≤ (f, u) + γ‖u‖2L2(Ω)

This estimate is easily deduced inserting v = 0 in the previous character-
ization, obtaining therefore that B[u, u] ≤ 2(f, u), and using this inequality
in the energy estimates.

Existence of solutions using fixed point theorems

There is another approach of proving the existence, but not uniqueness,
of weak solutions of the homogeneous Dirichlet problem. This approach is
based on a fixed point theorem, called the Schauder’s fixed point theorem:

Theorem 2.1.4 (Schauder’s fixed point theorem). Let X be a Banach space,
f : X → X a continuous compact map and assume that

F = {x ∈ X
∣∣x = λf(x) for some λ ∈ [0, 1]}

is bounded. Then f has a fixed point.

See V. Pata [10] for a proof of this theorem. We will use this theorem to
prove existence of the homogeneous Dirichlet problem. In fact, our objective
will be the proof of existence of solutions of the following non-linear problem:{

Lu+B(u) = g in Ω

u = 0 on ∂Ω
(2.10)

Under some hypothesis for the mapping B and Ω. First, we shall prove
the following lemma:

Lemma 2.1.5. Let X,V be Banach spaces with compact and dense embed-
dings V ↪→ X ↪→ V ?. Assume we are given a bounded, surjective linear oper-
ator A : V −→ V ? and a, possibly nonlinear, continuous map B : X −→ V ?

that carries bounded sets into bounded sets, such that

〈Au, u〉 ≥ ε‖u‖2V ∀ε ∈ V (2.11)
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and

〈B(u), u〉 ≥ −c(1 + ‖u‖αV ) ∀u ∈ X (2.12)

for some ε > 0, c ≥ 0 and α ∈ [0, 2). Then, the equation

Au+B(u) = g (2.13)

with g ∈ V ?, admits a solution u ∈ V .

Proof. From (2.11), A is injective and thus bijective. By the open mapping
theorem, A−1 ∈ L(V ?, V ). Therefore, for each v ∈ V , we may define

w = A−1(f −B(v)) ∈ V

which is a solution of Aw = g − B(v). Let f : X → X be defined as
f(v) = A−1(g − B(v)). Notice that f is continuous and compact. Suppose
there exists uλ ∈ X such that uλ = λf(uλ), with λ ∈ [0, 1]. Then

Auλ + λB(uλ) = λg

Therefore, 〈Auλ, uλ〉 + λ〈B(uλ), uλ〉 = λ〈g, uλ〉, so using (2.11) and
(2.12),

λ‖g‖V ?‖u‖V ≥ 〈g, uλ〉 ≥ ε‖uλ‖2V − λc(1 + ‖uλ‖αV )

Thus,

ε‖uλ‖2V ≤ λc(1 + ‖uλ‖αV ) + λ‖g‖V ?‖uλ‖V

Recall Young’s inequality

ab ≤ νap +K(ν, p)bq

Where a, b ≥ 0, ν > 0, K(ν, p) = (νp)−q/pq−1, 1 < p, q < ∞ and
1/p+ 1/q = 1. Therefore, we obtain the following estimate

‖uλ‖2V ≤
2

ε

(
c+K(ε/4, 2/α)c2/(2−α) +

1

ε
‖g‖2V ?

)
Using Schauder’s fixed point theorem, f has a fixed point u, which is

clearly a solution of (2.13).

Notice that this proof also provides an estimate of the solution u. We
shall now prove the following existence result:
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• Proposition 2.1.6. Let Ω ⊂ RN with N ≥ 2 be a bounded domain with
smooth boundary ∂Ω. If N = 2, let q ≥ 2, and if N > 2, let q ∈ [1, 6). Let
B : Lq(Ω) → H−1(Ω) be a continuous map that carries bounded sets into
bounded sets, such that

〈B(u), u〉H−1(Ω) ≥ −c(1 + ‖u‖αH1
0 (Ω)) ∀u ∈ Lq(Ω)

For some c ≥ 0, α ∈ [0, 2). Then, the nonlinear elliptic problem{
Lu+B(u) = g in Ω

u = 0 on ∂Ω
(2.14)

with g ∈ H−1(Ω) admits a weak solution u ∈ H1
0 (Ω).

• Proof. Using Rellich-Kondrachov’s Theorem (1.4.13), and given the hy-
pothesis on q, the embedding H1

0 (Ω) ↪→ Lq(Ω) is compact. A = L satisfies
the hypotheses of the preceeding Lemma. Using the previous Lemma we
conclude that (2.14) admits a weak solution.

• Corollary 2.1.7. Let Ω ⊂ RN , with N ≥ 2, be a bounded domain with
smooth boundary. Given 1 ≤ n ≤ 5, or n ≥ 1 if N = 2, the nonlinear elliptic
problem {

Lu+ un = g in Ω

u = 0 on ∂Ω

with g ∈ H−1(Ω), admits a weak solution.

Proof. It follows from the preceeding Proposition, using q = n+ 1.

• Corollary 2.1.8. Let Ω ⊂ RN with N ≥ 2 be a bounded domain with
smooth boundary. Then, there exists a weak solution of{

Lu+ u = g in Ω

u = 0 on ∂Ω

For each g ∈ H−1(Ω).

Regularity

Now, we will study if given a function u ∈ H1(Ω) such that Lu = f , we can
show that u is in fact more regular than just u ∈ H1(Ω). We will have to
require some extra conditions in order to assure this, both on the coefficients
aij , bi and c, as well as on the function f .

The following theorem shows a first result on regularity of weak solutions.
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Theorem 2.1.9. Let u ∈ H1(Ω) be a weak solution of Lu = f in a certain
bounded and open set Ω ⊂ RN . Assume that the coefficients aij, bi and c
satisfy

aij ∈ C1(Ω), bi, c ∈ L∞(Ω)

for each 1 ≤ i, j ≤ N and f ∈ L2(Ω). Then, we in fact have that u ∈ H2
loc(Ω).

Moreover,

‖u‖H2(V ) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω))

for every open subset V ⊂⊂ Ω, where C is a constant depending only on
V,Ω, aij , bi and c.

The proof of the theorem is quite long and it has many technical steps
(see L. C. Evans [2] for a proof). It uses the difference quotients Dh

ku, where
h ∈ R \ {0} and 1 ≤ k ≤ N , which are defined as

Dh
ku(x) =

u(x+ hek)− u(x)

h

The general idea of the proof consists on rewriting B[u, ϕ] = (f, ϕ), with
u a weak solution of Lu = f , as

N∑
i,j=1

∫
Ω
aijuxiϕxj =

∫
Ω
f̃ϕ

With f̃ = f −
∑N

i=1 b
iuxi − cu. Then, some estimates are found for both

sides of the previous equality, in order to use these estimates to prove that
∇u ∈ H1

loc(Ω;RN ). The fact that u ∈ H2
loc(Ω) follows immediately.

This theorem can be used in order to prove higher regularity of weak
solutions, making more assumptions on the coefficients of L and f . Our
objective will be to use the previous theorem iteratively, in order to prove
the mentioned regularity result:

Theorem 2.1.10. Let m be a nonnegative integer. Suppose that
aij , bi, c ∈ Cm+1(Ω) for 1 ≤ i, j ≤ N , and assume that f ∈ Hm(Ω). If
u ∈ H1(Ω) is a weak solution of Lu = f , then in fact u ∈ Hm+2

loc (Ω), and
moreover for each V ⊂⊂ Ω there exists a constant C, which depends only
on m,Ω, V and the coefficients of L, such that

‖u‖Hm+2(V ) ≤ C(‖f‖Hm(Ω) + ‖u‖L2(Ω))

Proof. If m = 0, we are in the case of the previous theorem, so the result
is proved. We will use induction to prove the general statement. Assume
that the result is valid for a nonnegative integer m and all open sets Ω.
Now, suppose that aij , bi, c ∈ Cm+2(Ω) and f ∈ Hm+1(Ω). Let u ∈ H1(Ω)
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be a weak solution of Lu = f . By induction, it follows immediately that
u ∈ Hm+2

loc (Ω), and moreover we have the estimate

‖u‖Hm+2(W ) ≤ C(‖f‖Hm(Ω) + ‖u‖L2(Ω)) (2.15)

for any open set W ⊂⊂ Ω and a constant C depending on m,Ω,W and
the coefficients of L. Given V ⊂⊂ Ω, fix an open set W such that V ⊂⊂
W ⊂⊂ Ω. Take now a multi-index α with |α| = m+ 1, and a test function
ϕ̃ ∈ C∞c (W ). Set ϕ := (−1)|α|Dαϕ̃ and plug it into the equality B[u, ϕ] =
(f, ϕ)L2(Ω). Then, after integrating by parts, we obtain that

B[ũ, ϕ̃] = (f̃ , ϕ̃)

with ũ = Dαu ∈ H1(W ), and

f̃ = Dαf −
∑

β≤α,β 6=α

(
α

β

)[
−

N∑
i,j=1

(Dα−βaijDβuxi)xj

+

N∑
i=1

Dα−βbiDβuxi +Dα−βcDβu

] (2.16)

Since B[u, ϕ̃] = (f̃ , ϕ̃) holds for every ϕ̃ ∈ C∞c (W ), then ũ is a weak
solution of Lũ = f̃ .

Since aij , bi, c ∈ Cm+2(Ω), f ∈ Hm+1(Ω), u ∈ Hm+2
loc (Ω), the estimate

(2.15) and the previous definition of f̃ , we obtain that

‖f̃‖L2(W ) ≤ C(‖f‖Hm+1(Ω) + ‖u‖L2(Ω))

and thus f̃ ∈ L2(W ). Using the previous regularity theorem, and since as
we mentioned ũ is a weak solution of Lũ = f̃ , we see that ũ ∈ H2(V ), and
moreover we have the estimate

‖ũ‖H2(V ) ≤ C(‖f̃‖L2(W ) + ‖ũ‖L2(W )) ≤ C(‖f‖Hm+1(Ω) + ‖u‖L2(Ω))

Since the election of the multiindex α was arbitrary (as long as |α| =
m+ 1), we must have that u ∈ Hm+3(V ) and

‖u‖Hm+3 ≤ C(‖f‖Hm+1(Ω) + ‖u‖L2(Ω))

From the previous theorem we may obtain an immediate corollary that
assures that if both the coefficients of L and f are smooth, then the solution
is also smooth:
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Corollary 2.1.11. Suppose that aij , bi, c ∈ C∞(Ω) for 1 ≤ i, j ≤ N . More-
over, assume that f ∈ C∞(Ω). Then, if u ∈ H1(Ω) is a weak solution of
Lu = f , then u ∈ C∞(Ω).

Proof. Using Theorem (2.1.10), we deduce that u ∈ Hm
loc(Ω) ∀m ∈ N. Thus,

using Corollary (1.4.12), we conclude that u ∈ Ck(Ω) for each k ∈ N and
thus u ∈ C∞(Ω).

Remark 2.1.2. Notice that from the previous corollary we may deduce that
the regularity of u in the boundary does not play any role when it comes
to the regularity of u in Ω. That is, even if u has some singularities on ∂Ω,
these singularities do not propagate into the interior.

Remark 2.1.3. Another conclusion of the previous corollary is that if
u ∈ H1(Ω) is a weak solution of Lu = f in Ω with aij , bi, c, f ∈ C∞(Ω),
then u is actually a strong solution of the PDE. Indeed, we deduce from the
previous corollary that u ∈ C∞(Ω). Moreover, since u is a weak solution of
Lu = f , we then have that

B[u, ϕ] = (f, ϕ) ∀ϕ ∈ C∞c (Ω)

Since u is smooth, we may integrate by parts in order to obtain that
B[u, ϕ] = (Lu, ϕ) for each ϕ ∈ C∞c (Ω). Thus, (f, ϕ) = (Lu, ϕ) and therefore

(Lu− f, ϕ) = 0 ∀ϕ ∈ C∞c (Ω)

Using Lemma (1.1.1) we conclude that Lu = f a.e. However, since
u, f ∈ C∞c (Ω), we deduce that Lu = f and thus u is a strong solution of the
PDE.

The previous regularity results provide assertions about regularity in
the interior of Ω. We did not make any assumptions on Ω, rather than
the mere supposition that it is bounded and open. We did not ask any
boundary conditions to the PDE Lu = f neither. With some hypotheses on
the coefficients of L and f , we concluded that u is more regular than just
H1(Ω), but just in subsets V ⊂⊂ Ω. That is, we reached to conclusions such
as u ∈ H2

loc(Ω), u ∈ Hm
loc(Ω), etc. Now, we will obtain regularity up to the

boundary. However, some more hypotheses will be needed on Ω, as we will
wee.

Theorem 2.1.12. Suppose that aij ∈ C1(Ω), bi, c ∈ L∞(Ω) for 1 ≤ i, j ≤ N .
Moreover, assume that f ∈ L2(Ω). Lastly, suppose that ∂Ω is C2. Then, if
u ∈ H1

0 (Ω) is a weak solution of the following boundary-value problem{
Lu = f in Ω

u = 0 on ∂Ω
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we actually have that u ∈ H2(Ω), and

‖u‖H2(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)

with C a constant that only depends on Ω and aij , bi and c.

Using this result inductively, we reach to the following higher boundary
regularity result.

Theorem 2.1.13. Let m ∈ N, and suppose that aij , bi, c ∈ Cm+1(Ω) for
1 ≤ i, j ≤ N . Moreover, suppose that f ∈ Hm(Ω), and that ∂Ω is Cm+2.
Then, if u ∈ H1

0 (Ω) is a weak solution of{
Lu = f in Ω

u = 0 on ∂Ω

then u ∈ Hm+2(Ω). Morever, the following inequality is satisfied:

‖u‖Hm+2(Ω) ≤ C(‖f‖Hm(Ω) + ‖u‖L2(Ω))

Just like in the case of interior regularity, if the coefficients of L and f
are smooth, then any weak solution must also be smooth:

Theorem 2.1.14. Suppose that aij , bi, c ∈ C∞(Ω) for 1 ≤ i, j ≤ N . More-
over, suppose that f ∈ C∞(Ω), and that ∂Ω is C∞. Then, if u ∈ H1

0 (Ω) is
a weak solution of {

Lu = f in Ω

u = 0 on ∂Ω

then u ∈ C∞(Ω).

2.1.2 Weak solutions of the homogeneous Neumann problem

Now the boundary conditions will be replaced by Neumann boundary con-
ditions. That is, the problem we will study now is{

Lu = f in Ω

a∇u · n = 0 on ∂Ω
(2.17)

where a∇u · n =
∑N

i,j=1 aijuxjni, and n denotes the outward normal vector
of Ω, at each point. In a similar way as in the Dirichlet boundary conditions
case, one may see after multiplying (2.17) by a function ϕ and integrating
over Ω, that every smooth solution of (2.17) satisfies

∫
Ω

 N∑
i,j=1

aijuxiϕxj +
N∑
i=1

biuxiϕ+ cuϕ

 =

∫
Ω
fv ∀ϕ ∈ H1(Ω)

thus, weak solutions of (2.17) will be defined as follows:
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Definition 2.1.3. A weak solution of (2.17) is a function u ∈ H1(Ω) such
that B[u, ϕ] = (f, ϕ), for every function ϕ ∈ H1(Ω), where B[·, ·] is the
bilinear form defined in (2.1.1).

Given the similarity between the homogeneous Neumann problem and
the homogeneous Dirichlet problem, many of the results from the Neumann
problem are analogous to ones we obtained in the previous section, where the
Dirichlet problem was studied. For instance, we have the following existence
and uniqueness result.

Theorem 2.1.15. For each f ∈ L2(Ω), there exists a unique weak solution
u ∈ H1(Ω) of the boundary-value problem (2.17).

Proof. It follows from Lax–Milgram’s theorem, with H = H1(Ω).

We also have the following regularity result, similar to the one obtained
for the Dirichilet problem:

Theorem 2.1.16. Let m be a nonnegative integer, and let Ω be a bounded
open set with ∂Ω of class Cm+2. Assume that aij , bi, c ∈ Cm+1(Ω) and
f ∈ Hm(Ω). Then, if u ∈ H1(Ω) is a weak solution of (2.17), then
u ∈ Hm+2(Ω). In particular, if ∂Ω is C∞, aij , bi, c ∈ C∞(Ω) and
f ∈ C∞(Ω), then u ∈ C∞(Ω).

2.2 Second-order parabolic equations

In this section parabolic equations will be studied. Parabolic equations
are PDEs of the form ut + Lu = f in a certain domain, where L is the
operator defined in the previous section. However, the coefficients of L will
now depend on both time space, that is, aij = aij(x, t), bi = bi(x, t) and
c = c(x, t). We will consider the following problem,

ut + Lu = f in ΩT

u = 0 on ∂Ω× [0, T ]

u = g on Ω× {0}
(2.18)

where ΩT = Ω × (0, T ] with T > 0, and f : ΩT −→ R and g : Ω −→ R are
given functions.

Definition 2.2.1. The partial differential operator ∂
∂t + L is said to be

uniformly parabolic if given a fixed time 0 ≤ t ≤ T , the operator L is
uniformly elliptic. That is, ∂

∂t +L will be called uniformly parabolic if there
exists a constant θ > 0 such that

N∑
i,j=1

aij(x, t)ξiξj ≥ θ|ξ|2 ∀(x, t) ∈ ΩT , ξ ∈ RN (2.19)
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A classical example of a parabolic equation is the heat equation
ut − ∆u = f . Here, bi ≡ c ≡ 0, and aij = −δij , where δij denotes the
Kronecker Delta. As we will see later, many peculiarities of the heat equa-
tions will also apply to general parabolic equations, and that is why parabolic
equations are considered a natural generalization of the heat equation.

We will use two different methods to study solutions of the parabolic
equation. The first method, called Galerkin approximations, uses finite-
dimensional spaces in order to build a sequence that converges to the desired
solution. The second method will only be used for the heat equation, and it
will be based on the Hille–Yosida theorem.

2.2.1 Galerking approximations

Instead of considering the function u(x, t), we will consider
u : [0, T ] −→ H1

0 (Ω). That is, given t ∈ [0, T ], u(t) will be a function
defined as x 7→ u(x, t). Similarly, we will suppose that f : [0, T ] −→ L2(Ω)
too, so f(t) will be the mapping x 7→ f(x, t).

Under this notation, we will introduce the following bilinear form, which
is similar to the one defined for elliptic PDEs. Throughout this section we
will assume that aij , bi, c ∈ L∞(ΩT ), for 1 ≤ i, j ≤ N , the coefficients aij

are symmetric, f ∈ L2(ΩT ) and g ∈ L2(Ω).

Definition 2.2.2. The bilinear form B[·, ·] associated with the operator
∂
∂t + L is defined by

B[u, ϕ; t] =

∫
Ω

 N∑
i,j=1

aij(·, t)(u(t))xiϕxj +

N∑
i=1

bi(·, t)(u(t))xiϕ+ c(·, t)u(t)ϕ


with u ∈ L2(0, T ;H1

0 (Ω)), ϕ ∈ H1
0 (Ω) and a.e. 0 ≤ t ≤ T .

We will try to define the notion of weak solution of the problem (2.18)
now. We can proceed as we did with the elliptic problem, assuming that u is
smooth first and multiplying the equation (2.18) by a function ϕ ∈ C∞c (Ω)
in order to integrate over Ω then. This motivates the following definition of
weak solutions:

Definition 2.2.3. A function u ∈ L2(0, T ;H1
0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω))

is a weak solution of (2.18) if the following conditions are fulfilled:

(i) 〈u′, ϕ〉+B[u, ϕ; t] = (f , ϕ) for each ϕ ∈ H1
0 (Ω) and a.e. t ∈ [0, T ].

(ii) u(0) = g

It can be proved (see L. C. Evans [2]) that (i) in the previous definition
implies that in fact u ∈ C([0, T ];L2(Ω)), so that (ii) actually makes sense.
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Let {wk}∞k=1 a family of functions such that {wk} is an orthonormal basis
of H1

0 (Ω) and L2(Ω). We will try to find a sequence of functions {um}∞m=1,
with um : [0, T ] −→ H1

0 (Ω), such that each um(t) is a linear combination of
{w1, . . . , wm}. That is, we are looking for functions um such that

um(t) =
m∑
k=1

dkm(t)wk (2.20)

However, we are not looking for any linear combination of the type
(2.20), we want to impose certain conditions on the coefficients dkm. These
conditions are gathered in the following theorem:

Theorem 2.2.1. Let m ∈ N. Then, there exists a unique function um of
the type (2.20) such that

dkm(0) = (g, wk) k = 1, 2, . . . ,m (2.21)

and

(u′m, wk) +B[um, wk; t] = (f , wk) ∀ 0 ≤ t ≤ T, k = 1, 2, . . . ,m (2.22)

Proof. Since {wk}∞k=1 is an orthonormal basis of L2(Ω), we deduce that

(u′m(t), wk) = dkm
′
(t). Moreover, given the linearity of B[·, ·; t] we get that

B[um, wk; t] =

m∑
j=1

B[wj , wk; t]d
j
m(t)

Thus, (2.22) and (2.21) become in the following linear system of ODE:

{
dkm
′
+
∑m

j=1B[wj , wk; t]d
j
m(t) = (f(t), wk), k = 1, 2, . . . ,m

dkm(0) = (g, wk), k = 1, 2, . . . ,m

From ODE theory we conclude that there exists a unique solution of the
previous system of linear ODEs, and this solution is absolutely continuous.
Thus, there exists a unique function um that satisfies conditions (2.21) and
(2.22).

As mentioned earlier, our objective is to pass to the limit m → ∞ and
see if um (or a subsequence) converges to a solution of the parabolic PDE
(2.18). But first, we will introduce some estimates.

Lemma 2.2.2 (Gronwall’s inequality). Let η be a nonnegative absolutely
continuous function on [0, T ], such that
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η′(t) ≤ φ(t)η(t) + ψ(t)

for a.e. t ∈ [0, T ], with φ and ψ nonnegative function in L1([0, T ]). Then,

η(t) ≤ e
∫ t
0 φ(s)ds

[
η(0) +

∫ t

0
ψ(s)ds

]
Theorem 2.2.3. We have the following estimate

max
0≤t≤T

‖um(t)‖L2(Ω) + ‖um‖L2(0,T ;H1
0 (Ω)) + ‖u′m‖L2(0,T ;H−1(Ω))

≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖g‖L2(Ω))
(2.23)

for m = 1, 2, . . ., and with C a constant depending on Ω, T and the coeffi-
cients of L.

Proof. Multiplying (2.22) by dkm and summing from k = 1 to k = m, we
obtain that

(u′m,um) +B[um,um; t] = (f ,um)

Using the energy estimates (2.1.1), we see that there exists a constant
β > 0 and a constant γ ≥ 0, such that

β‖um‖2H1
0 (Ω) ≤ B[um,um; t] + γ‖um‖2L2(Ω), ∀0 ≤ t ≤ T,m = 1, 2, . . .

Also, from the fact that (f + um, f + um) ≥ 0 we deduce that |(f ,um)| ≤
1
2‖f‖

2
L2(Ω) + 1

2‖um‖
2
L2(Ω). Also, we have that (u′m,um) = d

dt(
1
2‖um‖

2
L2(Ω)),

for a.e. 0 ≤ t ≤ T . Thus, joining the previous inequalities,

d

dt

(
‖um‖2L2(Ω)

)
+ 2β‖um‖2H1

0 (Ω) ≤ C1‖um‖2L2(Ω) + C2‖f‖2L2(Ω) (2.24)

for a.e. 0 ≤ t ≤ T and some constants C1, C2.
When defining η(t) = ‖um(t)‖2L2(Ω) and ξ(t) = ‖f‖2L2(Ω), this inequality

becomes

η′(t) ≤ C1η(t) + C2ξ(t)

Using Gronwall’s inequality of the previous lemma, we obtain

η(t) ≤ eC1t

(
η(0) + C2

∫ t

0
ξ(s)ds

)
(0 ≤ t ≤ T ) (2.25)

Now, since dkm(0) = (g, wk), we obtain that η(0) = ‖um(0)‖2L2(Ω) ≤
‖g‖2L2(Ω). As a consequence, (2.25) becomes
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max
0≤t≤T

‖um(t)‖2L2(Ω) ≤ C(‖g‖2L2(Ω) + ‖f‖2L2(0,T ;L2(Ω)))

Using this inequality and (2.24), we obtain

‖um‖2L2(0,T ;H1
0 (Ω)) =

∫ T

0
‖um‖2H1

0 (Ω) ≤ C(‖g‖2L2(Ω) + ‖f‖2L2(0,T ;L2(Ω)))

Take now v ∈ H1
0 (Ω) with ‖v‖H1

0 (Ω) ≤ 1. If we write v = v1 + v2 with

v1 ∈ span{wk}mk=1 and (v2, wk) = 0 for k = 1, . . . ,m, and taking into ac-
count that the functions {wk}∞k=1 are orthogonal in H1

0 (Ω), we have that
‖v1‖H1

0 (Ω) ≤ ‖v‖H1
0 (Ω) ≤ 1.

Using (2.22) we conclude that for a.e. t ∈ [0, T ],

(u′m, v1) +B[um, v1; t] = (f , v1)

Thus,

〈u′m, v〉 = (u′m, v) = (u′m, v1) = (f , v1)−B[um, v1; t]

So, since ‖v1‖H1
0 (Ω) ≤ 1,

|〈u′m, v〉| ≤ C(‖f‖L2(Ω) + ‖um‖H1
0 (Ω))

Thus,

‖u′m‖H−1(Ω) ≤ C(‖f‖L2(Ω) + ‖um‖H1
0 (Ω))

So we conclude that

∫ T

0
‖u′m‖2H−1(Ω) ≤ C

∫ T

0
(‖f‖2L2(Ω)+‖um‖

2
H1

0 (Ω)) ≤ C(‖g‖2L2(Ω)+‖f‖L2(0,T ;L2(Ω)))

Now, we have the following existence theorem:

Theorem 2.2.4. The problem
ut + Lu = f in ΩT

u = 0 on ∂Ω× [0, T ]

u = g on Ω× {0}

with the hypotheses on f , g and the coefficients of L mentioned at the be-
ginning of this section, has a weak solution.
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See L. C. Evans [2] for a proof of the theorem. The general idea of the
proof is to see that {um}∞m=1 is bounded in L2(0, T ;H1

0 (Ω)) using energy
estimates. Thus, we may extract a subsequence that converges weakly in
L2(0, T ;H1

0 (Ω)) to a certain function u ∈ L2(0, T ;H1
0 (Ω)). Then, the idea

is to check that this function solves the problem (2.18).
We also have the following result, that assures uniqueness of solutions:

Theorem 2.2.5. The weak solution of the parabolic problem (2.18), whose
existence is guaranteed by the previous theorem, is unique.

Proof. If u1 and u2 are two solutions of (2.18), then u = u1 − u2 is a weak
solution of (2.18) with f ≡ 0, g ≡ 0. Thus, we only have to see that u ≡ 0
is the only weak solution of (2.18) with f ≡ 0, g ≡ 0.

Let u be a weak solution of (2.18) with f ≡ 0, g ≡ 0. Then,

〈u′, ϕ〉+B[u, ϕ; t] = 0

For each ϕ ∈ H1
0 (Ω), and a.e. 0 ≤ t ≤ T . Picking ϕ = u in particular,

and taking into account that 〈u′,u〉 = d
dt

(
1
2‖u‖

2
L2(Ω)

)
, we obtain that

d

dt

(
1

2
‖u‖2L2(Ω)

)
+B[u,u; t] = 0

Now, using energy estimates (2.1.1), we have that

B[u,u; t] ≥ β‖u‖2H1
0 (Ω) − γ‖u‖

2
L2(Ω) ≥ −γ‖u‖

2
L2(Ω)

Thus,

d

dt

(
1

2
‖u‖2L2(Ω)

)
≤ γ‖u‖2L2(Ω)

Using Gronwall’s inequality (2.2.2) and the fact that u(t) = 0, we deduce
that u ≡ 0.

2.2.2 Hille-Yosida Theorem

Hille–Yosida’s theorem offers a result of existence and uniqueness of the
following evolution problem in abstract Banach spaces:{

u′(t) +Au(t) = 0 on [0,+∞)

u(0) = u0

(2.26)

With u : [0,+∞) −→ H, where H denotes a Hilbert space, and
A : D(A) ⊂ H −→ H is a certain unbounded linear operator. We will
use this theorem in order to study the heat equation. However, before stat-
ing the actual theorem, we will begin with some definitions.
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Definition 2.2.4. Let H be a Hilbert space, and let A : D(A) ⊂ H −→ H
be an unbounded linear operator. A is monotone if

(Av, v) ≥ 0 ∀v ∈ D(A)

Where (·, ·) denotes de scalar product of H. If A also satisfies that
∀f ∈ H there exists u ∈ D(A) such that u + Au = f , then A is said to be
maximal monotone.

With these definitions, Hille–Yosida’s theorem asserts the following:

Theorem 2.2.6 (Hille–Yosida). Let H be a Hilbert space, and let
A : D(A) ⊂ H −→ H be a maximal monotone operator. Set g ∈ D(A).
Then, there exists a unique function u ∈ C1([0,+∞);H)∩C([0,+∞);D(A))
such that {

u′(t) +Au(t) = 0 on [0,+∞)

u(0) = g
(2.27)

Moreover,

|u(t)| ≤ |g| and
∣∣u′(t)∣∣ = |Au(t)| ≤ |Ag| ∀t ≥ 0

Corollary 2.2.7. Let A be a self-adjoint maximal monotone operator. Given
g ∈ H, there exists a unique function

u ∈ C([0,+∞);H) ∩ C1((0,+∞);H) ∩ C((0,+∞);D(A))

so that {
u′(t) +Au = 0 on (0,+∞)

u(0) = g

Moreover, u ∈ Ck((0,+∞);D(A`)) ∀k, ` ∈ N, and

|u(t)| ≤ |g| and |u′(t)| = |Au(t)| ≤ 1

t
|g| ∀t > 0

Now, Hille–Yosida’s theorem will be used to prove existence and unique-
ness of solutions of the heat equation.

Lemma 2.2.8. If A is a maximal monotone symmetric operator, A is self-
adjoint.

Theorem 2.2.9. Let g ∈ L2(Ω). Then, there exists a unique weak solution
u(t) of the heat equation
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
ut −∆u = 0 in Ω× (0,+∞)

u = 0 on ∂Ω× (0,+∞)

u(x, 0) = g on Ω

Moreover, u satisfies

u ∈ C([0,+∞);L2(Ω)) ∩ C((0,+∞);H2(Ω) ∩H1
0 (Ω))

u ∈ C1((0,+∞);L2(Ω))

u ∈ C∞(Ω× [ε,+∞)), ∀ε > 0

u ∈ L2(0,+∞;H1
0 (Ω))

We also have that

1

2
|u(T )|2L2(Ω) +

∫ T

0
|∇u(t)|2L2(Ω)dt =

1

2
|g|2L2(Ω) ∀T > 0 (2.28)

Proof. Let H = L2(Ω). We will define the operator A : D(A) ⊂ H −→ H.
We set D(A) = H2(Ω)∩H1

0 (Ω), and for each u ∈ D(A), we set Au = −∆u.
Given u ∈ D(A),

(Au,u)L2(Ω) =

∫
Ω

(−∆u)u =

∫
Ω
|∇u|2 ≥ 0

and therefore A is monotone. In order to check that it is maximal monotone,
we have to check that given f ∈ L2 there exists a unique solution u ∈ H2∩H1

0

of the problem f = u +Au = u−∆u. However, we know from the section
of elliptic PDEs that such solution exists, and thus A is maximal monotone.

In order to prove that A is self-adjoint, using the preceeding lemma we
only have to see that A is symmetric. Let u,v ∈ D(A). Then,

(Au,v)L2(Ω) =

∫
Ω

(−∆u)v =

∫
Ω
∇u · ∇v =

∫
Ω

u(−∆v) = (u, Av)L2(Ω)

so A is symmetric and thus self-adjoint. Using Corollary (2.2.7), there ex-
ists a solution u of the heat equation with u ∈ Ck((0,+∞);D(A`)), for
every k, ` ∈ N. Taking into account that D(A`) ⊂ H2`(Ω) with continuous
injection, we conclude that

u ∈ Ck((0,∞);H2`(Ω)) ∀k, ` ∈ N

Using Corollary (1.4.12) it follows that u ∈ Ck((0,∞);Ck(Ω)), for each
k ∈ N. Let ϕ(t) = 1

2 |u(t)|2L2(Ω). It is of class C1 in (0,∞), and for every
t > 0,
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ϕ′(t) =
(
u(t),u′(t)

)
L2(Ω)

= (u(t),∆u(t))L2(Ω) = −
∫

Ω
|∇u(t)|2

Let 0 < ε < T <∞ now. Then,

ϕ(T )− ϕ(ε) =

∫ T

ε
ϕ′(t)dt = −

∫ T

ε
|∇u(t)|2L2(Ω)dt

and (2.28) follows if we let ε→ 0, taking into account that ϕ(ε)→ 1
2 |g|

2 and
thus u ∈ L2(0,∞;H1

0 (Ω)).

2.2.3 Regularity

The next step that should be taken after proving existence and uniqueness of
weak solutions is checking how regular these weak solutions are. In a similar
way as we did in elliptic PDEs, we will see that under some conditions the
solution u is guaranteed to have some regularity.

Theorem 2.2.10. Let g ∈ H1
0 (Ω) and f ∈ L2(0, T ;L2(Ω)). Assume that

u ∈ L2(0, T,H1
0 (Ω)) with u′ ∈ L2(0, T ;H−1(Ω)) solves

ut + Lu = f in UT

u = 0 on ∂U × [0, T ]

u = g on U × {t = 0}

Then, we have that

u ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), u′ ∈ L2(0, T ;L2(Ω))

Moreover, there exists a constant C that depends on Ω, T and the coeffi-
cients of L, such that

ess sup0≤t≤T ‖u(t)‖H1
0 (Ω) + ‖u‖L2(0,T ;H2(Ω)) + ‖u′‖L2(0,T ;L2(Ω))

≤ C(‖f‖L2(0,T ;L2(Ω)) + ‖g‖H1
0 (Ω))

(2.29)

Assume now that g ∈ H2(Ω) and f ′ ∈ L2(0, T ;L2(Ω)). Then,

u ∈ L∞(0, T ;H2(Ω)), u′ ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

u′′ ∈ L2(0, T ;H−1(Ω))

with the following estimate:
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ess sup0≤t≤T (‖u(t)‖H2(Ω)+‖u′(t)‖L2(Ω))+‖u′‖L2(0,T ;H1
0 (Ω))+‖u′′‖L2(0,T ;H−1(Ω)

≤ C(‖f‖H1(0,T ;L2(Ω)) + ‖g‖H2(Ω))

Now, based on this result one can prove the following higher regularity
result:

Theorem 2.2.11. Let g ∈ H2m+1(Ω) and dkf
dtk
∈ L2(0, T ;H2m−2k(Ω)) for

k = 0, . . . ,m. Moreover, assume that we have the following compatibility
conditions: 

g0 := g ∈ H1
0 (Ω)

g1 := f(0)− Lg0 ∈ H1
0 (Ω)

g2 :=
df

dt
(0)− Lgm−1 ∈ H1

0 (Ω)

...

gm :=
dm−1f

dtm−1
(0)− Lgm−1 ∈ H1

0 (Ω)

Then, we have that in fact

dku

dtk
∈ L2(0, T ;H2m+2−2k(Ω)) k = 0, . . . ,m+ 1

And we also have the following estimate:

m+1∑
k=0

∥∥∥∥dkudtk
∥∥∥∥
L2(0,T ;H2m+2−2k(Ω))

≤ C

(
m∑
k=0

∥∥∥∥dkfdtk

∥∥∥∥
L2(0,T ;H2m−2k(Ω)

+ ‖g‖H2m+1(Ω)

)

with C depending on m,U, T and the coefficients of L.

The proof uses induction on m, since the case m = 0 corresponds pre-
cisely to Theorem (2.2.10). See L. C. Evans [2] for a proof of both theorems.
Now, from Theorem (2.2.11) one can deduce that if g and f are smooth
enough, the solution is in fact of class C∞. But before stating the result,
we will need the following Lemma:

Lemma 2.2.12. Let Ω be open and bounded, with ∂Ω smooth. Assume that
m is a nonnegative integer, and that

u ∈ L2(0, T ;Hm+2(Ω)), with u′ ∈ L2(0, T ;Hm(Ω))

Then,

u ∈ C([0, T ];Hm+1(Ω))
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Theorem 2.2.13. Let Ω be open and bounded, and ∂Ω smooth. Let
g ∈ C∞(Ω) and f ∈ C∞(ΩT ). Suppose that the compatibility conditions
of Theorem (2.2.11) hold for every m ≥ 0. Then, the parabolic problem
(2.18) has a unique solution u ∈ C∞(ΩT ).

• Proof. Given the regularity of g and f , we may apply Theorem (2.2.11)
for m = 0, 1, . . .. Thus, we deduce that

dku

dtk
∈ L2(0, T ;H2m(Ω)), ∀m ≥ 1, ∀1 ≤ k ≤ m+ 1

thus, using the previous Lemma, we see that

dku

dtk
∈ C([0, T ];H2m+1(Ω))

so, from this inclusion and Corollary (1.4.12), we have that

u ∈ C∞([0, T ];C∞(Ω))

that is, u ∈ C∞(ΩT ).

2.3 Dirichlet problem for the Stokes system

Now, the problem that will be studied is the following:
−∆u +∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω

(2.30)

With Ω ⊂ RN , where N = 2 or N = 3. If N = 3 and Ω is unbounded,
we will also require that u(x) −→ 0 as |x| −→ ∞. Here, p : RN −→ R and
f : RN −→ RN , and we are looking for solutions u : RN −→ RN that belong
to a certain function space.

We will try to define a notion of weak solutions of the Dirichlet problem
for the Stokes system (2.30). But first, we shall define a few concepts.

Definition 2.3.1. The set of smooth compactly supported functions in Ω
that are divergence free is denoted by C∞0,0(Ω;RN ). That is,

C∞0,0(Ω;RN ) := {ϕ ∈ C∞0 (Ω;RN )
∣∣divϕ = 0 in Ω}

On the other hand, we will denote by Ls,k(Ω;RN ) the functions with
weak derivatives of order k belonging to Ls(Ω;RN ). The norm of this space
is defined by

‖u‖Ls,k(Ω;RN ) = ‖∇ku‖Ls(Ω)
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Then, we define Jr,10 (Ω;RN ) as the completion of C∞0,0(Ω;RN ) in Lr,1(Ω;RN ),
that is,

Jr,10 (Ω;RN ) := [C∞0,0(Ω;RN )]L
r,1(Ω;RN )

Similarly,

Ls,k0 (Ω;RN ) := [C∞0 (Ω;RN )]L
s,k(Ω;RN )

Then, we define

Ĵr,1(Ω;RN ) := {ϕ ∈ Lr,10 (Ω;RN )
∣∣divϕ = 0 in Ω}

It is clear that Jr,10 (Ω;RN ) ⊆ Ĵr,1(Ω;RN ).

Under these definitions, we will try to deduce an appropriate state-
ment of weak solutions. Formally, multiplying (2.30) by a test function
ϕ ∈ C∞0,0(Ω;RN ),∫

Ω
(−∆u +∇p) · ϕ =

∫
Ω

N∑
i,j=1

∂ui
∂xj

∂ϕi
∂xj

= (f , ϕ)

Where (·, ·) is the standard scalar product of L2(Ω;RN ). Then, if we
introduce the bilinear form

B[u, ϕ] =

∫
Ω

N∑
i,j=1

∂ui
∂xj

∂ϕi
∂xj

we may define weak solutions of (2.30) as follows:

Definition 2.3.2. Let f ∈ L2(Ω;RN ). A function u ∈ Ĵ2,1(Ω;RN ) is said
to be a weak solution of (2.30) if

B[u, ϕ] = (f , ϕ) ∀ϕ ∈ C∞0,0(Ω;RN )

Theorem 2.3.1 (Existence). Let f ∈ L2(Ω;RN ). Then, there exists at least
a weak solution u of (2.30), and moreover

‖∇u‖L2(Ω;RN ) ≤ ‖f‖L2(Ω;RN )

• Proof. The bilinear form B[u,v] is a scalar product in Ĵ2,1(Ω;RN ). In-
deed, clearly B is symmetric and B[u,u] ≥ 0 for all u ∈ Ĵ2,1(Ω;RN ). As-
sume now that B[u,u] = 0. Then, necessarily ∇u = 0 in Ω, and therefore
u belongs to the equivalence class [0] of J1,2(Ω;RN ), as we wanted to see.

Let l be the linear functional on J2,1
0 (Ω;RN ) defined by 〈l,v〉 = (f ,v).

Then,
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|〈l,v〉| ≤ ‖f‖L2(Ω;RN )‖v‖L2,1
0 (Ω;RN )

And thus l is a bounded linear functional. We may apply Hahn–Banach’s
theorem in order to extend l to a bounded linear functional L on Ĵ2,1(Ω;RN ).
Using Riesz representation theorem, there must exist u ∈ Ĵ2,1(Ω;RN ) such
that B[u,v] = 〈L,v〉 for every v ∈ Ĵ2,1(Ω;RN ). Moreover,

B[u, ϕ] = 〈L,ϕ〉 = (f , ϕ) ∀ϕ ∈ C∞0,0(Ω;RN )

So u is a weak solution of the Stokes system. Moreover,

‖u‖
Ĵ2,1(Ω;RN )

= ‖∇u‖L2(Ω;RN ) ≤ ‖f‖L2(Ω;RN )

We can’t assure in general that the weak solution is unique. However,
under some more hypotheses, we can guarantee its uniqueness:

Theorem 2.3.2 (Uniqueness). Let f ∈ L2(Ω;RN ), and assume that Ĵ2,1(Ω;RN ) =
J2,1

0 (Ω;RN ). Then, the solution provided by the previous theorem is unique.

Proof. Suppose that there exist two solutions u1,u2 ∈ Ĵ2,1(Ω;RN ). Then,
w := u1 − u2 satisfies

(∇w,∇ϕ) = 0 ∀ϕ ∈ C∞0,0(Ω;RN )

As a consequence, since by hypothesis Ĵ2,1(Ω;RN ) = J2,1
0 (Ω;RN ), we

deduce that

‖∇w‖L2(Ω;RN ) = 0

If N = 3 or N = 2 and Ω 6= R2, taking into account the boundary
conditions we conclude that w = 0 and thus u1 = u2. However, if N = 2
and Ω = R2, we can only assert that w ∈ [0], where [0] is the equivalence
class of 0, consisting of all functions that are constant in R2. Thus, if Ω = R2

we can only say that u1 − u2 ∈ [0].

Remark 2.3.1. It can be proved (see G. Seregin [7]) that if Ω = RN or
Ω = RN+ , with N = 2, 3, then J1,2

0 (Ω;RN ) = Ĵ1,2(Ω;RN ), so the previous
theorem may be applied to this case.

Finally, we have the following local regularity result (see G. Seregin [7]):

Proposition 2.3.3. Let B be the unit ball in RN , and let u ∈ H1(B),
p ∈ L2(B;RN ), f ∈ L2(B;RN ) and g ∈ H1(B) satisfy{

−∆u +∇p = f in B

div u = g in B
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Then,

∇2u,∇q ∈ L2(B(ε);RN ) ∀ε ∈ (0, 1)

Moreover, we have the following estimate:

‖∇2u‖L2(B(ε);RN ) + ‖∇p‖L2(B(ε);RN ) ≤

C
(
‖f‖L2(B;RN ) + ‖p‖L2(B;RN ) + ‖g‖H1(B) + ‖u‖H1(B)

)
with C a constant that depends only on ε.

2.4 Stationary Navier–Stokes system

Navier–Stokes equations describe the motion of viscous fluid substances.
There are many open questions involving Navier–Stokes equations, and in
fact the Clay Mathematics Institute offers a prize of 1,000,000$ to whoever
proves a certain result on existence and regularity of solutions.

In this section we shall study a special form of the Navier–Stokes system,
the stationary system:

−ν∆u + u · ∇u +∇p = f in Ω

div u = 0 in Ω

u = 0 on ∂Ω

(2.31)

With ν > 0. Just like in the case of Stokes system, Ω ⊂ RN with
N = 2, 3, u, f : RN −→ RN and p : RN −→ R. We will also assume that Ω
is bounded.

Multiplying the equation by a function ϕ ∈ Ĵ2,1(Ω;RN ) and integrating
over Ω, we may reach to the following definition of weak solutions:

Definition 2.4.1. A function u ∈ Ĵ2,1(Ω;RN ) is said to be a weak solution
of (2.31) if

B[u, ϕ] + b[u,u, ϕ] = (f , ϕ) ∀ϕ ∈ Ĵ2,1(Ω;RN )

With

B[u, ϕ] = ν

∫
Ω

N∑
i,j=1

∂ui
∂xj

∂ϕi
∂xj

And

b[u,v, ϕ] =

∫
Ω

u · ∇v · ϕ
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We will introduce the following lemmas now, that will be useful when it
comes to proving existence of weak solutions of (2.31):

Lemma 2.4.1. For N = 2, 3, the trilinear form b(u,v, ϕ) is bounded on
H1

0 (Ω)3.

The proof follows directly from Hölder’s inequality’s repeated applica-
tion:

Proof. If N = 2,∣∣∣∣∫
Ω
uj(vi)xjϕi

∣∣∣∣ ≤ C‖uj‖L4(Ω)‖(vi)xj‖L2(Ω)‖ϕi‖L4(Ω)

If N = 3,∣∣∣∣∫
Ω
uj(vi)xjϕi

∣∣∣∣ ≤ C‖uj‖L6(Ω)‖(vi)xj‖L2(Ω)‖ϕi‖L3(Ω)

So the lemma follows, considering that from Sobolev theory we know
that

‖u‖Lq(Ω) ≤ C ′‖u‖H1(Ω) ∀1 ≤ q <∞, N = 2

‖u‖L6(Ω) ≤ C ′‖u‖H1(Ω) ∀1 ≤ q <∞, N = 3

Lemma 2.4.2. Let u,v ∈ Ĵ2,1(Ω;RN ) and ϕ ∈ C∞0,0(Ω;RN ). Then,
b(u,v,v) = 0.

Proof. ∫
Ω
uj(vi)xjvi =

1

2

∫
Ω
uj [(vi)]xj = −1

2

∫
Ω

(uj)xj (vi)
2

so, as a consequence,

b(u,v,v) = −1

2

∫
Ω

div u |v|RN = 0

An immediate consequence of the previous lemma is that b(u,v,w) =
−b(u,w,v).

We shall define the following operatorA : Ĵ2,1(Ω;RN ) −→ (Ĵ2,1(Ω;RN ))?

by

A : Ĵ2,1(Ω) −→ (Ĵ2,1(Ω))?

A(u)(ϕ) = B[u, ϕ] + b(u,u, ϕ)
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Definition 2.4.2. An operator A : E −→ E?, with E a Banach space, is
said to be of Type M if un ⇀ u, Aun ⇀ f and lim supAun ≤ f(u) implies
that Au = f .

Our objective will be to prove that A defined above is of Type M,
bounded and coercive. We have already shown in Lemma (2.4.1) that A
is bounded.

Lemma 2.4.3. The operator A is coercive.

Proof. Let u ∈ Ĵ2,1(Ω;RN ). Then,

A(u)(u) ≥ B[u,u] + b(u,u,u) ≥ C‖u‖2

With C > 0 a constant.

Lemma 2.4.4. The mapping u 7→ b(u,u, ·) is a weakly continuous mapping
from Ĵ2,1(Ω;RN ) to Ĵ2,1(Ω;RN )?. In other words, if {um} converges to
u weakly in J2,1(Ω;RN ), then b(um,um,w) −→ b(u,u,w) for every w ∈
Ĵ2,1(Ω;RN ).

Proof. Using Rellich–Kondrachov’s Theorem (1.4.13), um → u strongly in
L2(Ω;RN ). Let w ∈ Ĵ2,1(Ω;RN ). Then,

b(um,um,w) = −b(um,w,um) =

= −
∫

Ω
(um)j(wi)xj (um)i −→ −b(u,w,u) = b(u,u,w)

(2.32)

As a consequence, we have the following corollary:

Corollary 2.4.5. The operator A : Ĵ2,1(Ω;RN ) −→ Ĵ2,1(Ω;RN ) is weakly
continuous, and thus, of Type M.

Finally, the existence of weak solutions of the stationary Navier–Stokes
equations will directly follow from the following result:

Proposition 2.4.6. Let E be a reflexive Banach space, and let A : E −→ E?

be a bounded and coercive operator of Type M. Then, A is surjective.

See D. Holland [4] for a proof of this result.

Theorem 2.4.7. Let f ∈ Ĵ2,1(Ω;RN )?. Then, the problem (2.31) has a
solution u ∈ Ĵ2,1(Ω;RN ).



Chapter 2. Partial Differential Equations 47

Proof. Using the previous Lemmas, the operatorA : Ĵ2,1(Ω;RN ) −→ Ĵ2,1(Ω;RN )
is of Type M, bounded an coercive, and using the previous Proposition, it
is also surjective. Thus, there exists u ∈ Ĵ2,1(Ω;RN ) such that A(u) = f .
In other words,

A(u)(ϕ) = B[u, ϕ] + b(u,u, ϕ) = (f , ϕ) ∀ϕ ∈ Ĵ2,1(Ω;RN )

And therefore u is a weak solution of (2.31).
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