University of Mohamed Boudiaf M'sila Faculty of Mathematics and Computer Science Department of Computer Science Master 01 SIGL

Duration: 1h30 (90 Minutes) Instructor DR. Hichem Debbi

Formal Verification and Specification Final Exam May 23, 2023

True/False

(03 points) Write True if the statement is true, otherwise write False.

 $F\psi \equiv \psi \lor XF\psi$

nuSMV is a symbolic model checker

- Equivalence checking is based on the abstraction/refinement principle.
- It is not possible to implement an abstract machine without passing by the refinement step
- $_$ pWq is true, if only if q is true
 - In B method, properties are predicates on constants
- Section 2. Short Answer(02 points)
 - 1. What is the difference between a liveness property and a safety property. Give an example for each one ?
 - 2. Cite four (04) formal specification languages ?

Section 3. Method-B Specification(07 points)

3. Suppose that we have the following problem: The computer science department has a number of available *Datashows*:

— Abstract Machine MACHINE data_show_reserv SETS DataShows; /* abstract set of datashows */ reserved = ok, ko /* datashow used or not */ CONSTANTS max_Rsrc /* limit */ PROPERTIES max_Rsrc : 1..MAXINT

1- Complete the abstract machine data_show_reserv by adding invariants, initialization, and the three following operations:

- **reserve**: for reserving a datashow.
- free: frees up a datashow
- isReservedDatashow: Checks whether a datashow is reserved or not.

2- Create an implementation for this abstract machine using arrays as total functions (Symbol: -- >)) Section 4. ω -expressions(04 points)

4. Give the ω -regular expressions for the following Büchi automaton :

Figure 3: C

Section 5. CTL(04 points)

5. Consider the kripke structure presented in the figure below

Figure 4: A Kripke structure

1- Construct its corresponding tree.

2 - Identify the set of states in which the following CTL properties are satisfied. Justify your response textually or by providing paths.

- \bullet EGq
- $EF(\neg r \wedge EXr)$
- \bullet AGEGp

Answer Key for Exam \blacksquare

True/False

(03 points) Write True if the statement is true, otherwise write False.

- <u>True</u> $F\psi \equiv \psi \lor XF\psi$
- <u>True</u> nuSMV is a symbolic model checker
- False Equivalence checking is based on the abstraction/refinement principle.
- False It is not possible to implement an abstract machine without passing by the refinement step
- False pWq is true, if only if q is true
- True In B method, properties are predicates on constants

Section 2. Short Answer(02 points)

1. What is the difference between a liveness property and a safety property. Give an example for each one ?

Answer: See course.

2. Cite four (04) formal specification languages ?

Answer: See course.

Section 3. Method-B Specification(07 points)

3. Suppose that we have the following problem: The computer science department has a number of available *Datashows*:

— Abstract Machine MACHINE data_show_reserv SETS DataShows; /* abstract set of datashows */ reserved = ok, ko /* datashow used or not */ CONSTANTS max_Rsrc /* limit */ PROPERTIES max_Rsrc : 1..MAXINT

1- Complete the abstract machine data_show_reserv by adding invariants, initialization, and the three following operations:

- **reserve**: for reserving a datashow.
- **free**: frees up a datashow
- **isReservedDatashow**: Checks whether a datashow is reserved or not.

2- Create an implementation for this abstract machine using arrays as total functions (Symbol: -- >))

Answer:

Section 4. ω -expressions(04 points)

4. Give the ω -regular expressions for the following Büchi automaton :

Figure 7: C

Answer: • $(a+b)^*a^\omega + (a+b)^*a(ba)^\omega$

- $(aa(a+b)^*ab)^{\omega}$
- $((aa)^+b)^{\omega} + ((aa)^+b)^*a^{\omega}$

Section 5. CTL(04 points)

5. Consider the kripke structure presented in the figure below

Figure 8: A Kripke structure

1- Construct its corresponding tree.

2 - Identify the set of states in which the following CTL properties are satisfied. Justify your response textually or by providing paths.

- EGq
- $EF(\neg r \wedge EXr)$
- AGEGp

Answer: • only in s0. s0 infinantely

• is satisfied in all states. There is a path starting from s, such that in some state in the future $\neg r$ holds and such that in some next state r holds. The set of all states with $\neg r$ such that there exists a next state with r is $\{s0, s2\}$. Since we can reach s0(ands1) from all states the formula holds for all states.

• There is no state (\emptyset) . For every path starting in s, in each state on this path, EG t must be true, i.e., it is possible to find a path starting there where p is always true. Example: in s0 the property EGp holds, but not always since from s1 on there is no path satisfying the property.