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Part One: Processes Algebras with LOTOS
This material is developped on slides from the link

https://fr.slideserve.com/marged/chapitre-4-powerpoint-ppt-presentation
by Dr. Luigi

3



Algebras
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• Algebras deal with expressions made up of 
constants, variables and operators

• They are provided with rules to transform the 
expressions: simplification, expansion…

• In process algebras, constants and variables 
represent processes



Process algebras
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In process algebras, systems of communicating 
processes are represented by expressions of algebraic 
character, called:
• Behavioral expressions, “behavior expressions”
• A[]B to say that A and B are alternative, the next 

action must be taken either from expression A, or 
from expression B (the other being then discarded)
• Sometimes also written A+B

• A||B to say that processes A and B are in parallel 
execution, the next action will be taken from A and B 
jointly (synchronous composition)

• Etc.



Algebraic Properties of Behavior Expressions
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• Commutativity of choice: 
• A[]B = B[]A

• Commutativity of parallel composition: 
• A||B = B||A

• Zero absorption: 
• A[]stop = stop[]A = A 
• A||stop = stop||A = stop

• Associativity: 
• A[](B[]C) = (A[]B)[]C
• A||(B||C) = (A||B)||C



Expressivity of process algebras
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Process algebras provide formalisms in 
which it is possible to prove that the 
composition of two processes is equal to a 
third process



Different process algebra
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• Unfortunately, there is no agreement yet concerning 
process algebras

• Several algebras have been studied, and each 
working group continues to develop its own

• Milner developed the CCS: Calculus of 
Communicating Processes, in the 1970s-1980s
• He further developed this concept in the π-

calculus
• Hoare developed the CSP: Communicating 

Sequential Processes, more or less in the same 
years

• LOTOS was developed in the 1980s



LOTOS
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• Language Of Temporal Ordering Specifications. But 
unrelated to the temporal logics

• Algebraic language for protocol specification
• Inspired mostly by Milner's CCS, takes some elements from 

Hoare's CSP
• ISO International Standard
• A new standard, called Extended LOTOS (E-LOTOS) was 

also developed, but it was never implemented (complex)
• Broad theory
• Used in practice in a large number of applications
• Tools and documentation can be obtained easily: CADP and 

WELL



LOTOS process
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A LOTOS process is a ‘black’ box with points of 
contact with the environment: called gates

process P[a,b,c] :=
behavior expression

endproc

• The behavior expression defines the behavior of the system 
with respect to the gates and the environment

• Different processes or expressions of behavior can 
communicate through their gates by synchronous composition 
(operator ||).



Behavior expressions describe states
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process Distributeur [monnaie, gomme, chocolat] :=
monnaie; (gomme; stop [] chocolat; stop)    

endproc

The distributeur is ready to 
synchronize with the 
environment with the monnaie
event, then with either gomme
or chocolat

What happens if the 
environment tries to touch the 
gomme without having 
introduced money?



Internal action i
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• Behaviors can have internal actions
• These actions denote an internal behavior of the 

machine without wanting to go into details
• Details left to successive refinements in design or 

implementation
• Internal action can be specified directly:

mon; (i;gom;stop [] choc;stop)

• Or indirectly (these two expressions are equivalent)
hide choc_fini in (mon; (choc_fini; gom; stop [] choc;stop))

• Internal action does not synchronize with the 
environment (it is invisible externally)



Action stop
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• The stop action is the empty action
• It does nothing, it offers nothing to the environment
• Sometimes also called nil action



Main operators in LOTOS
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• a;B: behaves like a (an action) then like B (an 
expression of behavior)

• B1 [] B2: behaves either like B1, or like B2
• B1 || B2: synchronous composition of B1 and B2 

(must sync on all their actions)
• B1 ||| B2: interleaving of B1 and B2
• B1 |[a,b,c]| B2: B1 and B2 must synchronize on 

actions a,b,c and interleave with other actions
• hide a,b,c… in B: B is executed, but each time an 

action a, b, c… is executed, it is replaced by the 
internal action i

The latter cannot synchronize with other actions



Additional operators
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LOTOS also has the following operators:
• >> enable: A >> B means that after an exit from A 

we do B. Like stop, exit ends a process but if 
there is an enable it allows you to move on to the 
next process

• [> disable: A [> B means that at any time during 
the execution of A, B can interrupt A by initiating 
its execution. A is no longer taken back.



Inference rules
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The semantics of LOTOS operators are precisely 
defined by inference rules and axioms

In other words:
given an expression of behavior, an action transforms 
the behavior expression into another behavior 
expression



Inference rules
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• Axiom of inference for the prefix: If we have a;B and a synchronizes 
with the environment, a;B becomes B.

• choice B1 [] B2: If B1 can synchronize with the environment on action 
a1 giving B1’ as a result

• synchronous composition B1 || B2: If two behavior expressions are 
ready to synchronize on an action a then they can produce a common 
action a and then execute what remains
• Warning: there is no synchronization on the internal action i. nor 

on the stop
• Interleave B1 ||| B2: An action is selected from one of the two 

behaviors, and executed. The other part of the behavior can still be 
selected later

• General parallelism B1|[A]|B2 Synchronization on some actions (set 
A), interleaving on others: combines the rules of synchronous and 
asynchronous compositions



Running inference rules
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• Executing a LOTOS spec transforms the spec using inference 
rules

• The current spec (representing the current global state) can 
be transformed using any applicable rule

• The tree that represents all possible transformations is the 
labeled transition system (LTS) of the system

• It is also the accessibility tree showing all possible state 
transitions of the specified system

• This tree can also be represented as a LOTOS expression
• Deadlock is the case where no inference rule can be applied
• Impasse and stop are exactly the same thing in LOTOS:

• There are no inference rules for stop
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Full LOTOS
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• What we saw is basic LOTOS without the ability to express 
data and values

• In Full LOTOS it is possible to define data and enter data into 
actions

• a!x Means that the process offers the value of the variable x 
to gate a

• a?x:nat Means that the process expects a natural number x at 
gate a

• a ?x !y At the same time, the process accepts one value and 
offers another

• We have the same synchronization rule as for basic LOTOS:
• Two actions synchronize if they are identical. E.g. a!3 and 

a?x:nat synchronize because: They offer the same gate. One 
offers a precise integer while the other offers any integer

• a?x:nat is equivalent to a!0 [] a!1[] a!2 [] a!3…



Guarded expressions
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See ‘guarded commands’ in some programming 
languages

[x>0] -> process1
[] [x=5] -> process2
[] [x<9] -> process2

Observe the possibility of expressing nondeterminism
(three possibilities in the case of x=5)



Exercises (Series 1)
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Exercise: Using the inference rules draw LTS of :

1. process one [a,b,c] a; (b; stop [] c; stop) endproc

2. process two [a,b,c] a; b; stop [] a; c; stop endproc

3. process3 := a; (b; d; stop [] c; stop)

4. process4 := a; b; d; stop [] a; c; stop 



Exercises (Series 2)
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Exercise 1: Give the LTS of: a; (b; stop [] c; stop) and a; b; stop [] a; c; stop. 
Then give a conclusion

Exercise 2: Give the LTS of each: A:= mon; (gom;stop [] choc; stop), B := 
mon; gom ;stop [] mon; choc; stop, C := mon; (i; gom; stop [] mon; choc; 
stop), and D := mon; (i; gom; stop [] i; mon; choc; stop)

Exercise 3: Marie and Abdel always eat together. They have three actions: 
Breakfast (b), lunch (l), dinner(d): 
Marie:= b; l; d; stop, Abdel:= b; l; d; stop, give the LTS of Marie || Abdel

Exercise 4: However, if Abdel is not used to having lunch: 

Marie:= b; l; d; stop, Abdel:= b; d; stop, give the LTS of Marie || Abdel



Exercises (Series 3):
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Exercise 1: prove the following equivalences:
• ((a; stop || a; stop) || a; stop)  =  a; stop
• ((hide a in (a; stop || a; stop)) || a; stop) = i; stop
• (hide a in ((a; stop || a; stop) || a; stop)) = i; stop

Exercice 2: Marie and Abdel have nothing to do with each 
other. They have two actions: Breakfast (b), lunch (l): Marie:= 
b; l; stop, Abdel:= b; l; stop. find Marie ||| Abdel

Exercise 3: Marie and Abdel make breakfast and dinner 
separately, however they always eat lunch together : Marie:= b; 
l; d; stop, Abdel:= b; l; d; stop. Give Marie |[l]| Abdel

Exercise 4: compute (a; b; stop [] c; d; stop) |[a,b]| (a; b; stop [] 
d; f; stop) and give its LTS

Exercise 5: compute a; b; c; stop |[b]| a; b; d; stop



Exercises (Series 4)
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Exercise 1: verify
1. (a; b; stop) |[b]| (c; b; stop) = (a; c; b; stop) [] (c; a; b; stop)
2. (i; b; stop) |[b]| (c; b; stop) = (i; c; b; stop) [] (c; i; b; stop)
3. (i; b; stop) |[b]| (i; b; stop) = (i; i; b; stop) [] (i; i; b; stop) = 

(i; i; b; stop) 
4. (a; b; stop) |[b]| (b; c; stop) = a; b; c; stop
5. (a; b; stop) |[a, b]| (b; a; stop) = stop = (a; b; stop) || (b; a; 

stop)
6. (a; b; stop [] d; f; stop) |[a, b]| (a; b; c; stop [] i; stop) = (a; b; 

c; stop [] d; (f; i; stop [] i; f; stop) [] i; d; f; stop)



Part Two: SCOLA (SCenario-Oriented Language)
Taken from

https://altarica-association.org/Products/Software/S2ML+XToolbox/S2ML+XToolbox.html#Scola
by

Antoine Rauzy
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INTRODUCTION



Scola is a domain specific modeling language.
Scola stands for scenario-oriented language. It is a 
textual language.
Scola aims at supporting systems architecture 
studies by giving the system architect a  mean to 
describe and to play scenarios.

The idea of an scenario-based approach to 
systems engineering is inspired from Milner's -
calculus.
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Scola involves three fundamental concepts:
• System architecture, i.e. the decomposition of the 

system under study into a
hierarchy of nested components.

• Scenarios, i.e. sequences of actions that can be 
performed on the system and that  may transform the 
system architecture.

• Processes that execute scenarios.

Scola provides constructs to structure models that are 
stemmed from object-oriented  and prototype-oriented 
programming.
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Scola Models

A Scola model is made of two parts:
• A description of the functional or physical decomposition of the system under study.
• A description of scenarios applying on this system.

The description of the system consists eventually in a hierarchy of nested blocks. Each
block can compose any number of sub-blocks, ports and assertions. The system is
represented by the top-most component, which is implicit.
A port is a holder for an atomic value (Boolean, integer, real, symbol, string…).
An assertion is an instruction that is applied to update the values of ports.  
Blocks, ports and assertions can be dynamically created, destroyed and
moved.

Each scenario can compose any number of sub-scenarios.
Scenarios are made of states, tasks and gateways. Tasks contain lists of 
instructions that  create, destroy and modify the system description. Gateways make 
choices about  scenarios.
It is possible to attach a scenario to a particular block.

Scola models describe the evolution of the system via the execution of processes.
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GETTING STARTED
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Scenarios & their graphical representation

Assume we want to represent the process of a small software development 
project  in the R&D department of a company. Assume moreover that this project 
involves  Alice and Bob. Alice and Bob works in turn: Alice codes the software, 
then Bob tests  it. The project is achieved after a certain number of iterations. 
This progress of the  project can be represented graphically as follows.

D
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e Initial

version  version+1

Start Coding

version  0

B
o
b Test

IsOver


no

Terminal

yes
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Scenarios, States, Tasks and Gateways
We have a system made of four components: The department, Alice, Bob and the 
software.  Alice, Bob and the software "belong" to the department. Moreover, the 
software has a  version number that evolves throughout the development process. 
The development  process is represented as a scenario involving two sub-scenarios 
represented by lanes: one  lane for Alice and one lane for Bob.

1. The scenario starts in the state Initial.
2. Alice performs the task Start in which a port (variable) version is reset to 0.
3. Alice performs the task Code, in which version is incremented.
4. Bob performs the task Test.
5. There is a choice, the choice gateway IsOver. If the branch yes is chosen, the scenario

continues with the state Terminal, otherwise it goes back to task Code (of Alice).
6. The scenarios ends on task Terminal,
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Code:
System

block Department  
block Alice  
end
block Bob
end
block Software

integer version 0
end

end

•Systems are represented by hierarchies of nested  
blocks. Each block represents thus a component or a  
function of the system.
•Blocks may also contain ports. Ports hold constant  
values (Booleans, integers, reals, symbols or strings).
•Like blocks, ports have a name. In addition, they are  
declared with a default value.
•Blocks are thus containers for blocks and ports. One  
says that they compose blocks and ports. Within a block,  
all objects should have different names.
•In our example, the system (which is an implicit block)  
composes on block Department, which itself composes  
three blocks: Alice, Bob and Software. The block  
Software composes the integer port version whose  
default value is 0.
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Code: Scenario
scenario Development

scenario AliceLane as Department.Alice
state Initial
task Start

set owner.Software.version 0
end
task Code

set owner.Software.version (add owner.Software.version 1)
end
next Initial Start
next Start Code

end
scenario BobLane as Department.Bob

task Test end  
choice IsOver  

case yes  
case no

end
state Terminal
next Test IsOver

end
next AliceLane.Code BobLane.Test
next BobLane.IsOver.no AliceLane.Code
next BobLane.IsOver.yes BobLane.Terminal

end

• Scenarios are containers for states, tasks,
gateways and other scenarios.
• Tasks are containers for instructions.
•Next directives chain states, tasks and  
gateways. They are represented with
arrows.
•The dot notation is used to refer elements  
inside containers. In the container Dialog,  
AliceLane.Code refers to the task Code of  
the sub-container Alice. The keyword owner  
refers to the parent block.
• The order of declarations is irrelevant.
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Executions & Processes (1)

1

2

1

1

Scenarios are executed 
by  processes.
Here a process number 1 is  
created on the state
Initial.

The process 1 then moves to
task Start.
A process can perform a task 
if  it can perform all 
instructions of  the task.
Tasks are atomic: 
instructions  are performed 
without  interruption.
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Executions & Processes (2)

3

4

1

1

Sofware.version = 0

And soon…

Sofware.version = 1
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Mobile Components
Scola makes it possible to describe mobile components, i.e. components that 
are  possibly dynamically created, destroyed and moved from place to place in 
the system.  As a illustration, assume that Alice wants now to write the activity 
report of the  project that Bob will be in charge of finalizing. This report is a 
document that will be  created by Alice, then moved to Bob.
This scenario can be represented graphically:
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CreateReport MoveReport

B
o
b

HandleReport

Terminal

FinalizeReport
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Example: Activity Report (1)

block Department  
block Alice end  
block Bob end  
block Software

integer version 0
end

end

domain ReportStatus {CREATED, MODIFIED, FINALIZED} end

scenario ActivityReport
scenario AliceLane as Department.Alice

…
end
scenario BobLane as Department.Bob

…
end
next AliceLane.MoveReport BobLane.HandleReport

end

The next directive applies to tasks belonging to different storylines. It is 
here  declared at the parent level.

Same system as
before!

A domain, i.e. a finite set of 
symbolic  constants is created to 
encode the  status of the report.
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Example: Activity Report (2)

scenario AliceLane as Department.Alice
state Initial
task CreateReport

new block report
new ReportStatus report.status CREATED
new string report.title "Activity Report"
new string report.content "Alice's contribution"

end
task MoveReport

move report main.Department.Bob.report
end
next Initial CreateReport
next CreateReport MoveReport

end

• New blocks and ports are dynamically created.
• When a block or a port is created, it is inserted in the block the current storyline refers to (here
Department.Alice).
• The keyword "main" refers to the model.
•Moving a block or a port requires that no item with the same name belongs to the target block.  
The process cannot perform the task until this condition is realized.

41



Example: Activity Report (3)

scenario BobLane as Department.Bob
task HandleReport

set report.content (append report.content " & Bob's contribution")
set report.status MODIFIED

end
task FinalizeReport

set report.status FINALIZED
end
state Terminal
next HandleReport FinalizeReport
next FinalizeReport Terminal

end

• The keyword "owner" refers to the parent container.
• Receptions of items are blocking: the process waiting the item stops until it receives 

the item.
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Example: Activity Report (4)

1

2

3

1
block Department  
block Alice  
block Bob

block Department  
block Alice  
block Bob

1

1

block Department
block Alice
block report

port status CREATED
port title "Activity Report"
port content "Alice's contribution"

block Bob
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Example: Activity Report (5)

4

5

6

1

1

1

block Department  
block Alice  
block Bob
block report

port status CREATED
port title "Activity Report"
port content "Alice's contribution"

block Department  
block Alice  
block Bob
block report

port status MODIFIED
port title "Activity Report"
port content "Alice's contribution &

Bob's contribution"

block Department  
block Alice  
block Bob
block report

port status FINALIZED
port title "Activity Report"
port content "Alice's contribution &

Bob's contribution"
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Wrap-Up

• Scola models are made of systems (represented as hierarchies of blocks) 
and  scenarios applying on these systems.

• Each scenario describes a particular facet or function of the system. There may 
be  many scenarios applied to the same system.

• Blocks can compose other blocks and ports.
• Ports hold constant values (Boolean, integers, reals, symbols or strings).
• Blocks and ports can be dynamically created, destroyed and moved.
• Scenarios can compose other scenarios and be applied to a particular sub-

system  (which is graphically represented by a lane).
• Scenarios are made of states (represented by circles), tasks (represented 

by  rounded rectangles) and gateways (represented by diamonds) which are 
linked  together by means of next directives (represented by arrows).

• Tasks can compose instructions that modify the state of the system.
• Scenarios are executed by processes. The semantics of a Scola model is the 

set of  all possible executions starting with a process located on each initial 
state (i.e.  states without predecessors) and normally ending when all active 
processes have  reached a terminal state (i.e. a state without successor).
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Exercises (Series 5)

Exercise 1: Hello World!
Consider a system without subsystem and that performs a single actions: saying "Hello
World". Give the code for this scenario and represent it graphically. Execute it.

Exercise 2: Greatest Common Divisor
Design a Scola model that calculates the greatest common divisor (GCD) of two  
integers. Execute it with a=96 and b=81.
Hint: recall that GCD(a, a) = a and that GCD(a, b) = GCD(a, b-a) if a<b.

Exercise 3: Syracuse Problem (Collatz conjecture)
Design a Scola model that takes any integer n and performs the following operations:
• If n is equal to 1, the execution stops.
• If n is even (n modulo 2 = 0), then the execution goes on with n/2.
• If n is odd (n modulo 2 = 1), then the execution goes on with 3n+1.
Execute this model for n=19.
Scola operations for multiplication and the modulo are respectively mul and mod.

46



Exercises (Series 6)

Exercise 1: At the restaurant.

At the restaurant, the client orders a pizza to the waiter. The waiter transmit the 
order  to the cook, who bakes the pizza. Once the pizza is baked, the cook gives it 
to the  waiter, who brings it to the client. Eventually, the client eats the pizza.

Represent and execute this scenario.

Exercise 2: Car assembly

In a car assembly line, the first station paints the car's body, the second assemble 
the  engine and the third the wheels.

Represent and execute this scenario.
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SCENARIOS
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States and Tasks

In Scola, there is a unique type of state and a unique type of task.  
States can be however sorted into three categories:
• Initial states, i.e. states that do not occur as the right member of a next directive.
• Terminal states, i.e. states that do not occur as the left member of a next

directive.
• Intermediate states, the other.
Initial and terminal states play a very important role in the definition of scenarios.  
Intermediate states are accepted for the sake of the completeness, although it is  
always possible to remove them from scenarios without changing the semantics.  
States are graphically represented as circle.

initial state terminal state intermediate state

Tasks are containers for instructions. They are represented by rounded rectangles.

task
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Gateways

Scola provides 7 types of gateways.

 test  choice

 fork join

 split merge

 meet
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Test Gateways

S

T1

T2

T3

C1: x=V1

C2: x=V2

C3: x=V3

task S … end  
task T1 … end  
task T2 … end  
task T3 … end  
test Test

case C1 (eq x V1)
case C2 (eq x V2)
case C3 (eq x V3)

end
next S Test
next Test.C1 T1
next Test.C2 T2
next Test.C3 T3

A test gateway can have any number of (output) case branches.
A process (coming from the task S) located on the test gateway Test can
move forward if one and only one of the conditions labelling the case branches  is 
verified.

Test
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Choice Gateways

S

T1

T2

T3

B1

B2

B3

task S … end  
task T1 … end  
task T2 … end  
task T3 … end  
choice Choice

branch B1
branch B2
branch B3

end
next S Test
next Choice.B1 T1
next Choice.B2 T2
next Choice.B3 T3

A choice gateway can have any number of (output) branches.
A process (coming from the task S) located on the choice gateway Choice
can move forward on any of the (output) branches.

Join
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Fork Gateways

S

T1

T2

T3

B1

B2

B3

task S … end  
task T1 … end  
task T2 … end  
task T3 … end  
fork Fork

branch B1
branch B2
branch B3

end
next S Test
next Fork.B1 T1
next Fork.B2 T2
next Fork.B3 T3

A fork gateway can have any number of (output) branches.
A process (coming from the task S) located on the fork gateway Fork can
move forward. It is then deactivated (killed) and a new process is created on  
each branch of Fork. These new processes are not related to the process that  
created them.

Fork
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Join Gateways

S2 T

B1

B3

task S1 … end
task S2 … end
task S3 … end
task T … end
join Join

branch B1
branch B2
branch B3

end
next S Test  
next S1 Join.B1  
next S2 Join.B2  
next S3 Join.B3  
next Join T

A join gateway can have any number of (input) branches.
It does the opposite operation of a fork gateway. Processes arriving on input  
branches are stored into queues (first in, first out). When there is a process in  the 
queue of each input branch (B1, B2, B3), they can move forward, which  means 
that they are deactivated (killed) and that a new process is created on  task T.

S1

S3

B2

Join

54



Example: Production Line (1)

Consider (part of) a production line in which parts made of two components arrive  
on a conveyor belt to a first treatment unit F (represented by a fork gateway)  where 
they are separated. Once separated, components are sent respectively  units of 
type T1 and T2. When treatments performed by units T1 and T2 are  done, 
components are joined together in a unit J (represented by a join gateway).  The 
important point here is that it does not matter to assemble components  coming 
from different parts, as all the parts are the same.



T1

T2

o1

o2

F

i1

i2


J
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Example: Production Line (2)

1
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Example: Production Line (3)

7
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7
And soon…
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Split Gateways

S

T1

T2

T3

B1

B2

B3

task S … end  
task T1 … end  
task T2 … end  
task T3 … end  
split Split

branch B1
branch B2
branch B3

end
next S Test
next Split.B1 T1
next Split.B2 T2
next Split.B3 T3

A split gateway can have any number of (output) branches.
Split gateways are similar to fork gateways except that they link the  deactivated 
process (parent process) with the created processes (children  processes). A 
process (coming from the task S) located on the split gateway  Split can move 
forward. It is then deactivated (killed) and a new child  process is created on each 
branch of Split. These new processes are children  of the killed process.

Split
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Merge Gateways

S2 T

B1

B3

task S1 … end
task S2 … end
task S3 … end
task T … end
merge Merge

branch B1
branch B2
branch B3

end
next S Test
next S1 Merge.B1
next S2 Merge.B2
next S3 Merge.B3
next Merge T

A merge gateway can have any number of (input) branches.
It does the opposite operation of a split gateway. Processes arriving on input 
branches  are stored. When all the children processes of a parent process are in 
the sets  associated with input branches (B1, B2, B3) of Merge, they can move 
forward, which  means that they are deactivated (killed) and that the parent 
process is reactivated on  task T.

S1

S3

B2

Merge
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Example: Production Line revisited (1)

Consider (part of) a production line in which parts made of two components arrive  
on a conveyor belt to a first treatment unit S (represented by a split gateway)  where 
they are separated. Once separated, components are sent respectively  units of 
type T1 and T2. When treatments performed by units T1 and T2 are  done, 
components are reassembled together in a unit M (represented by a merge  
gateway).
The important point here is that components of the same part must be re-
assembled together.

T1

T2
o2

o1

S


i1

i2

M
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Example: Production Line revisited (2)

1

2

4 4

5

6

1

2

3

2

3

3 4

2

3

2
5

6
3

5
2

6
3
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Example: Production Line revisited (3)

7

8

9

10

5
2

2

3

2

3
4

41
6

3

4
And soon…
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Meet Gateways

S2

T1

T2

T3

B1

B2

B3

meet Meet
branch B1
branch B2
branch B3

end
next S1 Meet.B1
next S2 Meet.B2
next S3 Meet.B3
next Meet.B1 T1
next Meet.B2 T2
next Meet.B3 T3

A meet gateway can have any number of branches. Branches are both input  
and output branches. Branches manages in-coming processes in queues (first  
in, first out). When there is a process in each queue, all first processes of each  
queue can move forward. They are just moved to the next locations of  
branches (here tasks T1, T2, T3).

S1

S3

B1

B2

B3

63



Example: Rendez-Vous



TA

TB

SA

SB
Bob

Alice

Bob



TB

SA

SB

Alice

Bob

Alice

Bob

1

2

2

Alice

3
1

3

T1A

2
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Exercises (Series 7)

Exercise 1: Life-Cycle.

The life-cycle of a product is usually made of three phases: design, operation and  
decommissioning. The operation phase is itself decomposed into two sub-phases:  
production and maintenance.

Give the code that represent such a life-cycle and represent it graphically. Execute it.

Exercise 2: Ternary Meter

Design a Scola model to represent a meter with three wheels (like a kilometric meter)  
that counts in base 3.

Exercise 3: Tapes and Siphons

Design a Scola model that, at the one end, creates as many processes as the 
analyst  wishes (a tape) and, at the other end, kills these processes (a siphon).

Exercise 4: Travel Reservation
Design a Scola model to represent a travel reservation (flight + hotel)
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Exercises (Series 8)

Exercise: Dynamic Car Assembly

Consider a car assembly line. The process is as follows:

• A new car enters into the assembly line.

• It is then moved to a first station where is painted.

• It is then moved to the second station where the engine is assembled.

• It is then move to the third station where the wheels are assembled in two steps:
first the front train, then the rear train.

•The car is then delivered (taken out the production line).  

Each car must have its own series number.

There can be at most one car at each place of the assembly line, i.e. at the beginning
of the line and in each station.

Hint: Use test gateway to prevent a car to be moved to a place where there is already  
another car. The Boolean expression (is_block path) can be used to check the  
presence of a block at the give place.
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BASE TYPES & EXPRESSIONS
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Base Types

Base types for ports are: Boolean (true and false), integers, reals, symbols and 
string.  A port is a holder for a base type.
Once declared with the directive port (or the instruction new) the value of a port can
changed arbitrarily.
This behavior may be too loose (models may be hard to debug). It is thus possible to  
declare a port together with its type, which forces it to take only values of this type,
e.g.

block
port anything false  
Boolean working false  
integer count 0
real distance 1.0e-4
symbol _state WORKING
string title "Activity Report"

end

Warning: even if a port is declared as a (generic) symbol, its value must be always
belong to a defined domains.
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Domains

It is possible to restrict further the possible values of symbolic ports by 
declaring  domains, i.e. finite sets of symbolic constants, and declaring 
ports with these  domains. E.g.

domain UnitState {WORKING, DEGRADED, FAILED} end  

block Unit

UnitState _state WORKING
end

We shall see a specific application of domains with assertions.
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Expressions (1): Boolean operators

The current version of Scola implements a number of operators applying on Boolean,
numbers, symbols and string.

Operator #arguments Description

and   Boolean and

or   Boolean or

not 1 Boolean not

Boolean operators
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Expressions (2): Inequalities

Operator #arguments Description

eq 2 arg1  arg2

df 2 arg1  arg2

lt 2 arg1  arg2

gt 2 arg1  arg2

leq 2 arg1  arg2

geq 2 arg1  arg2

Operators eq and df are polymorphic: they apply on Boolean, numbers, 
symbols  and strings.
The other operators compare only numbers.
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Expressions (3): Associative Arithmetic Operators

Operator #arguments Description

add   addition

sub   subtraction

mul   multiplication

div   division (for integers, integral division)

min   minimum value

max   maximum value

count   counts the number of (Boolean) arguments that 
are  satisfied
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Expressions (4): Other Arithmetic Operators

Operator #arguments Description

opp  -x

inv  1/x

abs  absolute value

exp  exponential

log  logarithm

sqrt  square root

ceil  smallest integer greater than the argument

floor  biggest integer smaller than the argument

pow  xy

mod  modulo

integer  casts the argument to the closest integer

real  casts the argument to real (e.g. to avoid 
integral  division)
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Expressions (5): String and Conditional Operations

Operator #arguments Description

append   concatenation

string 1 casts the argument to a string

Operations on strings

Conditional expressions

Operator #arguments Description

if  if-then-else
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Expressions (5): Path Operations

Operator #arguments Description

symbol 0 returns an empty path

symbol 1 casts the string argument into a path

identifier 1 returns the last identifier of a path

owner 1 returns the path minus its last identifier

append  1 concatenate the paths given as arguments

is_block 1 checks whether the argument is a path to a block

is_port 1 checks whether the argument is a path to a port

is_assertion 1 checks whether the argument is a path to an
assertion

size 1 returns the number of elements of a block

element 2 returns the n-th element of a block.

Path expressions
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Reference versus Value

Paths to elements of systems are used in two ways, as illustrated by in 
following  assignment.

set Store.count (add Store.count 1)

The first occurrence of Store.count is a reference to the port 
Store.count,  while the second one denotes the value of this port.
Now, we may want to give the value Store.count to a port path, and then to use
the value of the port path as the first argument of an assignment. The following
instructions do not work.

path is assigned the value of Store.count

set path Store.count
set path (add path 1)

and not to the path
Store.count.

Even if the value of path is 
Store.count,  it is path which is 
assigned and not  Store.count. 
Moreover it is assigned to the  value of 
path (plus one) and not to the value  of 
Store.count (plus one) . 76



Quote & Eval (1)

To prevent a port to be evaluated, it is possible to quote it.

set Store.count 1
equivalen
t

set path 'Store.count
set path (quote Store.count)

The value of path is the symbol Store.count and not the value of the port
Store.count.

Symmetrically, to evaluate a symbol, i.e. to take the value of the port reachable with
this path, it is possible to eval it.

set (eval path) (add (eval path) 1)

Store.count

The above assignment increments by 1 the value of Store.count.

77



Quote & Eval (2)

Functions quote and eval apply recursively to arguments of other functions:

(quote (append a b))  (append (quote a) (quote b))  
(eval (add a b))  (add (eval a) (eval b))

Functions quote and eval cancel one another when applied to references:

(quote (eval a))  a
(eval (quote a))  a

Instructions such as assignment quote implicitly their arguments referring to a 
port  before evaluating them:

set (eval path) (add (eval path) 1)
1 2

1 (eval (quote (eval path))  Store.count  

(eval (eval path))  332
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Exercises (Series 9)

Exercise: Largest port
A block Store contains an arbitrary number of integer ports. Design a scenario to get
the name of the port with the largest value.
Hint: use instruction if condition then instruction and instruction block
begin instructions end
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INSTRUCTIONS
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Instructions

Instructions are used in tasks and in assertions (see next section). Instructions
can be divided into two groups:
• Assignment, conditional instructions, blocks of instructions that can be used  both 

in tasks and assertions.
• Instructions to create, destroy and move components that can be used only  in 

tasks. The special instruction fail enters also in this category.

The semantics of instructions of the first category is straightforward.

Assignment:
set path-expression expression

Conditional instruction
if Boolean-expression then instruction [else instruction]  # the 
else part is optional

Blocks of instructions
begin instructions* end
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Fail Instruction

The fail instruction always fails. It is used in combination with the conditional  
instruction to postpone the execution of a task until a certain condition is verified.

Consider for instance a car waiting at a railway crossing. The driver waits for the  
barrier to open before to go. In its simplest form, it could be as follows.

C
r
o
s
s
i
n
g

set barrier OPEN

C
a
r if (df main.Crossing.barrier OPEN) then  

fail

See exercise Dynamic Car Assembly Revisited for an illustration
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Instructions to Create and to Destroy Components

• Instructions to create blocks and ports are as follows.
new port path-expression expression
new block path-expression

Required: there must be no component with the same name at the same place.

• The instruction to delete a block, a port or an assertion is as follows.
delete path-expression

Required: the referred component must exist.

• The instruction to clone a component is as follows (this instruction should not to
confuse with the clones directive)

clone path-expression path-expression

Required: the cloned component (first argument) must exist and there must be no  
component with the same name at the same place (second argument).

See example ActivityReport.scola for an illustration.
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Instructions to Move Components

• The instruction to move a block or a port to another location is as follows.
move path-expression path-expression

Required: the moved component (first argument) must exist and there must be no  
component with the same name at the same place (second argument).
See example ActivityReport.scola for an illustration.

• Instructions to move a block or a port in an asynchronous way are as follows.
send path-expression path-expression

receive path-expression path-expression identifier

The first argument of the send instruction is the path to the sent component. The  
second argument is the path to the block in which it is sent.
The first argument of receive instruction is the path to the send component. The
second argument is the path to the block that sends the component. The third  
argument is the identifier of the component once received.
Required: the sent component, the sending block and the receiving block must exist  
and there must be no component with the same name in the receiving block.
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Example: Cryptography (1)

Initial
A
l
i
c
e

CreateMessage

CypherMessage

DecypherMessage

B
o
b

SendMessage

Terminal

Initial

Terminal
ReceiveMessage

The two processes (one for Alice, one for Bob) are running in parallel.
Sending and reception of the message are asynchronous: once the send instruction executed, the
sent component is removed from the sending block. It is inserted in the receiving block only once  
the receive instruction has been executed.. Reception is blocking.
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Example: Cryptography (2)

block Alice end
block Bob end

scenario CypheredMessage
scenario AlicePool as Alice

…
end
scenario BobPool as Bob

…
end

end
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Example: Cryptography (3)

scenario AlicePool as Alice
state Initial
task CreateMessage

new block message
new port message.status CREATED

end
task CypherMessage

set message.status CYPHERED
end
task SendMessage

send message main.Bob
end
state Terminal
next Initial CreateMessage
next CreateMessage CypherMessage  
next CypherMessage SendMessage  
next SendMessage Terminal

end
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Example: Cryptography (4)

scenario BobPool as Bob
state Initial
task ReceiveMessage

receive message owner.Alice receivedMessage
end
task DecypherMessage

set receivedMessage.status DECYPHERED
end
state Terminal
next Initial ReceiveMessage
next ReceiveMessage DecypherMessage
next DecypherMessage Terminal

end
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Example: Cryptography (5)

1

2

1

2

3

4

1

2 2

2

1

1

The process 2 is blocked until the reception of the message
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Example: Cryptography (6)

1

2

5

6

1

2 The message is sent but not yet received

block Alice
block message
port status CYPHERED

block Bob

block Alice
block Bob
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Example: Cryptography (6)

1

2

5

6

1

2

block Alice
block Bob
block receivedMessage
port status CYPHERED

block Alice
block Bob
block receivedMessage
port status DECYPHERED

The name of the block has been changed

91



Exercises (Series 10)

Exercise 1: Dynamic Car Assembly (revisited)

Design a model that use fail instructions rather than test gateways to solve the
dynamic car assembly exercise.

Exercise 2: Master Thesis

Bob is doing his master project under the supervision of Alice. He has to do some  
research and in parallel to write his master thesis. This requires some iterations with  
Alice until she gives eventually her approval.

Design a model to represent this process. First, just using ports, without any  
component creation. Second, with component creation and moving. Third with  
component creation, sending and reception.
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Exercises (Series 11)

in out

Exercise 1: Queues

In an shop, clients must choose one of two queues at the cashier. They are served in
the order of arrival in the queue they choose.

Design a model for such a system and simulate it.

Hint: use three processes, one to create new clients and one for each queue.

Exercise 2: Maze

Design a Scola model to get out of the following maze.

Hint: recall Tom Thumb.
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Exercises (Series 12)

Exercise 1: Eratosthenes

Design a model to calculate prime numbers lower than 100 using Eratosthenes' Sieve.

The idea is to have two nested loops: the outer one to generate candidate numbers  
(from 3 to 100 in order) and the inner one to test candidates. The test consist in  
comparing (via a modulo) the candidate with all prime numbers found so far.

Hint: Prime numbers are store as integer ports p1=2, p2=3, p3=5… into a blockPrimes.

Exercise 2: Ferry

A ferry carries trucks from the left bank to the right bank of a river. It goes forth and
back as long as there are trucks to carry. It can contain only one truck at a time.
Design a Scola model to represent this ferry.
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ASSERTIONS
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Assertions

So far, descriptions of systems we have seen consisted in hierarchies of blocks, and
ports.
It is however often suitable/necessary to describe not only the structural decomposition  
of the system, but also connections existing between its components. These  
connections makes the information circulate through the components of the system.
Information is to be taken in a broad sense, including flow of matters, energy,  
information…
Scola provides the concept of assertion, stemmed from the AltaRica modeling language,  
to describe connections and their semantics.
An assertion is an instruction, or a group of instructions, that updates the values of
ports after the execution of a task.
As assertions may be spread all over the system, the result of the update should not  
depend on the order of the execution of instructions of the assertion. This is the reason  
why, a fixpoint mechanism is used for assertions: the assertion is re-executed until the  
values of ports stabilized. It is up to the analyst to ensure that this stabilization process  
terminates.
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Electric Circuit (1)

Consider a small electric circuit consisting of a power source two switches and a
lamp in series. All components are assumed to be perfectly reliable.

Switch 1 Switch 2

Power
source

Lamp

Modeling this system is easy: the system is decomposed into four subsystems, one  
per component. The scenario is made of two lanes, one of each switch. The other  
components are actually passive.
However, we would like to determine automatically when the lamp is powered,  
depending on the states of the switches. This is achieved by means of assertions.
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Electric Circuit (2)

block ElectricCircuit
block PowerSource
Boolean outPower true  

end
block Switch1
Boolean _closed true  
Boolean inPower false  
Boolean outPower false
...

end
block Switch2
Boolean _closed true  
Boolean inPower false  
Boolean outPower false
...

end
block Lamp
Boolean on true  
Boolean inPower false
...

end
...

end

scenario Light as ElectricCircuit
scenario Switch1Lane as Switch1
state Initial
task Switch
set _closed (not _closed)

end
next Initial Switch
next Switch Switch

end
scenario Switch2Lane as Switch2
state Initial
task Switch
set _closed (not _closed)

end
next Initial Switch
next Switch Switch

end  
end

Assertions must link all ports together
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Electric Circuit (3)

block Switch1
Boolean _closed false  
Boolean inPower false  
Boolean outPower false  
assertion Powering

set outPower (if _closed inPower false)
end

end
…
block Lamp

Boolean on false  
Boolean inPower false  
assertion Powering

set on inPower
end

end
…
assertion Powering

set Switch1.inPower PowerSource.outPower  
set Switch2.inPower Switch1.outPower  
set Lamp.inPower Switch2.outPower

end

Assertions have a name.
They consists of a block of instructions.  
They can be associated with any block.
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Electric Circuit (4)
At system level, we have the following assertions.
set Switch1.outPower (if Switch1._closed Switch1.inPower false)
set Switch2.outPower (if Switch2._closed Switch2.inPower false)
set Lamp.on Lamp.inPower
set Switch1.inPower PowerSource.outPower  
set Switch2.inPower Switch1.outPower  
set Lamp.inPower Switch2.outPower

step

Power  
Source

Switch 1 Switch 2 Lamp

outPower _closed inPower outPower _closed inPower outPower on inPower

0 true true false false true false false false false

1 true true true false true false false false false

2 true true true true true true false false false

3 true true true true true true true false true

4 true true true true true true true true true

5 true true true true true true true true true
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Electric Circuit (5)

At system level, we have the following assertions.
set Switch1.outPower (if Switch1._closed Switch1.inPower false)
set Switch2.outPower (if Switch2._closed Switch2.inPower false)
set Lamp.on Lamp.inPower
set Switch1.inPower PowerSource.outPower  
set Switch2.inPower Switch1.outPower  
set Lamp.inPower Switch2.outPower

step

Power  
Source

Switch 1 Switch 2 Lamp

outPower _closed inPower outPower _closed inPower outPower on inPower

0 true false true true true true true true true

1 true false true false true false true true true

2 true false true false true false false false true

3 true false true false true false false false false

4 true false true false true false false false false
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Exercises (Series 13)

Exercise 1: Two-Way Switch

Modify the code proposed in this section so to model a two-way switch.

Switch 1 Switch
2

LampPhas
e

Neutral

Exercise 2: Wages
Alice, Bob and Carol are salespersons. Their monthly wages are calculated as follows.  

Fixed salary + 4% of the growth revenue they generate + 800€ if the sum of thetwo
preceding numbers is below 9000€ and 400€ if it above. Design a model tocalculate  their
wages.

Name Gr. Rev. Salary Var. Part Bonus Total

Alice 47 500 8 000 1 900 400 10 300

Bob 38 900 6 700 1556 800 9 056

Carol 51 600 9 000 2 064 400 11 464
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Exercises (Series 14)

Exercise 1: 2-out-of-3 system

A 2-out-of-3 system is a system that works if at least two out of its 3 components are
working. Design a model for such a system and simulate it.

Exercise 2: Bridge

Components A, B, C and D of the following reliability block diagram may fail and 
be  repaired. The system described by the diagram is working if there is a working 
path  from the source node to the target node. Design a model for such a system 
and  simulate it.

A

B

C

D
source target
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STRUCTURING CONSTRUCTS
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Object-Oriented versus Prototype-Oriented
Modeling

It is often the case, when modeling a system (whether with Scola or with another  
language), that the system under study involves several identical or at least 
similar  components, see e.g. the Bridge exercise of the previous section.

So far, when such situation occurred we just duplicated the code, possibly for both  
component and scenario descriptions. This is both tedious and error prone.

All advanced programming and modeling languages provide thus constructs to  
describe identical components only once, then to indicate that identical components  
are just copies of the reference one.

There are two paradigms to implement this mechanism:

• The prototype-oriented paradigm, in which it is possible to clone an 
already  declared component.

• The object-oriented paradigm, in which reference components are declared  
separately as classes. It is then possible to introduce in the model instances, 
i.e.  copies, of theses classes. Classes are thus on-the-shelf, reusable 
modeling  components.

Scola, following in that S2ML, implements both paradigm.
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Use Case

Power
source

As an illustration, we shall consider again the small electric circuit of the previous  
section.

Switch 1 Switch 2

Lamp

In this example, switches 1 and 2 are identical.
In the previous section, we simply duplicated the code for both the system and the  
scenario description.
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Cloning (1)

The clones directive makes it possible to duplicate a block or a scenario.

block ElectricCircuit
block PowerSource
…

end
block Switch1
…  

end
clones Switch1 as Swicth2
end
block Lamp
…

end
…

end

scenario Light as ElectricCircuit
scenario Switch1Lane as Switch1
…

end
clones Switch1Lane as Switch2Lane as Switch2
end  

end

In our example, clones and cloned 
components  are strictly identical. It is 
however possible to add  more components to 
the clone or to modify initial  values of ports.
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Cloning (2)

block Switch1
Boolean _closed true  
Boolean inPower false  
Boolean outPower false  
assertion Powering

set outPower (if _closed inPower false)
end  

end
clones Switch1 as Switch2  

set _closed false  
integer number 1001

end

block Switch2
Boolean _closed false  
Boolean inPower false  
Boolean outPower false  
assertion Powering

set outPower (if _closed inPower false)  
end
integer number 1001

end
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Classes & Instances (1)

Another way to achieve the same goal consists in defining classes, i.e. on-the-shelf  
reusable modeling components, then to instantiate these classes into the model.
Classes are thus independent from the model.

class Switch(block)
…

end

block ElectricCircuit
block PowerSource

…
end
Switch Switch1 end
Switch Switch2 end
block Lamp

…
end
…

end

scenario SwitchLane(scenario)
…

end

scenario Light as ElectricCircuit  
SwitchLane Switch1Lane as Switch1 end  
SwitchLane Switch2Lane as Switch2 end

end

The block ElectricCircuit declares two instances  of 
the class Switch. The scenario Light declares two  
instances of the class SwitchLane.
As for cloning, it is possible to change the initial values of
ports and to add new elements.

109



Classes & Instances (2)
class Switch(block)  

Boolean _closed true  
Boolean inPower false  
Boolean outPower false  
assertion Powering

set outPower (if _closed inPower false)
end  

end

block ElectricCircuit
…
Switch Switch2

set _closed false  
integer number 1001

end
…

end

block Switch2
Boolean _closed false  
Boolean inPower false  
Boolean outPower false  
assertion Powering

set outPower (if _closed inPower false)  
end
integer number 1001

end

110



Inheritance (1)

In the previous example, the class Switch inherits from the base class block,  
while the class SwitchLane inherits from the base class scenario. We say  also 
that Switch derives from block and that SwitchLane derives from  scenario. 
In Scola, a class may derive from another class. In any case, it  derives eventually 
either from the base class block or from the base class  scenario.
If a class B derives from a class A, all elements of A are copied in B when B is  
instantiated.

class Connection(block)  Boolean 
inPower false  Boolean outPower
false

end

class Switch(Connection)  Boolean 
_closed true  assertion Powering

set outPower (if _closed inPower false)
end

end
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Inheritance (2)

More generally, it is possible in Scola to make any block inherit from another  block 
and any scenario inherit from another scenario, with the following  constraints:
• A prototype of block (resp. scenario) can inherit from another prototype of  block 

(resp. scenario) or from a class deriving from block (resp. scenario).
• A class deriving from block (resp. scenario) can inherit from another class

deriving from block (resp. scenario).

class Connection(block)  Boolean 
inPower false  Boolean outPower
false

end

block Switch1
inherits Connection  Boolean 
_closed true  assertion Powering

set outPower (if _closed inPower false)
end  end
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Exercises (Series 15)

Exercise 1: Electric Circuit

Design the complete model of the electric circuit presented in this section. First
without cloning nor classes, then with cloning and finally with classes.

Exercise 2: Bridge

Same question with the Bridge exercise of the previous section.

Exercise 3: Collaborative Report

Alice and Bob write a report. Alice makes version 0, then each of them read the 
report  in turn. After reading they can decide either to finalize it, which stops the 
writing  process, or to improve it and to pass it to their colleague.

Design a object-oriented Scola model for this scenario.
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Models

Model ::=
Declaration*

Declaration ::=
DomainDeclaration

| BlockDeclaration
| ScenarioDeclaration
| ClassDeclaration

DomainDeclaration ::=
domain Identifier "{" Identifier ("," Identifier)* "}" end
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Blocks & Ports

BlockDeclaration ::=
block Identifier BlockField* end

BlockField ::=
PortDeclaration | BlockDeclaration | AssertionDeclaration

| InheritsDirective | ClonesBlockDirective | BlockClassInstance
| SetInstruction

PortDeclaration ::=
port Identifier Expression

SetInstruction ::=
set Expression Expression # set path-to-port value
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Assertions

AssertionDeclaration ::=
assertion Identifier AssertionInstruction* end

AssertionInstruction ::=
fail

| SetInstruction
| if Expression then AssertionInstruction (else AssertionInstruction)?
| begin AssertionInstruction* end
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Scenarios, Connections, Tasks & States

ScenarioDeclaration ::=
scenario Identifier (as Path)? ScenarioField* end

ScenarioField ::=
StateDeclaration | TaskDeclaration | GatewayDeclaration

| ScenarioDeclaration | NextDirective
| ClonesScenarioDirective | InheritsDirective | ScenarioClassInstance

StateDeclaration ::=
state Identifier

TaskDeclaration ::=
task Identifier Instruction* end

NextDirective ::=
next Path Path
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Classes & Instances

ClassDeclaration ::=
BlockClassDeclaration | ScenarioClassDeclaration

BlockClassDeclaration ::
class Identifier "(" block | Identifier ")" BlockField* end

BlockClassInstance ::=
Identifier Identifier BlockField* end

ScenarioClassDeclaration ::
class Identifier "(" scenario | Identifier ")"  

(as Path)? ScenarioField* end

ScenarioClassInstance ::=
Identifier Identifier (as Path)? ScenarioField* end
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Clones & Inherits Directives

ClonesBlockDirective ::=
clones Path BlockField* end

ClonesScenarioDirective ::=
clones Path (as Path)? ScenarioField* end

InheritsDirective ::=
inherits Path
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Gateways (1)

GatewayDeclaration ::=
TestDeclaration | ChoiceDeclaration

| ForkDeclaration | JoinDeclaration
| SplitDeclaration | MergeDeclaration
| MeetDeclaration

TestDeclaration ::=
test Identifier CaseDeclaration+ end

CaseDeclaration ::=
case Identifier BooleanExpression
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Gateways (2)

ChoiceDeclaration ::=
choice Identifier BranchDeclaration+ end

ForkDeclaration ::=
fork Identifier BranchDeclaration+ end

JoinDeclaration ::=
join Identifier BranchDeclaration+ end

SplitDeclaration ::=
split Identifier BranchDeclaration+ end

MergeDeclaration ::=
merge Identifier BranchDeclaration+ end

MeetDeclaration ::=
meet Identifier BranchDeclaration+ end

BranchDeclaration ::=
branch Identifier
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Instructions

Instruction ::=

set Expression Expression  

# set path-to-port value
| new port Expression Expression

# new port path-to-port initial-value
| new block Expression

# new block path-to-block
| delete Expression

# delete path-to-item
| move Expression Expression

# delete path-to-source-item path-to-target-item
| send Expression Expression

# delete path-to-item path-to-receiver
| receive Expression Expression Expression

# receive path-to-item path-to-sender path-to-target-item
| clone Expression Expression

# clone path-to-source-item path-to-target-item
| if Expression then Instruction (else Instruction)?
| begin instruction* end
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Expressions & Boolean Expressions

Expression ::=
none

| Path
| BooleanExpression | ArithmeticExpression | StringExpression

| ConditionalExpression | PathExpression

Path ::= Identifier ("." Identifier)*  

Identifier ::= [a-zA-Z_][a-zA-Z0-9_]*

BooleanExpression ::=
false | true

| "(" BooleanOperator Expression+ ")"
| "(" Comparator Expression Expression ")"  

BooleanOperator ::= and | or | not

Comparator ::= eq | df | lt | gt | leq | geq
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Arithmetic & String Expressions

ArithmeticExpression ::=  

Number

| "(" AssociativeArithmeticOperator Expression+ ")"
| "(" UnaryArithmeticOperator Expression ")"

| "(" BinaryArithmeticOperator Expression Expression ")"

| "(" integer Expression ")"

| "(" real Expression ")"
Number ::= [-+]?[0-9]+(.[0-9]*)([eE][-+]?[0-9]+)?

AssociativeArithmeticOperator ::= add | sub | mul | div | min | max | count
UnaryArithmeticOperator ::= opp | inv | abs | exp | log | sqrt | ceil | floor

BinaryArithmeticOperator ::= pow | mod

StringExpression ::=
String

| "(" StringOperator Expression+ ")"
| "(" string Expression ")"

String ::= ["]([^"]|[\"])*["] | [']([^']|[\'])*[']
StringOperator ::= append
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Conditional & Path Expressions

ConditionalExpression ::=
"(" if BooleanExpression Expression Expression ")"

PathExpression ::=

"(" is_port PathExpression ")"
| "(" is_block PathExpression ")"

| "(" is_assertion PathExpression ")"

| "(" size PathExpression ")"

| "(" element PathExpression ArithmeticExpression ")"

| "(" append PathExpression+ ")"

| "(" symbol StringExpression? ")"
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SEMANTICS
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Operational Semantics

The operational semantics of a Scola model is defined as the set of possible 
executions of
one or more processes making the system evolve.
An execution is a finite sequence of states.  
Each state is characterized by:
 A system
 A set of processes.

A system is a hierarchy of blocks and ports. Moreover, each block maintains a 
reception  set. This reception set contains systems that have been sent to the block, 
but not yet  received by the block.

A process is characterized by its number and its location.
The location of a process is either a state, a task or a 
gateway.  Moreover:
 Each process may have a parent process and a set of child processes.
 Join gateways maintain a set of in-coming processes.
 Merge gateways maintain a set of queues of processes, one queue per in-

coming  location.
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