
Second year master's degree in
artificial intelligence

Prof. Mustapha Bourahla

1

Logics and Processes Algebra

Content

• Part One: Processes Algebras
with LOTOS

• Part Two: SOCLA (SCenario-
Oriented Language)

2

Part One: Processes Algebras with LOTOS
This material is developped on slides from the link

https://fr.slideserve.com/marged/chapitre-4-powerpoint-ppt-presentation
by Dr. Luigi

3

Algebras

4

• Algebras deal with expressions made up of
constants, variables and operators

• They are provided with rules to transform the
expressions: simplification, expansion…

• In process algebras, constants and variables
represent processes

Process algebras

5

In process algebras, systems of communicating
processes are represented by expressions of algebraic
character, called:
• Behavioral expressions, “behavior expressions”
• A[]B to say that A and B are alternative, the next

action must be taken either from expression A, or
from expression B (the other being then discarded)
• Sometimes also written A+B

• A||B to say that processes A and B are in parallel
execution, the next action will be taken from A and B
jointly (synchronous composition)

• Etc.

Algebraic Properties of Behavior Expressions

6

• Commutativity of choice:
• A[]B = B[]A

• Commutativity of parallel composition:
• A||B = B||A

• Zero absorption:
• A[]stop = stop[]A = A
• A||stop = stop||A = stop

• Associativity:
• A[](B[]C) = (A[]B)[]C
• A||(B||C) = (A||B)||C

Expressivity of process algebras

7

Process algebras provide formalisms in
which it is possible to prove that the
composition of two processes is equal to a
third process

Different process algebra

8

• Unfortunately, there is no agreement yet concerning
process algebras

• Several algebras have been studied, and each
working group continues to develop its own

• Milner developed the CCS: Calculus of
Communicating Processes, in the 1970s-1980s
• He further developed this concept in the π-

calculus
• Hoare developed the CSP: Communicating

Sequential Processes, more or less in the same
years

• LOTOS was developed in the 1980s

LOTOS

9

• Language Of Temporal Ordering Specifications. But
unrelated to the temporal logics

• Algebraic language for protocol specification
• Inspired mostly by Milner's CCS, takes some elements from

Hoare's CSP
• ISO International Standard
• A new standard, called Extended LOTOS (E-LOTOS) was

also developed, but it was never implemented (complex)
• Broad theory
• Used in practice in a large number of applications
• Tools and documentation can be obtained easily: CADP and

WELL

LOTOS process

10

A LOTOS process is a ‘black’ box with points of
contact with the environment: called gates

process P[a,b,c] :=
behavior expression

endproc

• The behavior expression defines the behavior of the system
with respect to the gates and the environment

• Different processes or expressions of behavior can
communicate through their gates by synchronous composition
(operator ||).

Behavior expressions describe states

11

process Distributeur [monnaie, gomme, chocolat] :=
monnaie; (gomme; stop [] chocolat; stop)

endproc

The distributeur is ready to
synchronize with the
environment with the monnaie
event, then with either gomme
or chocolat

What happens if the
environment tries to touch the
gomme without having
introduced money?

Internal action i

12

• Behaviors can have internal actions
• These actions denote an internal behavior of the

machine without wanting to go into details
• Details left to successive refinements in design or

implementation
• Internal action can be specified directly:

mon; (i;gom;stop [] choc;stop)

• Or indirectly (these two expressions are equivalent)
hide choc_fini in (mon; (choc_fini; gom; stop [] choc;stop))

• Internal action does not synchronize with the
environment (it is invisible externally)

Action stop

13

• The stop action is the empty action
• It does nothing, it offers nothing to the environment
• Sometimes also called nil action

Main operators in LOTOS

14

• a;B: behaves like a (an action) then like B (an
expression of behavior)

• B1 [] B2: behaves either like B1, or like B2
• B1 || B2: synchronous composition of B1 and B2

(must sync on all their actions)
• B1 ||| B2: interleaving of B1 and B2
• B1 |[a,b,c]| B2: B1 and B2 must synchronize on

actions a,b,c and interleave with other actions
• hide a,b,c… in B: B is executed, but each time an

action a, b, c… is executed, it is replaced by the
internal action i

The latter cannot synchronize with other actions

Additional operators

15

LOTOS also has the following operators:
• >> enable: A >> B means that after an exit from A

we do B. Like stop, exit ends a process but if
there is an enable it allows you to move on to the
next process

• [> disable: A [> B means that at any time during
the execution of A, B can interrupt A by initiating
its execution. A is no longer taken back.

Inference rules

16

The semantics of LOTOS operators are precisely
defined by inference rules and axioms

In other words:
given an expression of behavior, an action transforms
the behavior expression into another behavior
expression

Inference rules

17

• Axiom of inference for the prefix: If we have a;B and a synchronizes
with the environment, a;B becomes B.

• choice B1 [] B2: If B1 can synchronize with the environment on action
a1 giving B1’ as a result

• synchronous composition B1 || B2: If two behavior expressions are
ready to synchronize on an action a then they can produce a common
action a and then execute what remains
• Warning: there is no synchronization on the internal action i. nor

on the stop
• Interleave B1 ||| B2: An action is selected from one of the two

behaviors, and executed. The other part of the behavior can still be
selected later

• General parallelism B1|[A]|B2 Synchronization on some actions (set
A), interleaving on others: combines the rules of synchronous and
asynchronous compositions

Running inference rules

18

• Executing a LOTOS spec transforms the spec using inference
rules

• The current spec (representing the current global state) can
be transformed using any applicable rule

• The tree that represents all possible transformations is the
labeled transition system (LTS) of the system

• It is also the accessibility tree showing all possible state
transitions of the specified system

• This tree can also be represented as a LOTOS expression
• Deadlock is the case where no inference rule can be applied
• Impasse and stop are exactly the same thing in LOTOS:

• There are no inference rules for stop

19

20

Full LOTOS

21

• What we saw is basic LOTOS without the ability to express
data and values

• In Full LOTOS it is possible to define data and enter data into
actions

• a!x Means that the process offers the value of the variable x
to gate a

• a?x:nat Means that the process expects a natural number x at
gate a

• a ?x !y At the same time, the process accepts one value and
offers another

• We have the same synchronization rule as for basic LOTOS:
• Two actions synchronize if they are identical. E.g. a!3 and

a?x:nat synchronize because: They offer the same gate. One
offers a precise integer while the other offers any integer

• a?x:nat is equivalent to a!0 [] a!1[] a!2 [] a!3…

Guarded expressions

22

See ‘guarded commands’ in some programming
languages

[x>0] -> process1
[] [x=5] -> process2
[] [x<9] -> process2

Observe the possibility of expressing nondeterminism
(three possibilities in the case of x=5)

Exercises (Series 1)

23

Exercise: Using the inference rules draw LTS of :

1. process one [a,b,c] a; (b; stop [] c; stop) endproc

2. process two [a,b,c] a; b; stop [] a; c; stop endproc

3. process3 := a; (b; d; stop [] c; stop)

4. process4 := a; b; d; stop [] a; c; stop

Exercises (Series 2)

24

Exercise 1: Give the LTS of: a; (b; stop [] c; stop) and a; b; stop [] a; c; stop.
Then give a conclusion

Exercise 2: Give the LTS of each: A:= mon; (gom;stop [] choc; stop), B :=
mon; gom ;stop [] mon; choc; stop, C := mon; (i; gom; stop [] mon; choc;
stop), and D := mon; (i; gom; stop [] i; mon; choc; stop)

Exercise 3: Marie and Abdel always eat together. They have three actions:
Breakfast (b), lunch (l), dinner(d):
Marie:= b; l; d; stop, Abdel:= b; l; d; stop, give the LTS of Marie || Abdel

Exercise 4: However, if Abdel is not used to having lunch:

Marie:= b; l; d; stop, Abdel:= b; d; stop, give the LTS of Marie || Abdel

Exercises (Series 3):

25

Exercise 1: prove the following equivalences:
• ((a; stop || a; stop) || a; stop) = a; stop
• ((hide a in (a; stop || a; stop)) || a; stop) = i; stop
• (hide a in ((a; stop || a; stop) || a; stop)) = i; stop

Exercice 2: Marie and Abdel have nothing to do with each
other. They have two actions: Breakfast (b), lunch (l): Marie:=
b; l; stop, Abdel:= b; l; stop. find Marie ||| Abdel

Exercise 3: Marie and Abdel make breakfast and dinner
separately, however they always eat lunch together : Marie:= b;
l; d; stop, Abdel:= b; l; d; stop. Give Marie |[l]| Abdel

Exercise 4: compute (a; b; stop [] c; d; stop) |[a,b]| (a; b; stop []
d; f; stop) and give its LTS

Exercise 5: compute a; b; c; stop |[b]| a; b; d; stop

Exercises (Series 4)

26

Exercise 1: verify
1. (a; b; stop) |[b]| (c; b; stop) = (a; c; b; stop) [] (c; a; b; stop)
2. (i; b; stop) |[b]| (c; b; stop) = (i; c; b; stop) [] (c; i; b; stop)
3. (i; b; stop) |[b]| (i; b; stop) = (i; i; b; stop) [] (i; i; b; stop) =

(i; i; b; stop)
4. (a; b; stop) |[b]| (b; c; stop) = a; b; c; stop
5. (a; b; stop) |[a, b]| (b; a; stop) = stop = (a; b; stop) || (b; a;

stop)
6. (a; b; stop [] d; f; stop) |[a, b]| (a; b; c; stop [] i; stop) = (a; b;

c; stop [] d; (f; i; stop [] i; f; stop) [] i; d; f; stop)

Part Two: SCOLA (SCenario-Oriented Language)
Taken from

https://altarica-association.org/Products/Software/S2ML+XToolbox/S2ML+XToolbox.html#Scola
by

Antoine Rauzy

27

28

INTRODUCTION

Scola is a domain specific modeling language.
Scola stands for scenario-oriented language. It is a
textual language.
Scola aims at supporting systems architecture
studies by giving the system architect a mean to
describe and to play scenarios.

The idea of an scenario-based approach to
systems engineering is inspired from Milner's -
calculus.

29

Scola involves three fundamental concepts:
• System architecture, i.e. the decomposition of the

system under study into a
hierarchy of nested components.

• Scenarios, i.e. sequences of actions that can be
performed on the system and that may transform the
system architecture.

• Processes that execute scenarios.

Scola provides constructs to structure models that are
stemmed from object-oriented and prototype-oriented
programming.

30

Scola Models

A Scola model is made of two parts:
• A description of the functional or physical decomposition of the system under study.
• A description of scenarios applying on this system.

The description of the system consists eventually in a hierarchy of nested blocks. Each
block can compose any number of sub-blocks, ports and assertions. The system is
represented by the top-most component, which is implicit.
A port is a holder for an atomic value (Boolean, integer, real, symbol, string…).
An assertion is an instruction that is applied to update the values of ports.
Blocks, ports and assertions can be dynamically created, destroyed and
moved.

Each scenario can compose any number of sub-scenarios.
Scenarios are made of states, tasks and gateways. Tasks contain lists of
instructions that create, destroy and modify the system description. Gateways make
choices about scenarios.
It is possible to attach a scenario to a particular block.

Scola models describe the evolution of the system via the execution of processes.

31

GETTING STARTED

32

Scenarios & their graphical representation

Assume we want to represent the process of a small software development
project in the R&D department of a company. Assume moreover that this project
involves Alice and Bob. Alice and Bob works in turn: Alice codes the software,
then Bob tests it. The project is achieved after a certain number of iterations.
This progress of the project can be represented graphically as follows.

D
e
p
a
r
t
m
e
n
t A
l
i
c
e Initial

version version+1

Start Coding

version 0

B
o
b Test

IsOver

no

Terminal

yes

33

Scenarios, States, Tasks and Gateways
We have a system made of four components: The department, Alice, Bob and the
software. Alice, Bob and the software "belong" to the department. Moreover, the
software has a version number that evolves throughout the development process.
The development process is represented as a scenario involving two sub-scenarios
represented by lanes: one lane for Alice and one lane for Bob.

1. The scenario starts in the state Initial.
2. Alice performs the task Start in which a port (variable) version is reset to 0.
3. Alice performs the task Code, in which version is incremented.
4. Bob performs the task Test.
5. There is a choice, the choice gateway IsOver. If the branch yes is chosen, the scenario

continues with the state Terminal, otherwise it goes back to task Code (of Alice).
6. The scenarios ends on task Terminal,

34

Code:
System

block Department
block Alice
end
block Bob
end
block Software

integer version 0
end

end

•Systems are represented by hierarchies of nested
blocks. Each block represents thus a component or a
function of the system.
•Blocks may also contain ports. Ports hold constant
values (Booleans, integers, reals, symbols or strings).
•Like blocks, ports have a name. In addition, they are
declared with a default value.
•Blocks are thus containers for blocks and ports. One
says that they compose blocks and ports. Within a block,
all objects should have different names.
•In our example, the system (which is an implicit block)
composes on block Department, which itself composes
three blocks: Alice, Bob and Software. The block
Software composes the integer port version whose
default value is 0.

35

Code: Scenario
scenario Development

scenario AliceLane as Department.Alice
state Initial
task Start

set owner.Software.version 0
end
task Code

set owner.Software.version (add owner.Software.version 1)
end
next Initial Start
next Start Code

end
scenario BobLane as Department.Bob

task Test end
choice IsOver

case yes
case no

end
state Terminal
next Test IsOver

end
next AliceLane.Code BobLane.Test
next BobLane.IsOver.no AliceLane.Code
next BobLane.IsOver.yes BobLane.Terminal

end

• Scenarios are containers for states, tasks,
gateways and other scenarios.
• Tasks are containers for instructions.
•Next directives chain states, tasks and
gateways. They are represented with
arrows.
•The dot notation is used to refer elements
inside containers. In the container Dialog,
AliceLane.Code refers to the task Code of
the sub-container Alice. The keyword owner
refers to the parent block.
• The order of declarations is irrelevant.

36

Executions & Processes (1)

1

2

1

1

Scenarios are executed
by processes.
Here a process number 1 is
created on the state
Initial.

The process 1 then moves to
task Start.
A process can perform a task
if it can perform all
instructions of the task.
Tasks are atomic:
instructions are performed
without interruption.

37

Executions & Processes (2)

3

4

1

1

Sofware.version = 0

And soon…

Sofware.version = 1

38

Mobile Components
Scola makes it possible to describe mobile components, i.e. components that
are possibly dynamically created, destroyed and moved from place to place in
the system. As a illustration, assume that Alice wants now to write the activity
report of the project that Bob will be in charge of finalizing. This report is a
document that will be created by Alice, then moved to Bob.
This scenario can be represented graphically:

D
e
p
a
r
t
m
e
n
t A
l
i
c
e Initial

CreateReport MoveReport

B
o
b

HandleReport

Terminal

FinalizeReport

39

Example: Activity Report (1)

block Department
block Alice end
block Bob end
block Software

integer version 0
end

end

domain ReportStatus {CREATED, MODIFIED, FINALIZED} end

scenario ActivityReport
scenario AliceLane as Department.Alice

…
end
scenario BobLane as Department.Bob

…
end
next AliceLane.MoveReport BobLane.HandleReport

end

The next directive applies to tasks belonging to different storylines. It is
here declared at the parent level.

Same system as
before!

A domain, i.e. a finite set of
symbolic constants is created to
encode the status of the report.

40

Example: Activity Report (2)

scenario AliceLane as Department.Alice
state Initial
task CreateReport

new block report
new ReportStatus report.status CREATED
new string report.title "Activity Report"
new string report.content "Alice's contribution"

end
task MoveReport

move report main.Department.Bob.report
end
next Initial CreateReport
next CreateReport MoveReport

end

• New blocks and ports are dynamically created.
• When a block or a port is created, it is inserted in the block the current storyline refers to (here
Department.Alice).
• The keyword "main" refers to the model.
•Moving a block or a port requires that no item with the same name belongs to the target block.
The process cannot perform the task until this condition is realized.

41

Example: Activity Report (3)

scenario BobLane as Department.Bob
task HandleReport

set report.content (append report.content " & Bob's contribution")
set report.status MODIFIED

end
task FinalizeReport

set report.status FINALIZED
end
state Terminal
next HandleReport FinalizeReport
next FinalizeReport Terminal

end

• The keyword "owner" refers to the parent container.
• Receptions of items are blocking: the process waiting the item stops until it receives

the item.

42

Example: Activity Report (4)

1

2

3

1
block Department
block Alice
block Bob

block Department
block Alice
block Bob

1

1

block Department
block Alice
block report

port status CREATED
port title "Activity Report"
port content "Alice's contribution"

block Bob

43

Example: Activity Report (5)

4

5

6

1

1

1

block Department
block Alice
block Bob
block report

port status CREATED
port title "Activity Report"
port content "Alice's contribution"

block Department
block Alice
block Bob
block report

port status MODIFIED
port title "Activity Report"
port content "Alice's contribution &

Bob's contribution"

block Department
block Alice
block Bob
block report

port status FINALIZED
port title "Activity Report"
port content "Alice's contribution &

Bob's contribution"

44

Wrap-Up

• Scola models are made of systems (represented as hierarchies of blocks)
and scenarios applying on these systems.

• Each scenario describes a particular facet or function of the system. There may
be many scenarios applied to the same system.

• Blocks can compose other blocks and ports.
• Ports hold constant values (Boolean, integers, reals, symbols or strings).
• Blocks and ports can be dynamically created, destroyed and moved.
• Scenarios can compose other scenarios and be applied to a particular sub-

system (which is graphically represented by a lane).
• Scenarios are made of states (represented by circles), tasks (represented

by rounded rectangles) and gateways (represented by diamonds) which are
linked together by means of next directives (represented by arrows).

• Tasks can compose instructions that modify the state of the system.
• Scenarios are executed by processes. The semantics of a Scola model is the

set of all possible executions starting with a process located on each initial
state (i.e. states without predecessors) and normally ending when all active
processes have reached a terminal state (i.e. a state without successor).

45

Exercises (Series 5)

Exercise 1: Hello World!
Consider a system without subsystem and that performs a single actions: saying "Hello
World". Give the code for this scenario and represent it graphically. Execute it.

Exercise 2: Greatest Common Divisor
Design a Scola model that calculates the greatest common divisor (GCD) of two
integers. Execute it with a=96 and b=81.
Hint: recall that GCD(a, a) = a and that GCD(a, b) = GCD(a, b-a) if a<b.

Exercise 3: Syracuse Problem (Collatz conjecture)
Design a Scola model that takes any integer n and performs the following operations:
• If n is equal to 1, the execution stops.
• If n is even (n modulo 2 = 0), then the execution goes on with n/2.
• If n is odd (n modulo 2 = 1), then the execution goes on with 3n+1.
Execute this model for n=19.
Scola operations for multiplication and the modulo are respectively mul and mod.

46

Exercises (Series 6)

Exercise 1: At the restaurant.

At the restaurant, the client orders a pizza to the waiter. The waiter transmit the
order to the cook, who bakes the pizza. Once the pizza is baked, the cook gives it
to the waiter, who brings it to the client. Eventually, the client eats the pizza.

Represent and execute this scenario.

Exercise 2: Car assembly

In a car assembly line, the first station paints the car's body, the second assemble
the engine and the third the wheels.

Represent and execute this scenario.

47

SCENARIOS

48

States and Tasks

In Scola, there is a unique type of state and a unique type of task.
States can be however sorted into three categories:
• Initial states, i.e. states that do not occur as the right member of a next directive.
• Terminal states, i.e. states that do not occur as the left member of a next

directive.
• Intermediate states, the other.
Initial and terminal states play a very important role in the definition of scenarios.
Intermediate states are accepted for the sake of the completeness, although it is
always possible to remove them from scenarios without changing the semantics.
States are graphically represented as circle.

initial state terminal state intermediate state

Tasks are containers for instructions. They are represented by rounded rectangles.

task

49

Gateways

Scola provides 7 types of gateways.

 test choice

 fork join

 split merge

 meet

50

Test Gateways

S

T1

T2

T3

C1: x=V1

C2: x=V2

C3: x=V3

task S … end
task T1 … end
task T2 … end
task T3 … end
test Test

case C1 (eq x V1)
case C2 (eq x V2)
case C3 (eq x V3)

end
next S Test
next Test.C1 T1
next Test.C2 T2
next Test.C3 T3

A test gateway can have any number of (output) case branches.
A process (coming from the task S) located on the test gateway Test can
move forward if one and only one of the conditions labelling the case branches is
verified.

Test

51

Choice Gateways

S

T1

T2

T3

B1

B2

B3

task S … end
task T1 … end
task T2 … end
task T3 … end
choice Choice

branch B1
branch B2
branch B3

end
next S Test
next Choice.B1 T1
next Choice.B2 T2
next Choice.B3 T3

A choice gateway can have any number of (output) branches.
A process (coming from the task S) located on the choice gateway Choice
can move forward on any of the (output) branches.

Join

52

Fork Gateways

S

T1

T2

T3

B1

B2

B3

task S … end
task T1 … end
task T2 … end
task T3 … end
fork Fork

branch B1
branch B2
branch B3

end
next S Test
next Fork.B1 T1
next Fork.B2 T2
next Fork.B3 T3

A fork gateway can have any number of (output) branches.
A process (coming from the task S) located on the fork gateway Fork can
move forward. It is then deactivated (killed) and a new process is created on
each branch of Fork. These new processes are not related to the process that
created them.

Fork

53

Join Gateways

S2 T

B1

B3

task S1 … end
task S2 … end
task S3 … end
task T … end
join Join

branch B1
branch B2
branch B3

end
next S Test
next S1 Join.B1
next S2 Join.B2
next S3 Join.B3
next Join T

A join gateway can have any number of (input) branches.
It does the opposite operation of a fork gateway. Processes arriving on input
branches are stored into queues (first in, first out). When there is a process in the
queue of each input branch (B1, B2, B3), they can move forward, which means
that they are deactivated (killed) and that a new process is created on task T.

S1

S3

B2

Join

54

Example: Production Line (1)

Consider (part of) a production line in which parts made of two components arrive
on a conveyor belt to a first treatment unit F (represented by a fork gateway) where
they are separated. Once separated, components are sent respectively units of
type T1 and T2. When treatments performed by units T1 and T2 are done,
components are joined together in a unit J (represented by a join gateway). The
important point here is that it does not matter to assemble components coming
from different parts, as all the parts are the same.

T1

T2

o1

o2

F

i1

i2

J

55

Example: Production Line (2)

1

2

4 4

5

6

1

2

3

2

3

3 4

2

3

2
5

6
3

5
2

6
3

56

Example: Production Line (3)

7

8

9

10

5
2

5

3

5

3
7

78
6

3

7
And soon…

57

Split Gateways

S

T1

T2

T3

B1

B2

B3

task S … end
task T1 … end
task T2 … end
task T3 … end
split Split

branch B1
branch B2
branch B3

end
next S Test
next Split.B1 T1
next Split.B2 T2
next Split.B3 T3

A split gateway can have any number of (output) branches.
Split gateways are similar to fork gateways except that they link the deactivated
process (parent process) with the created processes (children processes). A
process (coming from the task S) located on the split gateway Split can move
forward. It is then deactivated (killed) and a new child process is created on each
branch of Split. These new processes are children of the killed process.

Split

58

Merge Gateways

S2 T

B1

B3

task S1 … end
task S2 … end
task S3 … end
task T … end
merge Merge

branch B1
branch B2
branch B3

end
next S Test
next S1 Merge.B1
next S2 Merge.B2
next S3 Merge.B3
next Merge T

A merge gateway can have any number of (input) branches.
It does the opposite operation of a split gateway. Processes arriving on input
branches are stored. When all the children processes of a parent process are in
the sets associated with input branches (B1, B2, B3) of Merge, they can move
forward, which means that they are deactivated (killed) and that the parent
process is reactivated on task T.

S1

S3

B2

Merge

59

Example: Production Line revisited (1)

Consider (part of) a production line in which parts made of two components arrive
on a conveyor belt to a first treatment unit S (represented by a split gateway) where
they are separated. Once separated, components are sent respectively units of
type T1 and T2. When treatments performed by units T1 and T2 are done,
components are reassembled together in a unit M (represented by a merge
gateway).
The important point here is that components of the same part must be re-
assembled together.

T1

T2
o2

o1

S

i1

i2

M

60

Example: Production Line revisited (2)

1

2

4 4

5

6

1

2

3

2

3

3 4

2

3

2
5

6
3

5
2

6
3

61

Example: Production Line revisited (3)

7

8

9

10

5
2

2

3

2

3
4

41
6

3

4
And soon…

62

Meet Gateways

S2

T1

T2

T3

B1

B2

B3

meet Meet
branch B1
branch B2
branch B3

end
next S1 Meet.B1
next S2 Meet.B2
next S3 Meet.B3
next Meet.B1 T1
next Meet.B2 T2
next Meet.B3 T3

A meet gateway can have any number of branches. Branches are both input
and output branches. Branches manages in-coming processes in queues (first
in, first out). When there is a process in each queue, all first processes of each
queue can move forward. They are just moved to the next locations of
branches (here tasks T1, T2, T3).

S1

S3

B1

B2

B3

63

Example: Rendez-Vous

TA

TB

SA

SB
Bob

Alice

Bob

TB

SA

SB

Alice

Bob

Alice

Bob

1

2

2

Alice

3
1

3

T1A

2

64

Exercises (Series 7)

Exercise 1: Life-Cycle.

The life-cycle of a product is usually made of three phases: design, operation and
decommissioning. The operation phase is itself decomposed into two sub-phases:
production and maintenance.

Give the code that represent such a life-cycle and represent it graphically. Execute it.

Exercise 2: Ternary Meter

Design a Scola model to represent a meter with three wheels (like a kilometric meter)
that counts in base 3.

Exercise 3: Tapes and Siphons

Design a Scola model that, at the one end, creates as many processes as the
analyst wishes (a tape) and, at the other end, kills these processes (a siphon).

Exercise 4: Travel Reservation
Design a Scola model to represent a travel reservation (flight + hotel)

65

Exercises (Series 8)

Exercise: Dynamic Car Assembly

Consider a car assembly line. The process is as follows:

• A new car enters into the assembly line.

• It is then moved to a first station where is painted.

• It is then moved to the second station where the engine is assembled.

• It is then move to the third station where the wheels are assembled in two steps:
first the front train, then the rear train.

•The car is then delivered (taken out the production line).

Each car must have its own series number.

There can be at most one car at each place of the assembly line, i.e. at the beginning
of the line and in each station.

Hint: Use test gateway to prevent a car to be moved to a place where there is already
another car. The Boolean expression (is_block path) can be used to check the
presence of a block at the give place.

66

BASE TYPES & EXPRESSIONS

67

Base Types

Base types for ports are: Boolean (true and false), integers, reals, symbols and
string. A port is a holder for a base type.
Once declared with the directive port (or the instruction new) the value of a port can
changed arbitrarily.
This behavior may be too loose (models may be hard to debug). It is thus possible to
declare a port together with its type, which forces it to take only values of this type,
e.g.

block
port anything false
Boolean working false
integer count 0
real distance 1.0e-4
symbol _state WORKING
string title "Activity Report"

end

Warning: even if a port is declared as a (generic) symbol, its value must be always
belong to a defined domains.

68

Domains

It is possible to restrict further the possible values of symbolic ports by
declaring domains, i.e. finite sets of symbolic constants, and declaring
ports with these domains. E.g.

domain UnitState {WORKING, DEGRADED, FAILED} end

block Unit

UnitState _state WORKING
end

We shall see a specific application of domains with assertions.

69

Expressions (1): Boolean operators

The current version of Scola implements a number of operators applying on Boolean,
numbers, symbols and string.

Operator #arguments Description

and Boolean and

or Boolean or

not 1 Boolean not

Boolean operators

70

Expressions (2): Inequalities

Operator #arguments Description

eq 2 arg1 arg2

df 2 arg1 arg2

lt 2 arg1 arg2

gt 2 arg1 arg2

leq 2 arg1 arg2

geq 2 arg1 arg2

Operators eq and df are polymorphic: they apply on Boolean, numbers,
symbols and strings.
The other operators compare only numbers.

71

Expressions (3): Associative Arithmetic Operators

Operator #arguments Description

add addition

sub subtraction

mul multiplication

div division (for integers, integral division)

min minimum value

max maximum value

count counts the number of (Boolean) arguments that
are satisfied

72

Expressions (4): Other Arithmetic Operators

Operator #arguments Description

opp -x

inv 1/x

abs absolute value

exp exponential

log logarithm

sqrt square root

ceil smallest integer greater than the argument

floor biggest integer smaller than the argument

pow xy

mod modulo

integer casts the argument to the closest integer

real casts the argument to real (e.g. to avoid
integral division)

73

Expressions (5): String and Conditional Operations

Operator #arguments Description

append concatenation

string 1 casts the argument to a string

Operations on strings

Conditional expressions

Operator #arguments Description

if if-then-else

74

Expressions (5): Path Operations

Operator #arguments Description

symbol 0 returns an empty path

symbol 1 casts the string argument into a path

identifier 1 returns the last identifier of a path

owner 1 returns the path minus its last identifier

append 1 concatenate the paths given as arguments

is_block 1 checks whether the argument is a path to a block

is_port 1 checks whether the argument is a path to a port

is_assertion 1 checks whether the argument is a path to an
assertion

size 1 returns the number of elements of a block

element 2 returns the n-th element of a block.

Path expressions

75

Reference versus Value

Paths to elements of systems are used in two ways, as illustrated by in
following assignment.

set Store.count (add Store.count 1)

The first occurrence of Store.count is a reference to the port
Store.count, while the second one denotes the value of this port.
Now, we may want to give the value Store.count to a port path, and then to use
the value of the port path as the first argument of an assignment. The following
instructions do not work.

path is assigned the value of Store.count

set path Store.count
set path (add path 1)

and not to the path
Store.count.

Even if the value of path is
Store.count, it is path which is
assigned and not Store.count.
Moreover it is assigned to the value of
path (plus one) and not to the value of
Store.count (plus one) . 76

Quote & Eval (1)

To prevent a port to be evaluated, it is possible to quote it.

set Store.count 1
equivalen
t

set path 'Store.count
set path (quote Store.count)

The value of path is the symbol Store.count and not the value of the port
Store.count.

Symmetrically, to evaluate a symbol, i.e. to take the value of the port reachable with
this path, it is possible to eval it.

set (eval path) (add (eval path) 1)

Store.count

The above assignment increments by 1 the value of Store.count.

77

Quote & Eval (2)

Functions quote and eval apply recursively to arguments of other functions:

(quote (append a b)) (append (quote a) (quote b))
(eval (add a b)) (add (eval a) (eval b))

Functions quote and eval cancel one another when applied to references:

(quote (eval a)) a
(eval (quote a)) a

Instructions such as assignment quote implicitly their arguments referring to a
port before evaluating them:

set (eval path) (add (eval path) 1)
1 2

1 (eval (quote (eval path)) Store.count

(eval (eval path)) 332

78

Exercises (Series 9)

Exercise: Largest port
A block Store contains an arbitrary number of integer ports. Design a scenario to get
the name of the port with the largest value.
Hint: use instruction if condition then instruction and instruction block
begin instructions end

79

INSTRUCTIONS

80

Instructions

Instructions are used in tasks and in assertions (see next section). Instructions
can be divided into two groups:
• Assignment, conditional instructions, blocks of instructions that can be used both

in tasks and assertions.
• Instructions to create, destroy and move components that can be used only in

tasks. The special instruction fail enters also in this category.

The semantics of instructions of the first category is straightforward.

Assignment:
set path-expression expression

Conditional instruction
if Boolean-expression then instruction [else instruction] # the
else part is optional

Blocks of instructions
begin instructions* end

81

Fail Instruction

The fail instruction always fails. It is used in combination with the conditional
instruction to postpone the execution of a task until a certain condition is verified.

Consider for instance a car waiting at a railway crossing. The driver waits for the
barrier to open before to go. In its simplest form, it could be as follows.

C
r
o
s
s
i
n
g

set barrier OPEN

C
a
r if (df main.Crossing.barrier OPEN) then

fail

See exercise Dynamic Car Assembly Revisited for an illustration

82

Instructions to Create and to Destroy Components

• Instructions to create blocks and ports are as follows.
new port path-expression expression
new block path-expression

Required: there must be no component with the same name at the same place.

• The instruction to delete a block, a port or an assertion is as follows.
delete path-expression

Required: the referred component must exist.

• The instruction to clone a component is as follows (this instruction should not to
confuse with the clones directive)

clone path-expression path-expression

Required: the cloned component (first argument) must exist and there must be no
component with the same name at the same place (second argument).

See example ActivityReport.scola for an illustration.

83

Instructions to Move Components

• The instruction to move a block or a port to another location is as follows.
move path-expression path-expression

Required: the moved component (first argument) must exist and there must be no
component with the same name at the same place (second argument).
See example ActivityReport.scola for an illustration.

• Instructions to move a block or a port in an asynchronous way are as follows.
send path-expression path-expression

receive path-expression path-expression identifier

The first argument of the send instruction is the path to the sent component. The
second argument is the path to the block in which it is sent.
The first argument of receive instruction is the path to the send component. The
second argument is the path to the block that sends the component. The third
argument is the identifier of the component once received.
Required: the sent component, the sending block and the receiving block must exist
and there must be no component with the same name in the receiving block.

84

Example: Cryptography (1)

Initial
A
l
i
c
e

CreateMessage

CypherMessage

DecypherMessage

B
o
b

SendMessage

Terminal

Initial

Terminal
ReceiveMessage

The two processes (one for Alice, one for Bob) are running in parallel.
Sending and reception of the message are asynchronous: once the send instruction executed, the
sent component is removed from the sending block. It is inserted in the receiving block only once
the receive instruction has been executed.. Reception is blocking.

85

Example: Cryptography (2)

block Alice end
block Bob end

scenario CypheredMessage
scenario AlicePool as Alice

…
end
scenario BobPool as Bob

…
end

end

86

Example: Cryptography (3)

scenario AlicePool as Alice
state Initial
task CreateMessage

new block message
new port message.status CREATED

end
task CypherMessage

set message.status CYPHERED
end
task SendMessage

send message main.Bob
end
state Terminal
next Initial CreateMessage
next CreateMessage CypherMessage
next CypherMessage SendMessage
next SendMessage Terminal

end

87

Example: Cryptography (4)

scenario BobPool as Bob
state Initial
task ReceiveMessage

receive message owner.Alice receivedMessage
end
task DecypherMessage

set receivedMessage.status DECYPHERED
end
state Terminal
next Initial ReceiveMessage
next ReceiveMessage DecypherMessage
next DecypherMessage Terminal

end

88

Example: Cryptography (5)

1

2

1

2

3

4

1

2 2

2

1

1

The process 2 is blocked until the reception of the message

89

Example: Cryptography (6)

1

2

5

6

1

2 The message is sent but not yet received

block Alice
block message
port status CYPHERED

block Bob

block Alice
block Bob

90

Example: Cryptography (6)

1

2

5

6

1

2

block Alice
block Bob
block receivedMessage
port status CYPHERED

block Alice
block Bob
block receivedMessage
port status DECYPHERED

The name of the block has been changed

91

Exercises (Series 10)

Exercise 1: Dynamic Car Assembly (revisited)

Design a model that use fail instructions rather than test gateways to solve the
dynamic car assembly exercise.

Exercise 2: Master Thesis

Bob is doing his master project under the supervision of Alice. He has to do some
research and in parallel to write his master thesis. This requires some iterations with
Alice until she gives eventually her approval.

Design a model to represent this process. First, just using ports, without any
component creation. Second, with component creation and moving. Third with
component creation, sending and reception.

92

Exercises (Series 11)

in out

Exercise 1: Queues

In an shop, clients must choose one of two queues at the cashier. They are served in
the order of arrival in the queue they choose.

Design a model for such a system and simulate it.

Hint: use three processes, one to create new clients and one for each queue.

Exercise 2: Maze

Design a Scola model to get out of the following maze.

Hint: recall Tom Thumb.

93

Exercises (Series 12)

Exercise 1: Eratosthenes

Design a model to calculate prime numbers lower than 100 using Eratosthenes' Sieve.

The idea is to have two nested loops: the outer one to generate candidate numbers
(from 3 to 100 in order) and the inner one to test candidates. The test consist in
comparing (via a modulo) the candidate with all prime numbers found so far.

Hint: Prime numbers are store as integer ports p1=2, p2=3, p3=5… into a blockPrimes.

Exercise 2: Ferry

A ferry carries trucks from the left bank to the right bank of a river. It goes forth and
back as long as there are trucks to carry. It can contain only one truck at a time.
Design a Scola model to represent this ferry.

94

ASSERTIONS

95

Assertions

So far, descriptions of systems we have seen consisted in hierarchies of blocks, and
ports.
It is however often suitable/necessary to describe not only the structural decomposition
of the system, but also connections existing between its components. These
connections makes the information circulate through the components of the system.
Information is to be taken in a broad sense, including flow of matters, energy,
information…
Scola provides the concept of assertion, stemmed from the AltaRica modeling language,
to describe connections and their semantics.
An assertion is an instruction, or a group of instructions, that updates the values of
ports after the execution of a task.
As assertions may be spread all over the system, the result of the update should not
depend on the order of the execution of instructions of the assertion. This is the reason
why, a fixpoint mechanism is used for assertions: the assertion is re-executed until the
values of ports stabilized. It is up to the analyst to ensure that this stabilization process
terminates.

96

Electric Circuit (1)

Consider a small electric circuit consisting of a power source two switches and a
lamp in series. All components are assumed to be perfectly reliable.

Switch 1 Switch 2

Power
source

Lamp

Modeling this system is easy: the system is decomposed into four subsystems, one
per component. The scenario is made of two lanes, one of each switch. The other
components are actually passive.
However, we would like to determine automatically when the lamp is powered,
depending on the states of the switches. This is achieved by means of assertions.

97

Electric Circuit (2)

block ElectricCircuit
block PowerSource
Boolean outPower true

end
block Switch1
Boolean _closed true
Boolean inPower false
Boolean outPower false
...

end
block Switch2
Boolean _closed true
Boolean inPower false
Boolean outPower false
...

end
block Lamp
Boolean on true
Boolean inPower false
...

end
...

end

scenario Light as ElectricCircuit
scenario Switch1Lane as Switch1
state Initial
task Switch
set _closed (not _closed)

end
next Initial Switch
next Switch Switch

end
scenario Switch2Lane as Switch2
state Initial
task Switch
set _closed (not _closed)

end
next Initial Switch
next Switch Switch

end
end

Assertions must link all ports together

98

Electric Circuit (3)

block Switch1
Boolean _closed false
Boolean inPower false
Boolean outPower false
assertion Powering

set outPower (if _closed inPower false)
end

end
…
block Lamp

Boolean on false
Boolean inPower false
assertion Powering

set on inPower
end

end
…
assertion Powering

set Switch1.inPower PowerSource.outPower
set Switch2.inPower Switch1.outPower
set Lamp.inPower Switch2.outPower

end

Assertions have a name.
They consists of a block of instructions.
They can be associated with any block.

99

Electric Circuit (4)
At system level, we have the following assertions.
set Switch1.outPower (if Switch1._closed Switch1.inPower false)
set Switch2.outPower (if Switch2._closed Switch2.inPower false)
set Lamp.on Lamp.inPower
set Switch1.inPower PowerSource.outPower
set Switch2.inPower Switch1.outPower
set Lamp.inPower Switch2.outPower

step

Power
Source

Switch 1 Switch 2 Lamp

outPower _closed inPower outPower _closed inPower outPower on inPower

0 true true false false true false false false false

1 true true true false true false false false false

2 true true true true true true false false false

3 true true true true true true true false true

4 true true true true true true true true true

5 true true true true true true true true true

100

Electric Circuit (5)

At system level, we have the following assertions.
set Switch1.outPower (if Switch1._closed Switch1.inPower false)
set Switch2.outPower (if Switch2._closed Switch2.inPower false)
set Lamp.on Lamp.inPower
set Switch1.inPower PowerSource.outPower
set Switch2.inPower Switch1.outPower
set Lamp.inPower Switch2.outPower

step

Power
Source

Switch 1 Switch 2 Lamp

outPower _closed inPower outPower _closed inPower outPower on inPower

0 true false true true true true true true true

1 true false true false true false true true true

2 true false true false true false false false true

3 true false true false true false false false false

4 true false true false true false false false false

101

Exercises (Series 13)

Exercise 1: Two-Way Switch

Modify the code proposed in this section so to model a two-way switch.

Switch 1 Switch
2

LampPhas
e

Neutral

Exercise 2: Wages
Alice, Bob and Carol are salespersons. Their monthly wages are calculated as follows.

Fixed salary + 4% of the growth revenue they generate + 800€ if the sum of thetwo
preceding numbers is below 9000€ and 400€ if it above. Design a model tocalculate their
wages.

Name Gr. Rev. Salary Var. Part Bonus Total

Alice 47 500 8 000 1 900 400 10 300

Bob 38 900 6 700 1556 800 9 056

Carol 51 600 9 000 2 064 400 11 464

102

Exercises (Series 14)

Exercise 1: 2-out-of-3 system

A 2-out-of-3 system is a system that works if at least two out of its 3 components are
working. Design a model for such a system and simulate it.

Exercise 2: Bridge

Components A, B, C and D of the following reliability block diagram may fail and
be repaired. The system described by the diagram is working if there is a working
path from the source node to the target node. Design a model for such a system
and simulate it.

A

B

C

D
source target

103

STRUCTURING CONSTRUCTS

104

Object-Oriented versus Prototype-Oriented
Modeling

It is often the case, when modeling a system (whether with Scola or with another
language), that the system under study involves several identical or at least
similar components, see e.g. the Bridge exercise of the previous section.

So far, when such situation occurred we just duplicated the code, possibly for both
component and scenario descriptions. This is both tedious and error prone.

All advanced programming and modeling languages provide thus constructs to
describe identical components only once, then to indicate that identical components
are just copies of the reference one.

There are two paradigms to implement this mechanism:

• The prototype-oriented paradigm, in which it is possible to clone an
already declared component.

• The object-oriented paradigm, in which reference components are declared
separately as classes. It is then possible to introduce in the model instances,
i.e. copies, of theses classes. Classes are thus on-the-shelf, reusable
modeling components.

Scola, following in that S2ML, implements both paradigm.

105

Use Case

Power
source

As an illustration, we shall consider again the small electric circuit of the previous
section.

Switch 1 Switch 2

Lamp

In this example, switches 1 and 2 are identical.
In the previous section, we simply duplicated the code for both the system and the
scenario description.

106

Cloning (1)

The clones directive makes it possible to duplicate a block or a scenario.

block ElectricCircuit
block PowerSource
…

end
block Switch1
…

end
clones Switch1 as Swicth2
end
block Lamp
…

end
…

end

scenario Light as ElectricCircuit
scenario Switch1Lane as Switch1
…

end
clones Switch1Lane as Switch2Lane as Switch2
end

end

In our example, clones and cloned
components are strictly identical. It is
however possible to add more components to
the clone or to modify initial values of ports.

107

Cloning (2)

block Switch1
Boolean _closed true
Boolean inPower false
Boolean outPower false
assertion Powering

set outPower (if _closed inPower false)
end

end
clones Switch1 as Switch2

set _closed false
integer number 1001

end

block Switch2
Boolean _closed false
Boolean inPower false
Boolean outPower false
assertion Powering

set outPower (if _closed inPower false)
end
integer number 1001

end

108

Classes & Instances (1)

Another way to achieve the same goal consists in defining classes, i.e. on-the-shelf
reusable modeling components, then to instantiate these classes into the model.
Classes are thus independent from the model.

class Switch(block)
…

end

block ElectricCircuit
block PowerSource

…
end
Switch Switch1 end
Switch Switch2 end
block Lamp

…
end
…

end

scenario SwitchLane(scenario)
…

end

scenario Light as ElectricCircuit
SwitchLane Switch1Lane as Switch1 end
SwitchLane Switch2Lane as Switch2 end

end

The block ElectricCircuit declares two instances of
the class Switch. The scenario Light declares two
instances of the class SwitchLane.
As for cloning, it is possible to change the initial values of
ports and to add new elements.

109

Classes & Instances (2)
class Switch(block)

Boolean _closed true
Boolean inPower false
Boolean outPower false
assertion Powering

set outPower (if _closed inPower false)
end

end

block ElectricCircuit
…
Switch Switch2

set _closed false
integer number 1001

end
…

end

block Switch2
Boolean _closed false
Boolean inPower false
Boolean outPower false
assertion Powering

set outPower (if _closed inPower false)
end
integer number 1001

end

110

Inheritance (1)

In the previous example, the class Switch inherits from the base class block,
while the class SwitchLane inherits from the base class scenario. We say also
that Switch derives from block and that SwitchLane derives from scenario.
In Scola, a class may derive from another class. In any case, it derives eventually
either from the base class block or from the base class scenario.
If a class B derives from a class A, all elements of A are copied in B when B is
instantiated.

class Connection(block) Boolean
inPower false Boolean outPower
false

end

class Switch(Connection) Boolean
_closed true assertion Powering

set outPower (if _closed inPower false)
end

end

111

Inheritance (2)

More generally, it is possible in Scola to make any block inherit from another block
and any scenario inherit from another scenario, with the following constraints:
• A prototype of block (resp. scenario) can inherit from another prototype of block

(resp. scenario) or from a class deriving from block (resp. scenario).
• A class deriving from block (resp. scenario) can inherit from another class

deriving from block (resp. scenario).

class Connection(block) Boolean
inPower false Boolean outPower
false

end

block Switch1
inherits Connection Boolean
_closed true assertion Powering

set outPower (if _closed inPower false)
end end

112

Exercises (Series 15)

Exercise 1: Electric Circuit

Design the complete model of the electric circuit presented in this section. First
without cloning nor classes, then with cloning and finally with classes.

Exercise 2: Bridge

Same question with the Bridge exercise of the previous section.

Exercise 3: Collaborative Report

Alice and Bob write a report. Alice makes version 0, then each of them read the
report in turn. After reading they can decide either to finalize it, which stops the
writing process, or to improve it and to pass it to their colleague.

Design a object-oriented Scola model for this scenario.

113

REFERENCES

114

References

(Batteux & al. 2015) Michel Batteux, Tatiana Prosvirnova and Antoine Rauzy. System Structure Modeling
Language (S2ML). AltaRica Association. 2015. archive hal-01234903, version 1.

(Issad & al. 2018) Mélissa Issad, Leïla Kloul and Antoine Rauzy. Scenario-Oriented Reverse Engineering of
Complex Railway System Specifications. Journal of Systems Engineering. Wiley Online Library. 21:2.
pp. 91–104. March, 2018. doi:10.1002/sys.21413.

(Milner 1999) Robin Milner. Communicating and Mobile Systems: The pi-calculus. Cambridge University
Press.

Cambridge, CB2 8BS, United Kingdom. ISBN 978-0521658690. 1999.

(White & Miers 2008) Stephen White and Derek Miers. BPMN Modeling and Reference Guide:
Understanding and Using BPMN. Future Strategies Inc.. Lighthouse Point, FL, USA. ISBN 978-
0977752720. 2008.

115

GRAMMAR

116

Models

Model ::=
Declaration*

Declaration ::=
DomainDeclaration

| BlockDeclaration
| ScenarioDeclaration
| ClassDeclaration

DomainDeclaration ::=
domain Identifier "{" Identifier ("," Identifier)* "}" end

117

Blocks & Ports

BlockDeclaration ::=
block Identifier BlockField* end

BlockField ::=
PortDeclaration | BlockDeclaration | AssertionDeclaration

| InheritsDirective | ClonesBlockDirective | BlockClassInstance
| SetInstruction

PortDeclaration ::=
port Identifier Expression

SetInstruction ::=
set Expression Expression # set path-to-port value

118

Assertions

AssertionDeclaration ::=
assertion Identifier AssertionInstruction* end

AssertionInstruction ::=
fail

| SetInstruction
| if Expression then AssertionInstruction (else AssertionInstruction)?
| begin AssertionInstruction* end

119

Scenarios, Connections, Tasks & States

ScenarioDeclaration ::=
scenario Identifier (as Path)? ScenarioField* end

ScenarioField ::=
StateDeclaration | TaskDeclaration | GatewayDeclaration

| ScenarioDeclaration | NextDirective
| ClonesScenarioDirective | InheritsDirective | ScenarioClassInstance

StateDeclaration ::=
state Identifier

TaskDeclaration ::=
task Identifier Instruction* end

NextDirective ::=
next Path Path

120

Classes & Instances

ClassDeclaration ::=
BlockClassDeclaration | ScenarioClassDeclaration

BlockClassDeclaration ::
class Identifier "(" block | Identifier ")" BlockField* end

BlockClassInstance ::=
Identifier Identifier BlockField* end

ScenarioClassDeclaration ::
class Identifier "(" scenario | Identifier ")"

(as Path)? ScenarioField* end

ScenarioClassInstance ::=
Identifier Identifier (as Path)? ScenarioField* end

121

Clones & Inherits Directives

ClonesBlockDirective ::=
clones Path BlockField* end

ClonesScenarioDirective ::=
clones Path (as Path)? ScenarioField* end

InheritsDirective ::=
inherits Path

122

Gateways (1)

GatewayDeclaration ::=
TestDeclaration | ChoiceDeclaration

| ForkDeclaration | JoinDeclaration
| SplitDeclaration | MergeDeclaration
| MeetDeclaration

TestDeclaration ::=
test Identifier CaseDeclaration+ end

CaseDeclaration ::=
case Identifier BooleanExpression

123

Gateways (2)

ChoiceDeclaration ::=
choice Identifier BranchDeclaration+ end

ForkDeclaration ::=
fork Identifier BranchDeclaration+ end

JoinDeclaration ::=
join Identifier BranchDeclaration+ end

SplitDeclaration ::=
split Identifier BranchDeclaration+ end

MergeDeclaration ::=
merge Identifier BranchDeclaration+ end

MeetDeclaration ::=
meet Identifier BranchDeclaration+ end

BranchDeclaration ::=
branch Identifier

124

Instructions

Instruction ::=

set Expression Expression

set path-to-port value
| new port Expression Expression

new port path-to-port initial-value
| new block Expression

new block path-to-block
| delete Expression

delete path-to-item
| move Expression Expression

delete path-to-source-item path-to-target-item
| send Expression Expression

delete path-to-item path-to-receiver
| receive Expression Expression Expression

receive path-to-item path-to-sender path-to-target-item
| clone Expression Expression

clone path-to-source-item path-to-target-item
| if Expression then Instruction (else Instruction)?
| begin instruction* end

125

Expressions & Boolean Expressions

Expression ::=
none

| Path
| BooleanExpression | ArithmeticExpression | StringExpression

| ConditionalExpression | PathExpression

Path ::= Identifier ("." Identifier)*

Identifier ::= [a-zA-Z_][a-zA-Z0-9_]*

BooleanExpression ::=
false | true

| "(" BooleanOperator Expression+ ")"
| "(" Comparator Expression Expression ")"

BooleanOperator ::= and | or | not

Comparator ::= eq | df | lt | gt | leq | geq

126

Arithmetic & String Expressions

ArithmeticExpression ::=

Number

| "(" AssociativeArithmeticOperator Expression+ ")"
| "(" UnaryArithmeticOperator Expression ")"

| "(" BinaryArithmeticOperator Expression Expression ")"

| "(" integer Expression ")"

| "(" real Expression ")"
Number ::= [-+]?[0-9]+(.[0-9]*)([eE][-+]?[0-9]+)?

AssociativeArithmeticOperator ::= add | sub | mul | div | min | max | count
UnaryArithmeticOperator ::= opp | inv | abs | exp | log | sqrt | ceil | floor

BinaryArithmeticOperator ::= pow | mod

StringExpression ::=
String

| "(" StringOperator Expression+ ")"
| "(" string Expression ")"

String ::= ["]([^"]|[\"])*["] | [']([^']|[\'])*[']
StringOperator ::= append

127

Conditional & Path Expressions

ConditionalExpression ::=
"(" if BooleanExpression Expression Expression ")"

PathExpression ::=

"(" is_port PathExpression ")"
| "(" is_block PathExpression ")"

| "(" is_assertion PathExpression ")"

| "(" size PathExpression ")"

| "(" element PathExpression ArithmeticExpression ")"

| "(" append PathExpression+ ")"

| "(" symbol StringExpression? ")"

128

SEMANTICS

129

Operational Semantics

The operational semantics of a Scola model is defined as the set of possible
executions of
one or more processes making the system evolve.
An execution is a finite sequence of states.
Each state is characterized by:
 A system
 A set of processes.

A system is a hierarchy of blocks and ports. Moreover, each block maintains a
reception set. This reception set contains systems that have been sent to the block,
but not yet received by the block.

A process is characterized by its number and its location.
The location of a process is either a state, a task or a
gateway. Moreover:
 Each process may have a parent process and a set of child processes.
 Join gateways maintain a set of in-coming processes.
 Merge gateways maintain a set of queues of processes, one queue per in-

coming location.

130

